

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	AC'97, Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	30
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4013-30i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC30F3014/4013

Pin Diagrams (Continued)

dsPIC30F3014/4013

TABLE 8-4: dsPIC30F4013 INTERRUPT CONTROLLER REGISTER MAP⁽¹⁾

SFR Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
INTCON1	0080	NSTDIS	—	—	_	_	OVATE	OVBTE	COVTE	_	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000 0000 0000 0000
INTCON2	0082	ALTIVT	DISI	—	_	_	_	_	_	—	_	_	_	_	INT2EP	INT1EP	INT0EP	0000 0000 0000 0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INT0IF	0000 0000 0000 0000
IFS1	0086	—	_	_		C1IF	—	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	IC8IF	IC7IF	INT1IF	0000 0000 0000 0000
IFS2	0088	—					LVDIF	DCIIF		_	—		_	_	—	—	—	0000 0000 0000 0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INT0IE	0000 0000 0000 0000
IEC1	008E	—				C1IE	—	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	IC8IE	IC7IE	INT1IE	0000 0000 0000 0000
IEC2	0090	_					LVDIE	DCIIE		_	—			-	_	_		0000 0000 0000 0000
IPC0	0094	_	-	T1IP<2:0>	•		0	DC1IP<2:0	>	_		IC1IP<	2:0>	-	1	NT0IP<2:0>	>	0100 0100 0100 0100
IPC1	0096	_	٦	[31P<2:0>	>	-		T2IP<2:0>		—	OC2IP<2:0>			_	IC2IP<2:0>			0100 0100 0100 0100
IPC2	0098	_	A	ADIP<2:0>	>	-	U	1TXIP<2:()>	—	U1RXIP<2:0>		_	SPI1IP<2:0>		0100 0100 0100 0100		
IPC3	009A	_	C	CNIP<2:0>	>	-	N	112CIP<2:0	>	—		SI2CIP<	:2:0>	_	١	VMIP<2:0	>	0100 0100 0100 0100
IPC4	009C	_	0	C3IP<2:0	>	-		IC8IP<2:0;	>	—		IC7IP<	2:0>	_	1	NT1IP<2:0>	>	0100 0100 0100 0100
IPC5	009E	_	IN	T2IP<2:0	>	-		T5IP<2:0>		—		T4IP<2	2:0>	_	(OC4IP<2:0>	>	0100 0100 0100 0100
IPC6	00A0	_	(C1IP<2:0>	•	-	S	SPI2IP<2:0	>	—		U2TXIP	<2:0>	_	U	2RXIP<2:0	>	0100 0100 0100 0100
IPC7	00A2	—	—	—	_	-	_	-	-	—	—	-	—	_	—	—	_	0100 0100 0100 0100
IPC8	00A4	_	_	_	_	_	_	_		_	_	-	_	_	_	_	_	0100 0100 0100 0100
IPC9	00A6	—	_	_	_		—	_		—	—	-	—	_	_	—	—	0000 0100 0100 0100
IPC10	00A8	_	_	_	_	_	L	VDIP<2:0	>	_		DCIIP<	2:0>	_	_	_	_	0000 0100 0100 0000

Legend: — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 11-1: dsPIC30F4013 TIMER4/5 REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
TMR4 0114 Timer4 Register													uuuu uuuu uuuu uuuu						
TMR5HLD	ILD 0116 Timer5 Holding Register (for 32-bit operations only)											uuuu uuuu uuuu uuuu							
TMR5	0118		Timer5 Register											uuuu uuuu uuuu uuuu					
PR4	011A								Pe	riod Regist	er 4							1111 1111 1111 1111	
PR5	011C								Pe	riod Regist	er 5							1111 1111 1111 1111	
T4CON	011E	TON	-	TSIDL	—	_	-		-	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000 0000 0000 0000	
T5CON	0120	TON	-	TSIDL	—	_	-		-	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000 0000 0000 0000	
						1 (-1													

 Legend:
 u = uninitialized bit; — = unimplemented bit, read as '0'

 Note
 1:
 Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F3014/4013

NOTES:

14.0 I²C[™] MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the 'dsPIC30F Family Reference Manual (DS70046).

The Inter-Integrated Circuit (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

This module offers the following key features:

- I²C interface supporting both master and slave operation.
- I²C Slave mode supports 7-bit and 10-bit addressing.
- I²C Master mode supports 7-bit and 10-bit addressing.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly.

14.1 Operating Function Description

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

Thus, the l^2C module can operate either as a slave or a master on an l^2C bus.

14.1.1 VARIOUS I²C MODES

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

See the I²C programmer's model in Figure 14-1.

14.1.2 PIN CONFIGURATION IN I²C MODE

 $\mathsf{I}^2\mathsf{C}$ has a 2-pin interface: the SCL pin is clock and the SDA pin is data.

14.1.3 I²C REGISTERS

I2CCON and I2CSTAT are control and status registers, respectively. The I2CCON register is readable and writable. The lower 6 bits of I2CSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CRSR is the shift register used for shifting data, whereas I2CRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CRCV is the receive buffer as shown in Figure 14-1. I2CTRN is the transmit register to which bytes are written during a transmit operation, as shown in Figure 14-2.

The I2CADD register holds the slave address. A status bit, ADD10, indicates 10-Bit Addressing mode. The I2CBRG acts as the Baud Rate Generator reload value.

In receive operations, I2CRSR and I2CRCV together form a double-buffered receiver. When I2CRSR receives a complete byte, it is transferred to I2CRCV and an interrupt pulse is generated. During transmission, the I2CTRN is not double-buffered.

Note: Following a Restart condition in 10-bit mode, the user only needs to match the first 7-bit address.

FIGURE 14-1: PROGRAMMER'S MODEL

16.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a '0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be '1'; otherwise, FERR is set. The readonly FERR bit is buffered along with the received data; it is cleared on any Reset.

16.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes; it is cleared on any Reset.

16.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is '0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is '1', indicating that the UART is Idle.

16.5.5 RECEIVE BREAK

The receiver counts and expects a certain number of bit times based on the values programmed in the PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>) bits.

If the break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated if appropriate, and the RIDLE bit is set.

When the module receives a long Break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the Break condition on the line is the next Start bit.

Break is regarded as a character containing all '0's with the FERR bit set. The Break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not yet been received.

16.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables this special mode in which a 9th bit (URX8) value of '1' identifies the received word as an address, rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode since an interrupt (if enabled) is generated every time the received word has the 9th bit set.

16.7 Loopback Mode

Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation.

To select this mode:

- a) Configure UART for desired mode of operation.
- b) Set LPBACK = 1 to enable Loopback mode.
- c) Enable transmission as defined in **Section 16.3 "Transmitting Data"**.

16.8 Baud Rate Generator

The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows:

- BRG = 16-bit value held in UxBRG register (0 through 65535)
- FCY = Instruction Clock Rate (1/TCY)

The Baud Rate is given by Equation 16-1.

EQUATION 16-1: BAUD RATE

Baud Rate = FCY/(16*(BRG+1))

Therefore, the maximum baud rate possible is:

FCY/16 (if BRG = 0),

and the minimum baud rate possible is:

Fcy/(16 * 65536).

With a full 16-bit Baud Rate Generator at 30 MIPS operation, the minimum baud rate achievable is 28.5 bps.

17.0 CAN MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

17.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive, and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- · Support for remote frames
- Double-buffered receiver with two prioritized received message storage buffers (each buffer may contain up to 8 bytes of data)
- 6 full (standard/extended identifier), acceptance filters, 2 associated with the high-priority receive buffer and 4 associated with the low-priority receive buffer
- 2 full, acceptance filter masks, one each associated with the high and low-priority receive buffers
- Three transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2, for both CAN1 and CAN2) for time-stamping and network synchronization
- Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

17.2 Frame Types

The CAN module transmits various types of frames which include data messages or remote transmission requests, initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID) but not an 18-bit Extended Identifier (EID).

• Extended Data Frame:

An extended data frame is similar to a standard data frame but includes an extended identifier as well.

• Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node then sends a data frame as a response to this remote request.

Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of 2 fields: an error flag field and an error delimiter field.

Overload Frame:

An overload frame can be generated by a node as a result of 2 conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

17.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Loopback mode
- Error Recognition mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time which is defined as at least 11 consecutive recessive bits.

17.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers that control the configuration of the module can not be modified while the module is on-line. The CAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

17.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remain and the error counters retain their value.

If the REQOP<2:0> bits (CiCTRL<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detects that condition as an Idle bus, and then accepts the module disable command. When the OPMODE<2:0> bits (CiCTRL<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

17.3.3 NORMAL OPERATION MODE

Normal Operating mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assume the CAN bus functions. The module transmits and receives CAN bus messages via the CxTX and CxRX pins.

17.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

17.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting the REQOP<2:0> bits to '111'. In this mode, the data which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

17.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

18.3 DCI Module Operation

18.3.1 MODULE ENABLE

The DCI module is enabled or disabled by setting/ clearing the DCIEN control bit in the DCICON1 SFR. Clearing the DCIEN control bit has the effect of resetting the module. In particular, all counters associated with CSCK generation, Frame Sync, and the DCI buffer control unit are reset.

The DCI clocks are shut down when the DCIEN bit is cleared.

When enabled, the DCI controls the data direction for the four I/O pins associated with the module. The port, LAT and TRIS register values for these I/O pins are overridden by the DCI module when the DCIEN bit is set.

It is also possible to override the CSCK pin separately when the bit clock generator is enabled. This permits the bit clock generator to operate without enabling the rest of the DCI module.

18.3.2 WORD-SIZE SELECTION BITS

The WS<3:0> word-size selection bits in the DCICON2 SFR determine the number of bits in each DCI data word. Essentially, the WS<3:0> bits determine the counting period for a 4-bit counter clocked from the CSCK signal.

Any data length, up to 16 bits, may be selected. The value loaded into the WS<3:0> bits is one less the desired word length. For example, a 16-bit data word size is selected when WS<3:0> = 1111.

Note:	These WS<3:0> control bits are used only						
	in the Multichannel and I ² S modes. These						
	bits have no effect in AC-Link mode since						
	the data slot sizes are fixed by the protocol.						

18.3.3 FRAME SYNC GENERATOR

The Frame Sync generator (COFSG) is a 4-bit counter that sets the frame length in data words. The Frame Sync generator is incremented each time the word-size counter is reset (refer to **Section 18.3.2** "**Word-Size Selection Bits**"). The period for the Frame Synchronization generator is set by writing the COFSG<3:0> control bits in the DCICON2 SFR. The COFSG period in clock cycles is determined by the following formula:

EQUATION 18-1: COFSG PERIOD

Frame Length = Word Length • (FSG Value + 1)

Frame lengths, up to 16 data words, may be selected. The frame length in CSCK periods can vary up to a maximum of 256 depending on the word size that is selected.

Note:	The COFSG control bits have no effect in
	AC-Link mode since the frame length is
	set to 256 CSCK periods by the protocol.

18.3.4 FRAME SYNC MODE CONTROL BITS

The type of Frame Sync signal is selected using the Frame Synchronization mode control bits (COFSM<1:0>) in the DCICON1 SFR. The following operating modes can be selected:

- Multichannel mode
- I²S mode
- AC-Link mode (16-bit)
- AC-Link mode (20-bit)

The operation of the COFSM control bits depends on whether the DCI module generates the Frame Sync signal as a master device, or receives the Frame Sync signal as a slave device.

The master device in a DSP/Codec pair is the device that generates the Frame Sync signal. The Frame Sync signal initiates data transfers on the CSDI and CSDO pins and usually has the same frequency as the data sample rate (COFS).

The DCI module is a Frame Sync master if the COFSD control bit is cleared and is a Frame Sync slave if the COFSD control bit is set.

18.3.5 MASTER FRAME SYNC OPERATION

When the DCI module is operating as a Frame Sync master device (COFSD = 0), the COFSM mode bits determine the type of Frame Sync pulse that is generated by the Frame Sync generator logic.

A new COFS signal is generated when the Frame Sync generator resets to '0'.

In the Multichannel mode, the Frame Sync pulse is driven high for the CSCK period to initiate a data transfer. The number of CSCK cycles between successive Frame Sync pulses depends on the word size and Frame Sync generator control bits. A timing diagram for the Frame Sync signal in Multichannel mode is shown in Figure 18-2.

In the AC-Link mode of operation, the Frame Sync signal has a fixed period and duty cycle. The AC-Link Frame Sync signal is high for 16 CSCK cycles and is low for 240 CSCK cycles. A timing diagram with the timing details at the start of an AC-Link frame is shown in Figure 18-3.

In the I^2S mode, a Frame Sync signal having a 50% duty cycle is generated. The period of the I^2S Frame Sync signal in CSCK cycles is determined by the word

19.9 Module Power-Down Modes

The module has two internal power modes.

When the ADON bit is '1', the module is in Active mode; it is fully powered and functional.

When ADON is '0', the module is in Off mode. The digital and analog portions of the circuit are disabled for maximum current savings.

In order to return to the Active mode from Off mode, the user must wait for the ADC circuitry to stabilize. The time required to stabilize is specified in **Section 23.0 "Electrical Characteristics"**.

19.10 A/D Operation During CPU Sleep and Idle Modes

19.10.1 A/D OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shut down and stay at logic '0'.

If Sleep occurs in the middle of a conversion, the conversion is aborted. The converter does not continue with a partially completed conversion on exit from Sleep mode.

Register contents are not affected by the device entering or leaving Sleep mode.

The A/D module can operate during Sleep mode if the A/D clock source is set to RC (ADRC = 1). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed which eliminates all digital switching noise from the conversion. (When the conversion sequence is complete, the DONE bit is set.)

If the A/D interrupt is enabled, the device wakes up from Sleep. If the A/D interrupt is not enabled, the A/D module is then turned off, although the ADON bit remains set.

19.10.2 A/D OPERATION DURING CPU IDLE MODE

The ADSIDL bit determines if the module stops or continues on Idle. If ADSIDL = 0, the module continues operation on assertion of Idle mode. If ADSIDL = 1, the module stops on Idle.

19.11 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion and sampling sequence is aborted. The values that are in the ADCBUF registers are not modified. The A/D Result register contains unknown data after a Power-on Reset.

19.12 Output Formats

The A/D result is 12 bits wide. The data buffer RAM is also 12 bits wide. The 12-bit data can be read in one of four different formats. The FORM<1:0> bits select the format. Each of the output formats translates to a 16-bit result on the data bus. Write data is always in right-justified (integer) format.

FIGURE 19-5:	A/D OUTPUT DATA FORMATS

RAM Contents:				d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:															
Signed Fractional	d11 d1	0 d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0
Fractional	d11 d1	0 d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0
Signed Integer	d11 d1	1 d11	d11	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
		•													1
Integer	0 0	0	0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00

19.13 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The A/D operation is independent of the state of the CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.

When reading the PORT register, all pins configured as analog input channels are read as cleared.

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

19.14 Connection Considerations

The analog inputs have diodes to VDD and VSS as ESD protection. This requires that the analog input be between VDD and VSS. If the input voltage exceeds this range by greater than 0.3V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high-impedance) to an analog input pin (capacitor, Zener diode, etc.) should have very little leakage current at the pin.

TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemoni c		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-Bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do Code to PC+Expr, lit14 + 1 Times	2	2	None
		DO	Wn,Expr	Do Code to PC+Expr, (Wn) + 1 Times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC Wm*Wm, Acc, Wx, Wy, Wxd Euclid		Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws, Wnd Find First One from Right (LSb) Side		1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-Bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-Bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None

TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemoni c		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	Wd = Wb - Iit5 - (C)	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG– f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	f = WREG - f - (C)	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG $- f - (C)$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	Wd = lit5 - Wb - (C)	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	1 0			1	N,∠
		XOR	I,WREG	WREG = T.XOR. WREG		1	IN,∠
		XOR	#11t10,Wn			1	IN,∠
		XOR	WD,WS,Wd		1	1	N,∠
00		XOR	wb,#lit5,Wd			1	N,∠
83	ZE	ZE	Ws,Wnd	vvna = Zero-Extena VVs	1	1	U,Z,N

23.1 DC Characteristics

TABLE 23-1: OPERATING MIPS vs. VOLTAGE

Voo Benge	Tomp Dongo	Max MIPS					
VDD Range	Temp Range	dsPIC30FXXX-30I	dsPIC30FXXX-20E				
4.5-5.5V	-40°C to 85°C	30	—				
4.5-5.5V	-40°C to 125°C	—	20				
3.0-3.6V	-40°C to 85°C	15	—				
3.0-3.6V	-40°C to 125°C	—	10				
2.5-3.0V	-40°C to 85°C	10	—				

TABLE 23-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
dsPIC30F3014-30I dsPIC30F4013-30I					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	T _A	-40	—	+85	°C
dsPIC30F3014-20E dsPIC30F4013-20E					
Operating Junction Temperature Range	TJ	-40	—	+150	°C
Operating Ambient Temperature Range	T _A	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $P_{INT} = V_{DD} \times (I_{DD} - \Sigma I_{OH})$ I/O Pin power dissipation:	PD	Pint + Pi/o			W
$P_{I/O} = \sum \left(\{ V_{DD} - V_{OH} \} \times I_{OH} \right) + \sum \left(V_{OL} \times I_{OL} \right)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJ	A	W

TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 40-pin DIP (P)	θJA		47	°C/W	1
Package Thermal Resistance, 44-pin TQFP (10x10x1mm)	θJA	—	39.3	°C/W	1
Package Thermal Resistance, 44-pin QFN	θJA	_	27.8	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-ja (θ JA) numbers are achieved by package simulations.

DC CHA	ARACTER	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max Units Conditions					
	Vol	Output Low Voltage ⁽²⁾							
DO10		I/O Ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 5V		
			—	—	0.15	V	IOL = 2.0 mA, VDD = 3V		
DO16		OSC2/CLKO	—	—	0.6	V	IOL = 1.6 mA, VDD = 5V		
		(RC or EC Oscillator mode)	—	—	0.72	V	IOL = 2.0 mA, VDD = 3V		
	Vон	Output High Voltage ⁽²⁾							
DO20		I/O Ports	VDD - 0.7	—	—	V	IOH = -3.0 mA, VDD = 5V		
			VDD - 0.2	—	—	V	Юн = -2.0 mA, VDD = 3V		
DO26		OSC2/CLKO	VDD - 0.7	—	—	V	IOH = -1.3 mA, VDD = 5V		
		(RC or EC Oscillator mode)	Vdd - 0.1	—	_	V	Юн = -2.0 mA, VDD = 3V		
		Capacitive Loading Specs on Output Pins ⁽²⁾							
DO50	Cosc2	OSC2/SOSC2 Pin	_		15	pF	In XTL, XT, HS and LP modes when external clock is used to drive OSC1.		
DO56	Сю	All I/O Pins and OSC2	—	_	50	pF	RC or EC Oscillator mode		
DO58	Св	SCL, SDA	—	_	400	pF	In I ² C mode		
Note 1:	: Data in	"Typ" column is at 5V, 25°C unle	ess otherwis	e stated	. Param	neters ar	e for design guidance only and		

TABLE 23-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

are not tested.2: These parameters are characterized but not tested in manufacturing.

FIGURE 23-1: LOW-VOLTAGE DETECT CHARACTERISTICS

TABLE 23-10: ELECTRICAL CHARACTERISTICS: LVDL

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Characteristic ⁽¹⁾			Max	Units	Conditions	
LV10	Vplvd	LVDL Voltage on VDD Transition High-to-Low	LVDL = 0000 ⁽²⁾				V		
			LVDL = 0001 ⁽²⁾	_	_	_	V		
			LVDL = 0010 ⁽²⁾	-	_		V		
			LVDL = 0011 ⁽²⁾				V		
			LVDL = 0100	2.50	_	2.65	V		
			LVDL = 0101	2.70	_	2.86	V		
			LVDL = 0110	2.80		2.97	V		
			LVDL = 0111	3.00	_	3.18	V		
			LVDL = 1000	3.30		3.50	V		
			LVDL = 1001	3.50		3.71	V		
			LVDL = 1010	3.60		3.82	V		
			LVDL = 1011	3.80		4.03	V		
			LVDL = 1100	4.00	_	4.24	V		
			LVDL = 1101	4.20	_	4.45	V		
			LVDL = 1110	4.50	—	4.77	V		
LV15	VLVDIN	External LVD Input Pin Threshold Voltage	LVDL = 1111	_	_	_	V		

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values not in usable operating range.

FIGURE 23-2: BROWN-OUT RESET CHARACTERISTICS

FIGURE 23-11: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 23-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS					$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾ Max Units Conditions					
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns			
OC20	TFLT	Fault Input Pulse Width	50		_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 23-36: CAN MODULE I/O TIMING REQUIREMENTS

AC CHARA	CTERISTICS	Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteri	stic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	10	25	ns	
CA11	TioR	Port Output Rise Time		—	10	25	ns	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter			_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

24.0 PACKAGING INFORMATION

24.1 Package Marking Information

40-Lead PDIP

44-Lead TQFP

44-Lead QFN

Example

Example

Example

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.