
Microchip Technology - DSPIC30F4013-20I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor dsPIC

Core Size 16-Bit

Speed 20 MIPS

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals AC'97, Brown-out Detect/Reset, I²S, POR, PWM, WDT

Number of I/O 30

Program Memory Size 48KB (16K x 24)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 13x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-TQFP

Supplier Device Package 44-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4013-20i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f4013-20i-pt-4386235
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC30F3014/4013
2.4.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data
space may also be saturated but without affecting the
contents of the source accumulator. The data space
write saturation logic block accepts a 16-bit,
1.15 fractional value from the round logic block as its
input, together with overflow status from the original
source (accumulator) and the 16-bit round adder.
These are combined and used to select the appropriate
1.15 fractional value as output to write to data space
memory.

If the SATDW bit in the CORCON register is set, data
(after rounding or truncation) is tested for overflow and
adjusted accordingly. For input data greater than
0x007FFF, data written to memory is forced to the
maximum positive 1.15 value, 0x7FFF. For input data
less than 0xFF8000, data written to memory is forced
to the maximum negative 1.15 value, 0x8000. The
Most Significant bit (MSb) of the source (bit 39) is used
to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the
input data is always passed through unmodified under
all conditions.

2.4.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit
arithmetic or logic right shifts, or up to 16-bit left shifts
in a single cycle. The source can be either of the two
DSP accumulators, or the X bus (to support multi-bit
shifts of register or memory data).

The shifter requires a signed binary value to determine
both the magnitude (number of bits) and direction of the
shift operation. A positive value shifts the operand right.
A negative value shifts the operand left. A value of ‘0’
does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a
40-bit result for DSP shift operations and a 16-bit result
for MCU shift operations. Data from the X bus is
presented to the barrel shifter between bit positions 16
to 31 for right shifts, and bit positions 0 to 16 for left
shifts.
 2010 Microchip Technology Inc. DS70138G-page 23

dsPIC30F3014/4013
3.1.1 DATA ACCESS FROM PROGRAM
MEMORY USING TABLE
INSTRUCTIONS

This architecture fetches 24-bit wide program memory.
Consequently, instructions are always aligned.
However, as the architecture is modified Harvard, data
can also be present in program space.

There are two methods by which program space can
be accessed: via special table instructions, or through
the remapping of a 16K word program space page into
the upper half of data space (see Section 3.1.2 “Data
Access from Program Memory Using Program
Space Visibility”). The TBLRDL and TBLWTL instruc-
tions offer a direct method of reading or writing the lsw
of any address within program space, without going
through data space. The TBLRDH and TBLWTH instruc-
tions are the only method whereby the upper 8 bits of a
program space word can be accessed as data.

The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit
word-wide address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space which contains the least significant
data word, and TBLRDH and TBLWTH access the space
which contains the MS Data Byte.

Figure 3-3 shows how the EA is created for table oper-
ations and data space accesses (PSV = 1). Here,
P<23:0> refers to a program space word, whereas
D<15:0> refers to a data space word.

A set of table instructions are provided to move byte or
word-sized data to and from program space. (See
Figure 3-4 and Figure 3-5.)

1. TBLRDL: Table Read Low
Word: Read the lsw of the program address;
P<15:0> maps to D<15:0>.
Byte: Read one of the LSBs of the program
address;
P<7:0> maps to the destination byte when byte
select = 0;
P<15:8> maps to the destination byte when byte
select = 1.

2. TBLWTL: Table Write Low (refer to Section 5.0
“Flash Program Memory” for details on Flash
programming)

3. TBLRDH: Table Read High
Word: Read the most significant word (msw) of
the program address; P<23:16> maps to D<7:0>;
D<15:8> will always be = 0.
Byte: Read one of the MSBs of the program
address;
P<23:16> maps to the destination byte when
byte select = 0;
The destination byte will always be = 0 when
byte select = 1.

4. TBLWTH: Table Write High (refer to Section 5.0
“Flash Program Memory” for details on Flash
Programming)

FIGURE 3-4: PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)

0816PC Address

0x000000

0x000002

0x000004
0x000006

23
00000000
00000000

00000000
00000000

Program Memory
‘Phantom’ Byte
(read as ‘0’)

TBLRDL.W

TBLRDL.B (Wn<0> = 1)

TBLRDL.B (Wn<0> = 0)
 2010 Microchip Technology Inc. DS70138G-page 27

dsPIC30F3014/4013
FIGURE 3-5: PROGRAM DATA TABLE ACCESS (MSB)

3.1.2 DATA ACCESS FROM PROGRAM
MEMORY USING PROGRAM SPACE
VISIBILITY

The upper 32 Kbytes of data space may optionally be
mapped into any 16K word program space page. This
provides transparent access of stored constant data
from X data space without the need to use special
instructions (i.e., TBLRDL/H, TBLWTL/H instructions).

Program space access through the data space occurs
if the MSb of the data space, EA, is set and program
space visibility is enabled by setting the PSV bit in the
Core Control register (CORCON). The functions of
CORCON are discussed in Section 2.4 “DSP
Engine”.

Data accesses to this area add an additional cycle to
the instruction being executed, since two program
memory fetches are required.

Note that the upper half of addressable data space is
always part of the X data space. Therefore, when a
DSP operation uses program space mapping to access
this memory region, Y data space should typically con-
tain state (variable) data for DSP operations, whereas
X data space should typically contain coefficient
(constant) data.

Although each data space address, 0x8000 and higher,
maps directly into a corresponding program memory
address (see Figure 3-6), only the lower 16 bits of the
24-bit program word are used to contain the data. The
upper 8 bits should be programmed to force an illegal
instruction to maintain machine robustness. Refer to
the “16-bit MCU and DSC Programmer’s Reference
Manual” (DS70157) for details on instruction encoding.

Note that by incrementing the PC by 2 for each
program memory word, the 15 LSbs of data space
addresses directly map to the 15 LSbs in the corre-
sponding program space addresses. The remaining
bits are provided by the Program Space Visibility Page
register, PSVPAG<7:0>, as shown in Figure 3-6.

For instructions that use PSV which are executed
outside a REPEAT loop:

• The following instructions require one instruction
cycle in addition to the specified execution time:

- MAC class of instructions with data operand
prefetch

- MOV instructions

- MOV.D instructions

• All other instructions require two instruction cycles
in addition to the specified execution time of the
instruction.

For instructions that use PSV which are executed
inside a REPEAT loop:

• The following instances require two instruction
cycles in addition to the specified execution time
of the instruction:

- Execution in the first iteration

- Execution in the last iteration

- Execution prior to exiting the loop due to an
interrupt

- Execution upon re-entering the loop after an
interrupt is serviced

• Any other iteration of the REPEAT loop allows the
instruction accessing data, using PSV, to execute
in a single cycle.

0816PC Address

0x000000

0x000002

0x000004
0x000006

23
00000000
00000000

00000000
00000000

Program Memory
‘Phantom’ Byte
(read as ‘0’)

TBLRDH.W

TBLRDH.B (Wn<0> = 1)

TBLRDH.B (Wn<0> = 0)

Note: PSV access is temporarily disabled during
table reads/writes.
DS70138G-page 28  2010 Microchip Technology Inc.

dsPIC30F3014/4013
NOTES:
DS70138G-page 36  2010 Microchip Technology Inc.

dsPIC30F3014/4013
6.0 DATA EEPROM MEMORY

The data EEPROM memory is readable and writable
during normal operation over the entire VDD range. The
data EEPROM memory is directly mapped in the
program memory address space.

The four SFRs used to read and write the program
Flash memory are used to access data EEPROM
memory as well. As described in Section 5.5 “Control
Registers”, these registers are:

• NVMCON

• NVMADR

• NVMADRU

• NVMKEY

The EEPROM data memory allows read and write of
single words and 16-word blocks. When interfacing to
data memory, NVMADR, in conjunction with the
NVMADRU register, are used to address the
EEPROM location being accessed. TBLRDL and
TBLWTL instructions are used to read and write data
EEPROM. The dsPIC30F devices have up to 8 Kbytes
(4K words) of data EEPROM with an address range
from 0x7FF000 to 0x7FFFFE.

A word write operation should be preceded by an erase
of the corresponding memory location(s). The write
typically requires 2 ms to complete, but the write time
varies with voltage and temperature.

A program or erase operation on the data EEPROM
does not stop the instruction flow. The user is respon-
sible for waiting for the appropriate duration of time
before initiating another data EEPROM write/erase
operation. Attempting to read the data EEPROM while
a programming or erase operation is in progress results
in unspecified data.

Control bit, WR, initiates write operations similar to
program Flash writes. This bit cannot be cleared, only
set, in software. They are cleared in hardware at the
completion of the write operation. The inability to clear
the WR bit in software prevents the accidental or
premature termination of a write operation.

The WREN bit, when set, allows a write operation. On
power-up, the WREN bit is clear. The WRERR bit is set
when a write operation is interrupted by a MCLR Reset
or a WDT Time-out Reset during normal operation. In
these situations, following Reset, the user can check
the WRERR bit and rewrite the location. The address
register, NVMADR, remains unchanged.

6.1 Reading the Data EEPROM

A TBLRD instruction reads a word at the current
program word address. This example uses W0 as a
pointer to data EEPROM. The result is placed in
register W4 as shown in Example 6-1.

EXAMPLE 6-1: DATA EEPROM READ

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC Pro-
grammer’s Reference Manual”
(DS70157).

Note: Interrupt flag bit, NVMIF in the IFS0 regis-
ter, is set when the write is complete. It
must be cleared in software.

MOV #LOW_ADDR_WORD,W0 ; Init Pointer
MOV #HIGH_ADDR_WORD,W1
MOV W1,TBLPAG
TBLRDL [W0], W4 ; read data EEPROM
 2010 Microchip Technology Inc. DS70138G-page 49

dsPIC30F3014/4013
EXAMPLE 6-5: DATA EEPROM BLOCK WRITE

6.4 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the mem-
ory should be verified against the original value. This
should be used in applications where excessive writes
can stress bits near the specification limit.

6.5 Protection Against Spurious Write

There are conditions when the device may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been built-in. On power-up, the WREN bit is cleared;
also, the Power-up Timer prevents EEPROM write.

The write initiate sequence, and the WREN bit
together, help prevent an accidental write during
brown-out, power glitch or software malfunction.

 MOV #LOW_ADDR_WORD,W0 ; Init pointer
 MOV #HIGH_ADDR_WORD,W1
 MOV W1,TBLPAG
 MOV #data1,W2 ; Get 1st data
 TBLWTL W2,[W0]++ ; write data
 MOV #data2,W2 ; Get 2nd data
 TBLWTL W2,[W0]++ ; write data
 MOV #data3,W2 ; Get 3rd data
 TBLWTL W2,[W0]++ ; write data
 MOV #data4,W2 ; Get 4th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data5,W2 ; Get 5th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data6,W2 ; Get 6th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data7,W2 ; Get 7th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data8,W2 ; Get 8th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data9,W2 ; Get 9th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data10,W2 ; Get 10th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data11,W2 ; Get 11th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data12,W2 ; Get 12th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data13,W2 ; Get 13th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data14,W2 ; Get 14th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data15,W2 ; Get 15th data
 TBLWTL W2,[W0]++ ; write data
 MOV #data16,W2 ; Get 16th data
 TBLWTL W2,[W0]++ ; write data. The NVMADR captures last table access address.
 MOV #0x400A,W0 ; Select data EEPROM for multi word op
 MOV W0,NVMCON ; Operate Key to allow program operation

DISI #5 ; Block all interrupts with priority <7 for
; next 5 instructions

 MOV #0x55,W0
 MOV W0,NVMKEY ; Write the 0x55 key
 MOV #0xAA,W1
 MOV W1,NVMKEY ; Write the 0xAA key
 BSET NVMCON,#WR ; Start write cycle
 NOP
 NOP
DS70138G-page 52  2010 Microchip Technology Inc.

dsPIC30F3014/4013
8.1 Interrupt Priority

The user-assignable interrupt priority (IP<2:0>) bits for
each individual interrupt source are located in the
3 LSbs of each nibble within the IPCx register(s). Bit 3
of each nibble is not used and is read as a ‘0’. These
bits define the priority level assigned to a particular
interrupt by the user.

Since more than one interrupt request source may be
assigned to a specific user-assigned priority level, a
means is provided to assign priority within a given level.
This method is called “Natural Order Priority” and is
final.

Natural Order Priority is determined by the position of
an interrupt in the vector table, and only affects
interrupt operation when multiple interrupts with the
same user-assigned priority become pending at the
same time.

Table 8-1 and Table 8-2 list the interrupt numbers,
corresponding interrupt sources and associated vector
numbers for the dsPIC30F3014 and dsPIC30F4013
devices, respectively.

The ability for the user to assign every interrupt to one
of seven priority levels means that the user can assign
a very high overall priority level to an interrupt with a
low natural order priority. For example, the PLVD (Pro-
grammable Low-Voltage Detect) can be given a priority
of 7. The INT0 (External Interrupt 0) may be assigned
to priority Level 1, thus giving it a very low effective
priority.

TABLE 8-1: dsPIC30F3014 INTERRUPT
VECTOR TABLE

Note: The user-assignable priority levels start at
0 as the lowest priority and Level 7 as the
highest priority.

Note 1: The natural order priority scheme has 0
as the highest priority and 53 as the
lowest priority.

2: The natural order priority number is the
same as the INT number.

INT
Number

Vector
Number

Interrupt Source

Highest Natural Order Priority

0 8 INT0 – External Interrupt 0

1 9 IC1 – Input Capture 1

2 10 OC1 – Output Compare 1

3 11 T1 – Timer1

4 12 IC2 – Input Capture 2

5 13 OC2 – Output Compare 2

6 14 T2 – Timer2

7 15 T3 – Timer3

8 16 SPI1

9 17 U1RX – UART1 Receiver

10 18 U1TX – UART1 Transmitter

11 19 ADC – ADC Convert Done

12 20 NVM – NVM Write Complete

13 21 SI2C – I2C™ Slave Interrupt

14 22 MI2C – I2C Master Interrupt

15 23 Input Change Interrupt

16 24 INT1 – External Interrupt 1

17-22 25-30 Reserved

23 31 INT2 – External Interrupt 2

24 32 U2RX – UART2 Receiver

25 33 U2TX – UART2 Transmitter

26 34 Reserved

27 35 C1 – Combined IRQ for CAN1

28-41 36-49 Reserved

42 50 LVD – Low-Voltage Detect

43-53 51-61 Reserved

Lowest Natural Order Priority
DS70138G-page 60  2010 Microchip Technology Inc.

dsPIC30F3014/4013
11.0 TIMER4/5 MODULE

This section describes the second 32-bit general
purpose timer module (Timer4/5) and associated
operational modes. Figure 11-1 depicts the simplified
block diagram of the 32-bit Timer4/5 module.
Figure 11-2 and Figure 11-3 show Timer4/5 configured
as two independent 16-bit timers, Timer4 and Timer5,
respectively.

The Timer4/5 module is similar in operation to the
Timer2/3 module. However, there are some
differences:

• The Timer4/5 module does not support the ADC
event trigger feature

• Timer4/5 can not be utilized by other peripheral
modules, such as input capture and output compare

The operating modes of the Timer4/5 module are deter-
mined by setting the appropriate bit(s) in the 16-bit
T4CON and T5CON SFRs.

For 32-bit timer/counter operation, Timer4 is the lsw
and Timer5 is the msw of the 32-bit timer.

FIGURE 11-1: 32-BIT TIMER4/5 BLOCK DIAGRAM

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
dsPIC30F Family Reference Manual
(DS70046).

Note: For 32-bit timer operation, T5CON control
bits are ignored. Only T4CON control bits
are used for setup and control. Timer4
clock and gate inputs are utilized for the
32-bit timer module but an interrupt is
generated with the Timer5 Interrupt Flag
(T5IF) and the interrupt is enabled with the
Timer5 interrupt enable bit (T5IE).

TMR5 TMR4

T5IF

Equal
Comparator x 32

PR5 PR4

Reset

LSB MSB

Event Flag

Note: Timer Configuration bit, T32 (T4CON<3>), must be set to ‘1’ for a 32-bit timer/counter operation. All
control bits are respective to the T4CON register.

Data Bus<15:0>

TMR5HLD

Read TMR4

Write TMR4
16

16

16

Q

Q D

CK

TGATE (T4CON<6>)

(T4CON<6>)
TGATE

0

1

TON

TCKPS<1:0>

Prescaler
1, 8, 64, 256

2

TCY

T
C

S

1 x

0 1

T
G

A
T

E

0 0

Gate

T4CK

Sync

Sync
 2010 Microchip Technology Inc. DS70138G-page 77

dsPIC30F3014/4013
14.0 I2C™ MODULE

The Inter-Integrated Circuit (I2CTM) module provides
complete hardware support for both Slave and Multi-
Master modes of the I2C serial communication
standard with a 16-bit interface.

This module offers the following key features:

• I2C interface supporting both master and slave
operation.

• I2C Slave mode supports 7-bit and 10-bit address-
ing.

• I2C Master mode supports 7-bit and 10-bit
addressing.

• I2C port allows bidirectional transfers between
master and slaves.

• Serial clock synchronization for I2C port can be
used as a handshake mechanism to suspend and
resume serial transfer (SCLREL control).

• I2C supports multi-master operation; detects bus
collision and arbitrates accordingly.

14.1 Operating Function Description

The hardware fully implements all the master and slave
functions of the I2C Standard and Fast mode
specifications, as well as 7 and 10-bit addressing.

Thus, the I2C module can operate either as a slave or
a master on an I2C bus.

14.1.1 VARIOUS I2C MODES

The following types of I2C operation are supported:

• I2C slave operation with 7-bit addressing

• I2C slave operation with 10-bit addressing

• I2C master operation with 7-bit or 10-bit addressing

See the I2C programmer’s model in Figure 14-1.

14.1.2 PIN CONFIGURATION IN I2C MODE

I2C has a 2-pin interface: the SCL pin is clock and the
SDA pin is data.

14.1.3 I2C REGISTERS

I2CCON and I2CSTAT are control and status registers,
respectively. The I2CCON register is readable and writ-
able. The lower 6 bits of I2CSTAT are read-only. The
remaining bits of the I2CSTAT are read/write.

I2CRSR is the shift register used for shifting data,
whereas I2CRCV is the buffer register to which data
bytes are written, or from which data bytes are read.
I2CRCV is the receive buffer as shown in Figure 14-1.
I2CTRN is the transmit register to which bytes are
written during a transmit operation, as shown in
Figure 14-2.

The I2CADD register holds the slave address. A status
bit, ADD10, indicates 10-Bit Addressing mode. The
I2CBRG acts as the Baud Rate Generator reload
value.

In receive operations, I2CRSR and I2CRCV together
form a double-buffered receiver. When I2CRSR
receives a complete byte, it is transferred to I2CRCV
and an interrupt pulse is generated. During
transmission, the I2CTRN is not double-buffered.

FIGURE 14-1: PROGRAMMER’S MODEL

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
'dsPIC30F Family Reference Manual'
(DS70046).

Note: Following a Restart condition in 10-bit
mode, the user only needs to match the
first 7-bit address.

Bit 7 Bit 0
I2CRCV (8 bits)

Bit 7 Bit 0
I2CTRN (8 bits)

Bit 8 Bit 0
I2CBRG (9 bits)

Bit 15 Bit 0
I2CCON (16 bits)

Bit 15 Bit 0
I2CSTAT (16 bits)

Bit 9 Bit 0
I2CADD (10 bits)
 2010 Microchip Technology Inc. DS70138G-page 91

dsPIC30F3014/4013
14.2 I2C Module Addresses

The I2CADD register contains the Slave mode
addresses. The register is a 10-bit register.

If the A10M bit (I2CCON<10>) is ‘0’, the address is
interpreted by the module as a 7-bit address. When an
address is received, it is compared to the 7 LSbs of the
I2CADD register.

If the A10M bit is ‘1’, the address is assumed to be a
10-bit address. When an address is received, it is com-
pared with the binary value, ‘11110 A9 A8’ (where A9
and A8 are two Most Significant bits of I2CADD). If that
value matches, the next address is compared with the
Least Significant 8 bits of I2CADD, as specified in the
10-bit addressing protocol.

14.3 I2C 7-Bit Slave Mode Operation

Once enabled (I2CEN = 1), the slave module waits for
a Start bit to occur (i.e., the I2C module is ‘Idle’). Follow-
ing the detection of a Start bit, 8 bits are shifted into
I2CRSR, and the address is compared against
I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0>
are compared against I2CRSR<7:1> and I2CRSR<0>
is the R_W bit. All incoming bits are sampled on the
rising edge of SCL.

If an address match occurs, an Acknowledgement is
sent and the Slave Event Interrupt Flag (SI2CIF) is set
on the falling edge of the ninth (ACK) bit. The address
match does not affect the contents of the I2CRCV buf-
fer or the RBF bit.

14.3.1 SLAVE TRANSMISSION

If the R_W bit received is a ‘1’, the serial port goes into
Transmit mode. It sends an ACK on the ninth bit and
then holds SCL to ‘0’ until the CPU responds by writing
to I2CTRN. SCL is released by setting the SCLREL bit,
and 8 bits of data are shifted out. Data bits are shifted
out on the falling edge of SCL, such that SDA is valid
during SCL high. The interrupt pulse is sent on the
falling edge of the ninth clock pulse, regardless of the
status of the ACK received from the master.

14.3.2 SLAVE RECEPTION

If the R_W bit received is a ‘0’ during an address
match, then Receive mode is initiated. Incoming bits
are sampled on the rising edge of SCL. After 8 bits are
received, if I2CRCV is not full or I2COV is not set,
I2CRSR is transferred to I2CRCV. ACK is sent on the
ninth clock.

If the RBF flag is set, indicating that I2CRCV is still
holding data from a previous operation (RBF = 1), then
ACK is not sent; however, the interrupt pulse is gener-
ated. In the case of an overflow, the contents of the
I2CRSR are not loaded into the I2CRCV.

14.4 I2C 10-Bit Slave Mode Operation

In 10-bit mode, the basic receive and transmit opera-
tions are the same as in the 7-bit mode. However, the
criteria for address match is more complex.

The I2C specification dictates that a slave must be
addressed for a write operation with two address bytes
following a Start bit.

The A10M bit is a control bit that signifies that the
address in I2CADD is a 10-bit address rather than a 7-bit
address. The address detection protocol for the first byte
of a message address is identical for 7-bit and 10-bit
messages, but the bits being compared are different.

I2CADD holds the entire 10-bit address. Upon receiv-
ing an address following a Start bit, I2CRSR <7:3> is
compared against a literal ‘11110’ (the default 10-bit
address) and I2CRSR<2:1> are compared against
I2CADD<9:8>. If a match occurs and if R_W = 0, the
interrupt pulse is sent. The ADD10 bit is cleared to indi-
cate a partial address match. If a match fails or
R_W = 1, the ADD10 bit is cleared and the module
returns to the Idle state.

The low byte of the address is then received and com-
pared with I2CADD<7:0>. If an address match occurs,
the interrupt pulse is generated and the ADD10 bit is
set, indicating a complete 10-bit address match. If an
address match did not occur, the ADD10 bit is cleared
and the module returns to the Idle state.

14.4.1 10-BIT MODE SLAVE TRANSMISSION

Once a slave is addressed in this fashion with the full
10-bit address (we refer to this state as
“PRIOR_ADDR_MATCH”), the master can begin
sending data bytes for a slave reception operation.

TABLE 14-1: 7-BIT I2C™ SLAVE
ADDRESSES SUPPORTED BY
dsPIC30F

0x00 General Call Address or Start Byte

0x01-0x03 Reserved

0x04-0x07 HS mode Master Codes

0x08-0x77 Valid 7-Bit Addresses

0x78-0x7b Valid 10-Bit Addresses (lower 7 bits)

0x7c-0x7f Reserved

Note: The I2CRCV is loaded if the I2COV bit = 1
and the RBF flag = 0. In this case, a read
of the I2CRCV was performed but the
user did not clear the state of the I2COV
bit before the next receive occurred. The
acknowledgement is not sent (ACK = 1)
and the I2CRCV is updated.
 2010 Microchip Technology Inc. DS70138G-page 93

dsPIC30F3014/4013
15.0 SPI MODULE

The Serial Peripheral Interface (SPI) module is a syn-
chronous serial interface. It is useful for communicating
with other peripheral devices, such as EEPROMs, shift
registers, display drivers and A/D converters, or other
microcontrollers. It is compatible with Motorola’s SPI
and SIOP interfaces. The dsPIC30F3014 and
dsPIC30F4013 devices feature one SPI module, SPI1.

15.1 Operating Function Description

Each SPI module consists of a 16-bit shift register,
SPIxSR (where x = 1 or 2), used for shifting data in and
out, and a buffer register, SPIxBUF. A control register,
SPIxCON, configures the module. Additionally, a status
register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (Serial
Data Input), SDOx (Serial Data Output), SCKx (Shift
Clock Input or Output), and SSx (Active-Low Slave
Select).

In Master mode operation, SCKx is a clock output but
in Slave mode, it is a clock input.

A series of eight (8) or sixteen (16) clock pulses shift
out bits from the SPIxSR to SDOx pin and
simultaneously shift in data from SDIx pin. An interrupt
is generated when the transfer is complete and the cor-
responding interrupt flag bit (SPI1IF or SPI2IF) is set.
This interrupt can be disabled through an interrupt
enable bit (SPI1IE or SPI2IE).

The receive operation is double-buffered. When a com-
plete byte is received, it is transferred from SPIxSR to
SPIxBUF.

If the receive buffer is full when new data is being trans-
ferred from SPIxSR to SPIxBUF, the module sets the
SPIROV bit, indicating an overflow condition. The
transfer of the data from SPIxSR to SPIxBUF is not
completed and new data is lost. The module does not
respond to SCL transitions while SPIROV is ‘1’,
effectively disabling the module until SPIxBUF is read
by user software.

Transmit writes are also double-buffered. The user
writes to SPIxBUF. When the master or slave transfer
is completed, the contents of the shift register (SPIxSR)
are moved to the receive buffer. If any transmit data has
been written to the buffer register, the contents of the
transmit buffer are moved to SPIxSR. The received
data is thus placed in SPIxBUF and the transmit data in
SPIxSR is ready for the next transfer.

In Master mode, the clock is generated by prescaling
the system clock. Data is transmitted as soon as a
value is written to SPIxBUF. The interrupt is generated
at the middle of the transfer of the last bit.

In Slave mode, data is transmitted and received as
external clock pulses appear on SCKx. Again, the inter-
rupt is generated when the last bit is latched. If SSx
control is enabled, then transmission and reception are
enabled only when SSx = low. The SDOx output is
disabled in SSx mode with SSx high.

The clock provided to the module is (FOSC/4). This
clock is then prescaled by the primary (PPRE<1:0>)
and the secondary (SPRE<2:0>) prescale factors. The
CKE bit determines whether transmit occurs on transi-
tion from active clock state to Idle clock state, or vice
versa. The CKP bit selects the Idle state (high or low)
for the clock.

15.1.1 WORD AND BYTE
COMMUNICATION

A control bit, MODE16 (SPIxCON<10>), allows the
module to communicate in either 16-bit or 8-bit mode.
16-bit operation is identical to 8-bit operation except
that the number of bits transmitted is 16 instead of 8.

The user software must disable the module prior to
changing the MODE16 bit. The SPI module is reset
when the MODE16 bit is changed by the user.

A basic difference between 8-bit and 16-bit operation is
that the data is transmitted out of bit 7 of the SPIxSR for
8-bit operation, and data is transmitted out of bit 15 of
the SPIxSR for 16-bit operation. In both modes, data is
shifted into bit 0 of the SPIxSR.

15.1.2 SDOx DISABLE

A control bit, DISSDO, is provided to the SPIxCON reg-
ister to allow the SDOx output to be disabled. This
allows the SPI module to be connected in an input-only
configuration. SDOx can also be used for general
purpose I/O.

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).

Note: Both the transmit buffer (SPIxTXB) and
the receive buffer (SPIxRXB) are mapped
to the same register address, SPIxBUF.
 2010 Microchip Technology Inc. DS70138G-page 99

dsPIC30F3014/4013
16.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a ‘0’ is detected
instead of a Stop bit. If two Stop bits are selected, both
Stop bits must be ‘1’; otherwise, FERR is set. The read-
only FERR bit is buffered along with the received data;
it is cleared on any Reset.

16.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the
received word is incorrect. This error bit is applicable
only if a Parity mode (odd or even) is selected. The
read-only PERR bit is buffered along with the received
data bytes; it is cleared on any Reset.

16.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial
detection of the Start bit and the completion of the Stop
bit), the RIDLE bit (UxSTA<4>) is ‘0’. Between the com-
pletion of the Stop bit and detection of the next Start bit,
the RIDLE bit is ‘1’, indicating that the UART is Idle.

16.5.5 RECEIVE BREAK

The receiver counts and expects a certain number of bit
times based on the values programmed in the PDSEL
(UxMODE<2:1>) and STSEL (UxMODE<0>) bits.

If the break is longer than 13 bit times, the reception is
considered complete after the number of bit times
specified by PDSEL and STSEL. The URXDA bit is set,
FERR is set, zeros are loaded into the receive FIFO,
interrupts are generated if appropriate, and the RIDLE
bit is set.

When the module receives a long Break signal and the
receiver has detected the Start bit, the data bits and the
invalid Stop bit (which sets the FERR), the receiver
must wait for a valid Stop bit before looking for the next
Start bit. It cannot assume that the Break condition on
the line is the next Start bit.

Break is regarded as a character containing all ‘0’s with
the FERR bit set. The Break character is loaded into
the buffer. No further reception can occur until a Stop bit
is received. Note that RIDLE goes high when the Stop
bit has not yet been received.

16.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables this
special mode in which a 9th bit (URX8) value of ‘1’
identifies the received word as an address, rather than
data. This mode is only applicable for 9-bit data
communication. The URXISEL control bit does not
have any impact on interrupt generation in this mode
since an interrupt (if enabled) is generated every time
the received word has the 9th bit set.

16.7 Loopback Mode

Setting the LPBACK bit enables this special mode in
which the UxTX pin is internally connected to the UxRX
pin. When configured for the Loopback mode, the
UxRX pin is disconnected from the internal UART
receive logic. However, the UxTX pin still functions as
in a normal operation.

To select this mode:

a) Configure UART for desired mode of operation.

b) Set LPBACK = 1 to enable Loopback mode.

c) Enable transmission as defined in Section 16.3
“Transmitting Data”.

16.8 Baud Rate Generator

The UART has a 16-bit Baud Rate Generator to allow
maximum flexibility in baud rate generation. The Baud
Rate Generator register (UxBRG) is readable and
writable. The baud rate is computed as follows:

BRG = 16-bit value held in UxBRG register
(0 through 65535)

FCY = Instruction Clock Rate (1/TCY)

The Baud Rate is given by Equation 16-1.

EQUATION 16-1: BAUD RATE

Therefore, the maximum baud rate possible is:

FCY/16 (if BRG = 0),

and the minimum baud rate possible is:

FCY/(16 * 65536).

With a full 16-bit Baud Rate Generator at 30 MIPS
operation, the minimum baud rate achievable is
28.5 bps.

Baud Rate = FCY/(16*(BRG+1))
 2010 Microchip Technology Inc. DS70138G-page 107

dsPIC30F3014/4013
17.0 CAN MODULE

17.1 Overview

The Controller Area Network (CAN) module is a serial
interface, useful for communicating with other CAN
modules or microcontroller devices. This interface/
protocol was designed to allow communications within
noisy environments.

The CAN module is a communication controller imple-
menting the CAN 2.0 A/B protocol, as defined in the
BOSCH specification. The module supports CAN 1.2,
CAN 2.0A, CAN 2.0B Passive, and CAN 2.0B Active
versions of the protocol. The module implementation is
a full CAN system. The CAN specification is not cov-
ered within this data sheet. The reader may refer to the
BOSCH CAN specification for further details.

The module features are as follows:

• Implementation of the CAN protocol CAN 1.2,
CAN 2.0A and CAN 2.0B

• Standard and extended data frames

• 0-8 bytes data length

• Programmable bit rate up to 1 Mbit/sec

• Support for remote frames

• Double-buffered receiver with two prioritized
received message storage buffers (each buffer
may contain up to 8 bytes of data)

• 6 full (standard/extended identifier), acceptance
filters, 2 associated with the high-priority receive
buffer and 4 associated with the low-priority
receive buffer

• 2 full, acceptance filter masks, one each
associated with the high and low-priority receive
buffers

• Three transmit buffers with application specified
prioritization and abort capability (each buffer may
contain up to 8 bytes of data)

• Programmable wake-up functionality with
integrated low-pass filter

• Programmable Loopback mode supports self-test
operation

• Signaling via interrupt capabilities for all CAN
receiver and transmitter error states

• Programmable clock source

• Programmable link to input capture module (IC2,
for both CAN1 and CAN2) for time-stamping and
network synchronization

• Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and
message buffering/control. The CAN protocol engine
handles all functions for receiving and transmitting
messages on the CAN bus. Messages are transmitted
by first loading the appropriate data registers. Status
and errors can be checked by reading the appropriate
registers. Any message detected on the CAN bus is
checked for errors and then matched against filters to
see if it should be received and stored in one of the
receive registers.

17.2 Frame Types

The CAN module transmits various types of frames
which include data messages or remote transmission
requests, initiated by the user, as other frames that are
automatically generated for control purposes. The
following frame types are supported:

• Standard Data Frame:

A standard data frame is generated by a node
when the node wishes to transmit data. It includes
an 11-bit Standard Identifier (SID) but not an 18-bit
Extended Identifier (EID).

• Extended Data Frame:

An extended data frame is similar to a standard
data frame but includes an extended identifier as
well.

• Remote Frame:

It is possible for a destination node to request the
data from the source. For this purpose, the
destination node sends a remote frame with an
identifier that matches the identifier of the required
data frame. The appropriate data source node
then sends a data frame as a response to this
remote request.

• Error Frame:

An error frame is generated by any node that
detects a bus error. An error frame consists of
2 fields: an error flag field and an error delimiter
field.

• Overload Frame:

An overload frame can be generated by a node as
a result of 2 conditions. First, the node detects a
dominant bit during interframe space which is an
illegal condition. Second, due to internal condi-
tions, the node is not yet able to start reception of
the next message. A node may generate a
maximum of 2 sequential overload frames to
delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame
(of whatever type) from a following data or remote
frame.

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).
 2010 Microchip Technology Inc. DS70138G-page 111

dsPIC30F3014/4013
17.4 Message Reception

17.4.1 RECEIVE BUFFERS

The CAN bus module has 3 receive buffers. However,
one of the receive buffers is always committed to mon-
itoring the bus for incoming messages. This buffer is
called the Message Assembly Buffer (MAB). So there
are 2 receive buffers visible, denoted as RXB0 and
RXB1, that can essentially instantaneously receive a
complete message from the protocol engine.

All messages are assembled by the MAB and are trans-
ferred to the RXBn buffers only if the acceptance filter
criterion are met. When a message is received, the
RXnIF flag (CiINRF<0> or CiINRF<1>) is set. This bit
can only be set by the module when a message is
received. The bit is cleared by the CPU when it has com-
pleted processing the message in the buffer. If the
RXnIE bit (CiINTE<0> or CiINTE<1>) is set, an interrupt
is generated when a message is received.

RXF0 and RXF1 filters with RXM0 mask are associated
with RXB0. The filters RXF2, RXF3, RXF4 and RXF5,
and the mask RXM1 are associated with RXB1.

17.4.2 MESSAGE ACCEPTANCE FILTERS

The message acceptance filters and masks are used to
determine if a message in the message assembly buf-
fer should be loaded into either of the receive buffers.
Once a valid message has been received into the Mes-
sage Assembly Buffer (MAB), the identifier fields of the
message are compared to the filter values. If there is a
match, that message is loaded into the appropriate
receive buffer.

The acceptance filter looks at incoming messages for
the RXIDE bit (CiRXnSID<0>) to determine how to
compare the identifiers. If the RXIDE bit is clear, the
message is a standard frame and only filters with the
EXIDE bit (CiRXFnSID<0>) clear are compared. If the
RXIDE bit is set, the message is an extended frame
and only filters with the EXIDE bit set are compared.

17.4.3 MESSAGE ACCEPTANCE FILTER
MASKS

The mask bits essentially determine which bits to apply
the filter to. If any mask bit is set to a zero, that bit is
automatically accepted regardless of the filter bit.
There are two programmable acceptance filter masks
associated with the receive buffers, one for each buffer.

17.4.4 RECEIVE OVERRUN

An overrun condition occurs when the Message
Assembly Buffer (MAB) has assembled a valid
received message, the message is accepted through
the acceptance filters, and when the receive buffer
associated with the filter has not been designated as
clear of the previous message.

The overrun error flag, RXnOVR (CiINTF<15> or
CiINTF<14>), and the ERRIF bit (CiINTF<5>) are set
and the message in the MAB is discarded.

If the DBEN bit is clear, RXB1 and RXB0 operate inde-
pendently. When this is the case, a message intended
for RXB0 is not diverted into RXB1 if RXB0 contains an
unread message, and the RX0OVR bit is set.

If the DBEN bit is set, the overrun for RXB0 is handled
differently. If a valid message is received for RXB0 and
RXFUL = 1 it indicates that RXB0 is full and
RXFUL = 0 indicates that RXB1 is empty, the message
for RXB0 is loaded into RXB1. An overrun error is not
generated for RXB0. If a valid message is received for
RXB0 and RXFUL = 1, indicates that both RXB0 and
RXB1 are full, the message is lost and an overrun is
indicated for RXB1.

17.4.5 RECEIVE ERRORS

The CAN module detects the following receive errors:

• Cyclic Redundancy Check (CRC) error

• Bit Stuffing error

• Invalid Message Receive Error

The receive error counter is incremented by one in
case one of these errors occur. The RXWAR bit
(CiINTF<9>) indicates that the receive error counter
has reached the CPU warning limit of 96 and an
interrupt is generated.

17.4.6 RECEIVE INTERRUPTS

Receive interrupts can be divided into 3 major groups,
each including various conditions that generate
interrupts:

• Receive Interrupt:

A message has been successfully received and
loaded into one of the receive buffers. This inter-
rupt is activated immediately after receiving the
End-of-Frame (EOF) field. Reading the RXnIF flag
indicates which receive buffer caused the
interrupt.

• Wake-up Interrupt:

The CAN module has woken up from Disable
mode or the device has woken up from Sleep
mode.
DS70138G-page 114  2010 Microchip Technology Inc.

dsPIC30F3014/4013
20.0 SYSTEM INTEGRATION

There are several features intended to maximize
system reliability, minimize cost through elimination of
external components, provide power-saving operating
modes and offer code protection:

• Oscillator Selection

• Reset

- Power-on Reset (POR)

- Power-up Timer (PWRT)

- Oscillator Start-up Timer (OST)

- Programmable Brown-out Reset (BOR)

• Watchdog Timer (WDT)

• Low-Voltage Detect

• Power-Saving modes (Sleep and Idle)

• Code Protection

• Unit ID Locations

• In-Circuit Serial Programming (ICSP)

dsPIC30F devices have a Watchdog Timer which is
permanently enabled via the Configuration bits or can
be software controlled. It runs off its own RC oscillator
for added reliability. There are two timers that offer
necessary delays on power-up. One is the Oscillator
Start-up Timer (OST), intended to keep the chip in
Reset until the crystal oscillator is stable. The other is
the Power-up Timer (PWRT) which provides a delay on
power-up only, designed to keep the part in Reset while
the power supply stabilizes. With these two timers on-
chip, most applications need no external Reset
circuitry.

Sleep mode is designed to offer a very low-current
Power-Down mode. The user can wake-up from Sleep
through external Reset, Watchdog Timer wake-up, or
through an interrupt. Several oscillator options are also
made available to allow the part to fit a wide variety of
applications. In the Idle mode, the clock sources are
still active but the CPU is shut off. The RC oscillator
option saves system cost while the LP crystal option
saves power.

20.1 Oscillator System Overview

The dsPIC30F oscillator system has the following
modules and features:

• Various external and internal oscillator options as
clock sources

• An on-chip PLL to boost internal operating
frequency

• A clock switching mechanism between various
clock sources

• Programmable clock postscaler for system power
savings

• A Fail-Safe Clock Monitor (FSCM) that detects
clock failure and takes fail-safe measures

• Clock Control register (OSCCON)

• Configuration bits for main oscillator selection

Configuration bits determine the clock source upon
Power-on Reset (POR) and Brown-out Reset (BOR).
Thereafter, the clock source can be changed between
permissible clock sources. The OSCCON register
controls the clock switching and reflects system clock
related status bits.

Table 20-1 provides a summary of the dsPIC30F
oscillator operating modes. A simplified diagram of the
oscillator system is shown in Figure 20-1.

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC Pro-
grammer’s Reference Manual”
(DS70157).
 2010 Microchip Technology Inc. DS70138G-page 141

dsPIC30F3014/4013
20.5 Watchdog Timer (WDT)

20.5.1 WATCHDOG TIMER OPERATION

The primary function of the Watchdog Timer (WDT) is
to reset the processor in the event of a software mal-
function. The WDT is a free-running timer that runs off
an on-chip RC oscillator, requiring no external compo-
nent. Therefore, the WDT timer continues to operate
even if the main processor clock (e.g., the crystal
oscillator) fails.

20.5.2 ENABLING AND DISABLING
THE WDT

The Watchdog Timer can be “Enabled” or “Disabled”
only through a Configuration bit (FWDTEN) in the
Configuration register, FWDT.

Setting FWDTEN = 1 enables the Watchdog Timer. The
enabling is done when programming the device. By
default, after chip erase, FWDTEN bit = 1. Any device
programmer capable of programming dsPIC30F
devices allows programming of this and other
Configuration bits.

If enabled, the WDT increments until it overflows or
“times out”. A WDT time-out forces a device Reset
(except during Sleep). To prevent a WDT time-out, the
user must clear the Watchdog Timer using a CLRWDT
instruction.

If a WDT times out during Sleep, the device wakes up.
The WDTO bit in the RCON register is cleared to
indicate a wake-up resulting from a WDT time-out.

Setting FWDTEN = 0 allows user software to enable/
disable the Watchdog Timer via the SWDTEN
(RCON<5>) control bit.

20.6 Low-Voltage Detect

The Low-Voltage Detect (LVD) module is used to
detect when the VDD of the device drops below a
threshold value, VLVD, which is determined by the
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-
grammable. The internal voltage reference circuitry
requires a nominal amount of time to stabilize, and the
BGST bit (RCON<13>) indicates when the voltage
reference has stabilized.

In some devices, the LVD threshold voltage may be
applied externally on the LVDIN pin.

The LVD module is enabled by setting the LVDEN bit
(RCON<12>).

20.7 Power-Saving Modes

There are two power-saving states that can be entered
through the execution of a special instruction, PWRSAV;
these are Sleep and Idle.

The format of the PWRSAV instruction is as follows:

PWRSAV <parameter>, where ‘parameter’ defines
Idle or Sleep mode.

20.7.1 SLEEP MODE

In Sleep mode, the clock to the CPU and peripherals is
shut down. If an on-chip oscillator is being used, it is
shut down.

The Fail-Safe Clock Monitor is not functional during
Sleep since there is no clock to monitor. However, the
LPRC clock remains active if WDT is operational during
Sleep.

The brown-out protection circuit and the Low-Voltage
Detect (LVD) circuit, if enabled, remains functional
during Sleep.

The processor wakes up from Sleep if at least one of
the following conditions has occurred:

• any interrupt that is individually enabled and
meets the required priority level

• any Reset (POR, BOR and MCLR)

• WDT time-out

On waking up from Sleep mode, the processor restarts
the same clock that was active prior to entry into Sleep
mode. When clock switching is enabled, bits,
COSC<2:0>, determine the oscillator source to be
used on wake-up. If clock switch is disabled, then there
is only one system clock.

If the clock source is an oscillator, the clock to the
device is held off until OST times out (indicating a
stable oscillator). If PLL is used, the system clock is
held off until LOCK = 1 (indicating that the PLL is
stable). In either case, TPOR, TLOCK and TPWRT delays
are applied.

If EC, FRC, LPRC or ERC oscillators are used, then a
delay of TPOR (~ 10 s) is applied. This is the smallest
delay possible on wake-up from Sleep.

Moreover, if the LP oscillator was active during Sleep
and LP is the oscillator used on wake-up, then the start-
up delay is equal to TPOR. PWRT delay and OST timer
delay are not applied. In order to have the smallest
possible start-up delay when waking up from Sleep,
one of these faster wake-up options should be selected
before entering Sleep.

Note: If a POR or BOR occurred, the selection of
the oscillator is based on the FOS<2:0>
and FPR<4:0> Configuration bits.
 2010 Microchip Technology Inc. DS70138G-page 155

dsPIC30F3014/4013
48 MPY MPY
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd

Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB

MPY
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd

Square Wm to Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB

49 MPY.N MPY.N
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd

-(Multiply Wm by Wn) to Accumulator 1 1 None

50 MSC MSC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd
,
AWB

Multiply and Subtract from Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB

51 MUL MUL.SS Wb,Ws,Wnd {Wnd+1, Wnd} = Signed(Wb) * Signed(Ws) 1 1 None

MUL.SU Wb,Ws,Wnd {Wnd+1, Wnd} = Signed(Wb) *
Unsigned(Ws)

1 1 None

MUL.US Wb,Ws,Wnd {Wnd+1, Wnd} = Unsigned(Wb) *
Signed(Ws)

1 1 None

MUL.UU Wb,Ws,Wnd {Wnd+1, Wnd} = Unsigned(Wb) *
Unsigned(Ws)

1 1 None

MUL.SU Wb,#lit5,Wnd {Wnd+1, Wnd} = Signed(Wb) *
Unsigned(lit5)

1 1 None

MUL.UU Wb,#lit5,Wnd {Wnd+1, Wnd} = Unsigned(Wb) *
Unsigned(lit5)

1 1 None

MUL f W3:W2 = f * WREG 1 1 None

52 NEG NEG Acc Negate Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB

NEG f f = f + 1 1 1 C,DC,N,OV,Z

NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z

NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z

53 NOP NOP No Operation 1 1 None

NOPR No Operation 1 1 None

54 POP POP f Pop f from Top-of-Stack (TOS) 1 1 None

POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None

POP.D Wnd Pop from Top-of-Stack (TOS) to
W(nd):W(nd+1)

1 2 None

POP.S Pop Shadow Registers 1 1 All

55 PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None

PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None

PUSH.D Wns Push W(ns):W(ns+1) to Top-of-Stack (TOS) 1 2 None

PUSH.S Push Shadow Registers 1 1 None

56 PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO, Sleep

57 RCALL RCALL Expr Relative Call 1 2 None

RCALL Wn Computed Call 1 2 None

58 REPEAT REPEAT #lit14 Repeat Next Instruction lit14+1 Times 1 1 None

REPEAT Wn Repeat Next Instruction (Wn)+1 Times 1 1 None

59 RESET RESET Software Device Reset 1 1 None

60 RETFIE RETFIE Return from Interrupt 1 3 (2) None

61 RETLW RETLW #lit10,Wn Return with Literal in Wn 1 3 (2) None

62 RETURN RETURN Return from Subroutine 1 3 (2) None

63 RLC RLC f f = Rotate Left through Carry f 1 1 C,N,Z

RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z

RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z

64 RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N,Z

RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z

RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z

65 RRC RRC f f = Rotate Right through Carry f 1 1 C,N,Z

RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z

RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z

TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base
Instr

#

Assembly
Mnemoni

c
Assembly Syntax Description

of
Words

of
Cycles

Status Flags
Affected
 2010 Microchip Technology Inc. DS70138G-page 165

dsPIC30F3014/4013
22.2 MPLAB C Compilers for Various
Device Families

The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal control-
lers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.

For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

22.3 HI-TECH C for Various Device
Families

The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.

For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

The compilers include a macro assembler, linker, pre-
processor, and one-step driver, and can run on multiple
platforms.

22.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multi-purpose
source files

• Directives that allow complete control over the
assembly process

22.5 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

22.6 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC devices. MPLAB C Compiler uses
the assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command line interface

• Rich directive set

• Flexible macro language

• MPLAB IDE compatibility
DS70138G-page 168  2010 Microchip Technology Inc.

dsPIC30F3014/4013
22.11 PICkit 2 Development
Programmer/Debugger and
PICkit 2 Debug Express

The PICkit™ 2 Development Programmer/Debugger is
a low-cost development tool with an easy to use inter-
face for programming and debugging Microchip’s Flash
families of microcontrollers. The full featured
Windows® programming interface supports baseline
(PIC10F, PIC12F5xx, PIC16F5xx), midrange
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit
microcontrollers, and many Microchip Serial EEPROM
products. With Microchip’s powerful MPLAB Integrated
Development Environment (IDE) the PICkit™ 2
enables in-circuit debugging on most PIC® microcon-
trollers. In-Circuit-Debugging runs, halts and single
steps the program while the PIC microcontroller is
embedded in the application. When halted at a break-
point, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.

22.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modu-
lar, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an MMC card for file
storage and data applications.

22.13 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits

A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully func-
tional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.

The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.

The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.

In addition to the PICDEM™ and dsPICDEM™ demon-
stration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®

evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.

Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.

Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
DS70138G-page 170  2010 Microchip Technology Inc.

http://www.microchip.com

dsPIC30F3014/4013

23.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC30F AC characteristics and timing parameters.

TABLE 23-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS

Standard Operating Conditions: 2.5V to 5.5V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial

-40°C  TA  +125°C for Extended

Param
No.

Symbol Characteristic Min Typ(1) Max Units Conditions

BO10 VBOR BOR Voltage on VDD
Transition
High-to-Low(2)

BORV = 11(3) — — — V Not in operating
range

BORV = 10 2.6 — 2.71 V

BORV = 01 4.1 — 4.4 V

BORV = 00 4.58 — 4.73 V

BO15 VBHYS — 5 — mV

Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and
are not tested.

2: These parameters are characterized but not tested in manufacturing.
3: ‘11’ values not in usable operating range.

TABLE 23-12: DC CHARACTERISTICS: PROGRAM AND EEPROM

DC CHARACTERISTICS

Standard Operating Conditions: 2.5V to 5.5V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial

-40°C  TA  +125°C for Extended

Param
No.

Symbol Characteristic Min Typ(1) Max Units Conditions

Data EEPROM Memory(2)

D120 ED Byte Endurance 100K 1M — E/W -40C  TA +85°C

D121 VDRW VDD for Read/Write VMIN — 5.5 V Using EECON to read/write
VMIN = Minimum operating
voltage

D122 TDEW Erase/Write Cycle Time 0.8 2 2.6 ms RTSP

D123 TRETD Characteristic Retention 40 100 — Year Provided no other specifications
are violated

D124 IDEW IDD During Programming — 10 30 mA Row Erase

Program Flash Memory(2)

D130 EP Cell Endurance 10K 100K — E/W -40C  TA +85°C

D131 VPR VDD for Read VMIN — 5.5 V VMIN = Minimum operating
voltage

D132 VEB VDD for Bulk Erase 4.5 — 5.5 V

D133 VPEW VDD for Erase/Write 3.0 — 5.5 V

D134 TPEW Erase/Write Cycle Time 0.8 2 2.6 ms RTSP

D135 TRETD Characteristic Retention 40 100 — Year Provided no other specifications
are violated

D137 IPEW IDD During Programming — 10 30 mA Row Erase

D138 IEB IDD During Programming — 10 30 mA Bulk Erase

Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated.
2: These parameters are characterized but not tested in manufacturing.
DS70138G-page 180  2010 Microchip Technology Inc.

