

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS-I
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	20MHz
Co-Processors/DSP	System Control; CP0
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 85°C (TC)
Security Features	-
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79r3041-20pf8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

System Control Co-Processor

The R3041 also integrates on-chip a System Control Coprocessor, CP0. CP0 manages the exception handling capability of the R3041, the virtual to physical address mapping of the R3041, and the programmable bus interface capabilities of the R3041. These topics are discussed in subsequent sections.

The R3041 does not include the optional TLB found in other members of the RISController family, but instead performs the same virtual to physical address mapping of the base version of the RISController family. These devices still support distinct kernel and user mode operation, but do not require page management software or an on-chip TLB, leading to a simpler software model and a lower-cost processor.

The memory mapping used by these devices is illustrated in Figure 3. Note that the reserved address spaces shown are for compatibility with future family members; in the current family members, references to these addresses are translated in the same fashion as their respective segments, with no traps or exceptions taken.

When using the base versions of the architecture, the system designer can implement a distinction between the user tasks and the kernel tasks, without having to execute page management software. This distinction can take the form of physical memory protection, accomplished by ad-

dress decoding, or in other system specific forms. In systems which do not wish to implement memory protection, and wish to have the kernel and user tasks operate out of a single unified memory space, upper address lines can be ignored by the address decoder, and thus all references will be seen in the lower gigabyte of the physical address space.

The R3041 adds additional resources into the on-chip CP0. These resources are detailed in the R3041 User's Manual. They allow kernel software to directly control activity of the processor internal resources and bus interface, and include:

- Cache Configuration Register: This register controls the data cache block size and miss refill algorithm.
- Bus Control Register: This register controls the behavior of the various bus interface signals.
- Count and Compare Registers: Together, these two registers implement a programmable 24-bit timer, which can be used for DRAM refresh or as a general purpose timer.
- Port Size Control Register: This register allows the kernel to indicate the port width of reads and writes to various sub-regions of the physical address space. Thus, the R3041 can interface directly with 8-, 16-, and 32-bit memory ports, including a mix of sizes, for both instruction and data references, without requiring additional external logic.

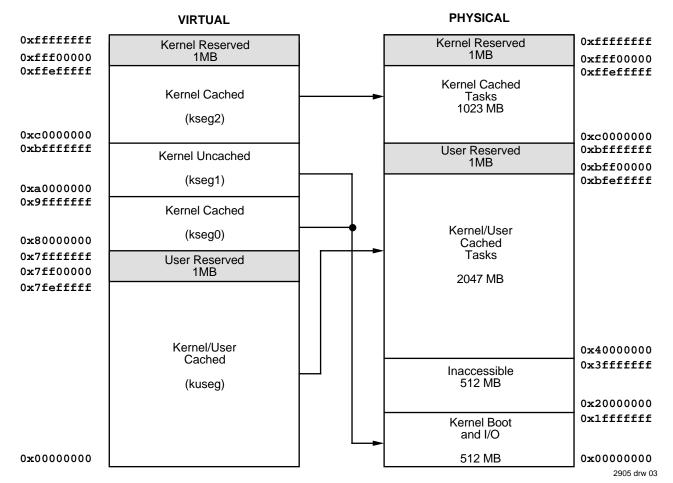


Figure 3. Virtual to Physical Mapping of Base Architecture Versions

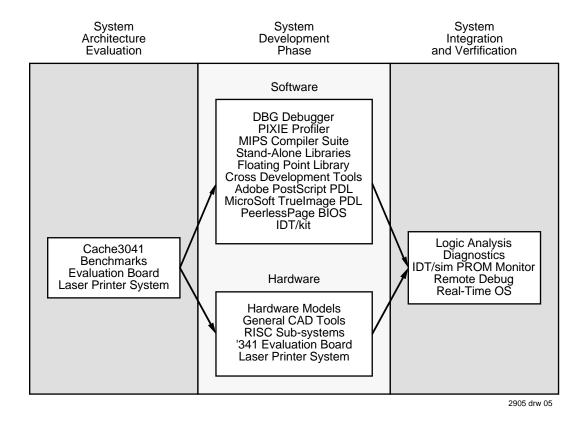
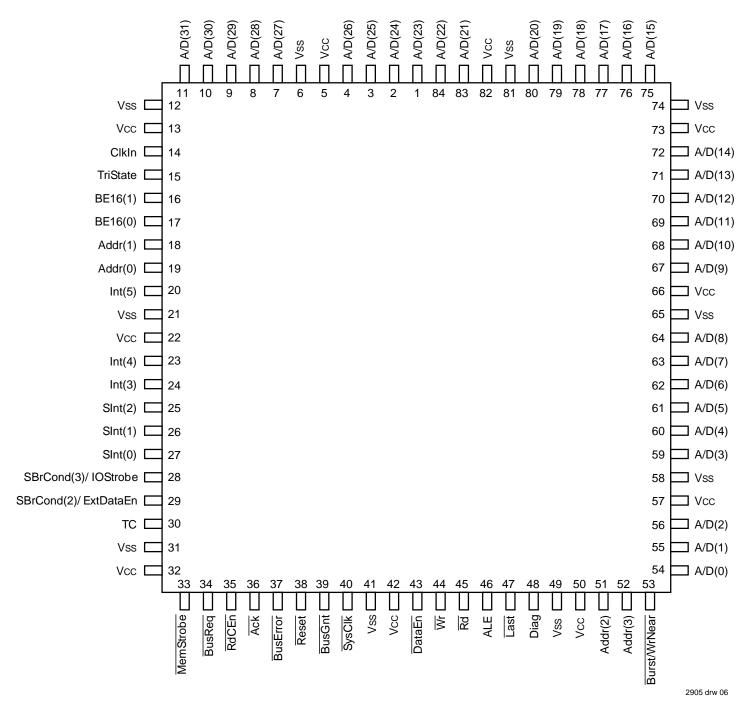
DEVELOPMENT SUPPORT

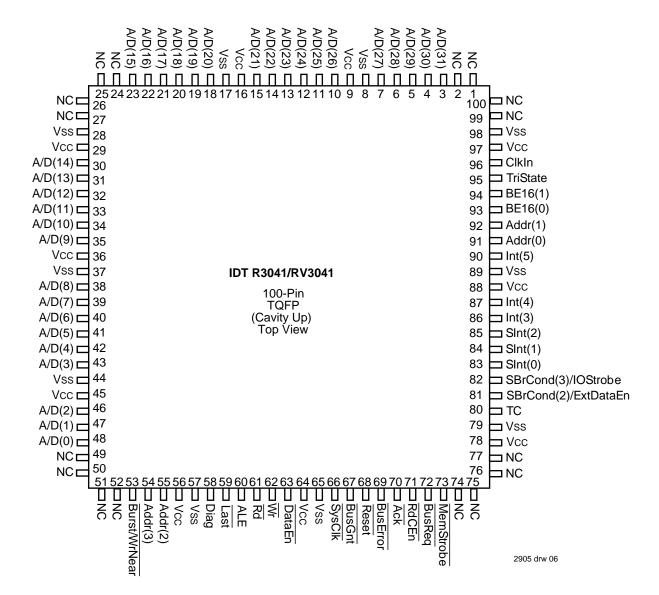
The IDT RISController family is supported by a rich set of development tools, ranging from system simulation tools through PROM monitor and debug support, applications software and utility libraries, logic analysis tools, and sub-system modules.

Figure 5 is an overview of the system development process typically used when developing R3041 applications. The RISController family is supported in all phases of project development. These tools allow timely, parallel development of hardware and software for RISController family based applications, and include tools such as:

Optimizing compilers from MIPS Technology, the acknowl-

- edged leader in optimizing compiler technology.
- Cross development tools, available in a variety of development environments.
- The high-performance IDT floating point emulation library software.
- The IDT Evaluation Board, which includes RAM, EPROM, I/O, and the IDT PROM Monitor.
- IDT Laser Printer System boards, which directly drive a lowcost print engine, and runs Adobe PostScript[™] Page Description Language
- Adobe PostScript Page Description Language running on the IDT RISController family.
- The IDT/sim[™] PROM Monitor, which implements a full PROM monitor (diagnostics, remote debug support, peek/


Figure 5. R3041 Development Environment

PIN CONFIGURATIONS

84-Pin PLCC/ Top View (Cavity Down)

PIN CONFIGURATIONS

PIN DESCRIPTION (Continued):

PIN NAME	1/0	DESCRIPTION
BE16(1:0)	0	Byte Enable Strobes for 16-bit Memory Port: These active low outputs are the byte lane strobes for accesses to 16-bit wide memory ports; they are not necessarily valid for 8- or 32-bit wide ports. If $\overline{BE16(1)}$ is asserted, then the most significant byte (either D(31:24) or D(15:8), depending on system endianness) is going to be used in this transfer. If $\overline{BE16(0)}$ is asserted, the least significant byte (D(23:16) or D(7:0)) will be used.
		$\overline{\text{BE16(1:0)}}$ can be held inactive (masked) during read transfers, according to the programming of the CP0 Bus Control register.
	 (1)	During $\overline{\text{Reset}}$, the $\overline{\text{BE16}(1:0)}$ act as Reset Configuration Mode bit inputs for two ReservedHigh options.
		The $\overline{\text{BE16}(1:0)}$ output pins are designated as the unconnected Rsvd(3:2) pins in the R3051 and R3081.
Last	0	Last Datum in Mini-Burst: This active low output indicates that this is the last datum transfer in a given transaction. It is asserted after the next to last \overline{RdCEn} (reads) or \overline{Ack} (writes), and is negated when \overline{Rd} or \overline{Wr} is negated.
		The \overline{Last} output pin is designated in the R3051 and R3081 as the Diag(0) output pin.
TC	0	Terminal Count: This is an active low output from the processor which indicates that the on-chip timer has reached its terminal count. It will remain low for either 1.5 clock cycles, or until software resets the timer, depending on the mode selected in the CP0 Bus Control register. Thus, the on-chip timer can function either as a free running timer for system functions such as DRAM refresh, or can operate as a software controlled time-slice timer, or real-time clock.
		The $\overline{\text{TC}}$ output pin is designated in the R3051 as the BrCond(1) input pin, and in the R3081 as the Run pin output.
BusError		Bus Error: Input to the bus interface unit to terminate a bus transaction due to an external bus error. This signal is only sampled during read and write operations. If the bus transaction is a read operation, then the CPU will take a bus error exception.
Int(5:3) SInt(2:0)		Processor Interrupt: During normal operation, these signals are logically the same as the Int(5:0) signals of the R3000A. During processor reset, these signals perform mode initialization of the CPU, but in a different (simpler) fashion than the interrupt signals on the original R3000A.
	J ⁽¹⁾	During Reset, Int(3) and SInt(0) act as Reset Configuration Mode bit inputs for the AddrDisplayAndForceCacheMiss and BigEndian options.
		There are two types of interrupt inputs: the SInt inputs are internally synchronized by the processor, and may be driven by an asynchronous external agent. The direct interrupt inputs are not internally synchronized, and thus must be externally synchronized to the CPU. The direct interrupt inputs have one cycle lower latency than the synchronized interrupts.
ClkIn	1	Master Clock Input: This is a double frequency input used to control the timing of the CPU.
Reset	I	Master Processor Reset: This signal initializes the CPU. Reset initialization mode selection is performed during the last cycle of Reset.
TriState	-	Tri-State: This input to the R3041 requests that the R3041 tri-state all of its outputs. In addition to those outputs tri-stated during DMA, tri-state will cause SysClk, TC, and BusGnt to tri-state. This signal is intended for use during board testing and emulation during debug and board manufacture.
		The TriState input pin is designated as the unconnected Rsvd(4)pin in the R3051 and R3081.
Vcc	I	Power: These inputs must be supplied with the rated supply voltage (VCC). All Vcc inputs must be connected to insure proper operation.
Vss	ı	Ground: These inputs must be connected to ground (GND). All Vss inputs must be connected to insure proper operation.

NOTE:

2905 tbl 05

Reset Configuration Mode bit input when Reset is asserted, normal signal function when Reset is de-asserted.

ABSOLUTE MAXIMUM RATINGS^(1, 3) R3041

Symbol	Rating	Commercial	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Tc	Operating Case Temperature	0 to +85	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
VIN	Input Voltage	-0.5 to +7.0	V

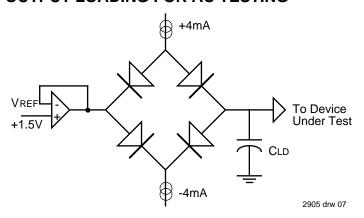
NOTES:

2905 tbl 06

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
 may cause permanent damage to the device. This is a stress rating only
 and functional operation of the device at these or any other conditions
 above those indicated in the operational sections of this specification is not
 implied. Exposure to absolute maximum rating conditions for extended
 periods may affect reliability.
- 2. VIN minimum = -3.0V for pulse width less than 15ns. VIN should not exceed Vcc +0.5 Volts.
- 3. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.

AC TEST CONDITIONS R3041

Symbol	Parameter	Min.	Max.	Unit
VIH	Input HIGH Voltage	3.0		V
VIL	Input LOW Voltage	_	0	V
VIHS	Input HIGH Voltage	3.5	_	V
VILS	Input LOW Voltage	_	0	V


2905 tbl 08

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Commercial	0°C to +85°C	0V	5.0 ±5%
	(Case)		

2905 tbl 07

OUTPUT LOADING FOR AC TESTING

Signal	Cld
All Signals	25 pF

2905 tbl 09

DC ELECTRICAL CHARACTERISTICS R3041 — (Tc = 0° C to +85°C, Vcc = +5.0V ±5%)

			16.67	MHz	20	MHz	25N	ИHz	331	ЛHz	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -4mA	3.5	_	3.5	_	3.5	_	3.5		V
Vol	Output LOW Voltage	Vcc = Min., IoL = 4mA	_	0.4	_	0.4	_	0.4		0.4	V
VIH	Input HIGH Voltage ⁽³⁾	_	2.0	_	2.0	_	2.0	_	2.0	ų	V
VIL	Input LOW Voltage ⁽¹⁾	_	_	0.8	_	0.8	_	0.8	_	0.8	V
Vihs	Input HIGH Voltage ^(2,3)	_	3.0	_	3.0	_	3.0	_	3.0		V
VILS	Input LOW Voltage ^(1,2)	_	_	0.4	_	0.4	_	0.4		0.4	V
CIN	Input Capacitance ⁽⁴⁾	_	_	10	_	10	_	10		10	pF
Соит	Output Capacitance ⁽⁴⁾	_	_	10	_	10	_	10	<u></u>	10	pF
Icc	Operating Current	Vcc = 5V, Tc = 25°C	_	225	_	250	_	300	-	370	mA
Iн	Input HIGH Leakage	VIH = VCC	_	100	_	100	_	100	-(100	μΑ
lı∟	Input LOW Leakage	VIL = GND	-100	_	-100	_	-100	_	-100		μΑ
loz	Output Tri-state Leakage	VoH = 2.4V, VoL = 0.5V	-100	100	-100	100	-100	100	-100	100	μΑ

NOTES:

2905 tbl 10

- 1. VIL Min. = −3.0V for pulse width less than 15ns. VIL should not fall below −0.5 volts for larger periods.
- 2. Vihs and Vils apply to ClkIn and Reset.
- 3. Vih should not be held above Vcc + 0.5 volts.
- 4. Guaranteed by design.

AC ELECTRICAL CHARACTERISTICS R3041 (1, 2, 3)— (Tc = 0° C to +85°C, Vcc = +5.0V \pm 5%)

			16.67MHz		20	MHz	251	ЛНz	33M	lHz	
Symbol	Signals	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t1	BusReq, Ack, BusError, RdCEn	Set-up to SysClk rising	11	_	8	_	5.5	_	5.5	7	ns
t1a	A/D	Set-up to SysClk falling	12	_	9	_	7	_	7	+	ns
t2	BusReq, Ack, BusError, RdCEn	Hold from SysClk rising	4	_	3	_	2.5	_	2.5		ns
t2a	A/D	Hold from SysClk falling	2	_	2	_	1	_	1	7	ns
t3	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Tri-state from SysClk rising (after driven condition)		13	_	10	_	10		10	ns
t4	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Driven from SysClk falling (after tri-state condition)	_	13	_	10	_	10		10	ns
t5	BusGnt	Asserted from SysClk rising	_	10	_	8	_	7	_	7	ns
t6	BusGnt	Negated from SysClk falling		10	_	8	_	7	-	7	ns
t7	Wr, Rd, Burst/WrNear, TC	Valid from SysClk rising		8	_	6	_	5	_	5	ns
t7a	A/D	Valid from SysClk rising	_	12	_	9	_	8	+	8	ns
t7b	Last	Valid from SysClk rising	1	12	_	9	_	8	1	8	ns
t8	ALE	Asserted from SysClk rising		5	_	4	_	4	_	4	ns
t9	ALE	Negated from SysClk falling		5	_	4	_	4	+	4	ns
t10	A/D	Hold from ALE negated	2	_	2	_	2	_	1.5		ns
t11	DataEn	Asserted from SysClk		19	_	15	_	15		15	ns
t12	DataEn	Asserted from A/D tri-state ⁽⁴⁾	0	_	0	_	0	_	0		ns
t14	A/D	Driven from SysClk rising(4)	0	_	0	_	0	_	0	7	ns
t15	Wr, Rd, DataEn, Burst/WrNear, Last, TC	Negated from SysClk falling	_	9	_	7	_	6		6	ns
t16	Addr(3:0), BE 16(1:0)	Valid from SysClk		11	_	8	_	7	_	7	ns
t17	Diag	Valid from SysClk	1	15	_	12	_	11	_	11	ns
t18	A/D	Tri-state from SysClk	_	13	_	10	_	10		10	ns
t19	A/D	SysClk to data out		16	_	13	_	12	+	12	ns
t20	Clkln	Pulse Width High	12	_	10	_	8	_	6.5	_	ns
t21	ClkIn	Pulse Width Low	12		10	_	8	_	6.5		ns
t22	Clkln	Clock Period	30	250	25	250	20	250	15	250	ns
t23	Reset	Pulse Width from Vcc valid	200	_	200	_	200	_	200		μs
t24	Reset	Minimum Pulse Width	32	_	32	_	32	_	32	_	sys
t25	Reset	Set-up to SysClk falling	8	_	6	_	5	_	5		ns
t26	Īnt	Mode set-up to Reset rising	8	_	6	_	5	_	5		ns
t27	Īnt	Mode hold from Reset rising	2.5	_	2.5	_	2.5	_	2.5	+	ns
t28	SInt, SBrCond	Set-up to SysClk falling	8		6	_	5	_	5		ns
t29	Slnt, SBrCond	Hold from SysClk falling	4	_	3	_	3	_	3	1	ns
t30	Int, BrCond	Set-up to SysClk falling	8	_	6	_	5	_	5		ns
t31	Int, BrCond	Hold from SysClk falling	4	_	3	_	3		3	4	ns
tsys	SysClk	Pulse Width	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	ns
t32	SysClk	Clock High Time	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	ns
t33	SysClk	Clock Low Time	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	ns

2905 thl 11

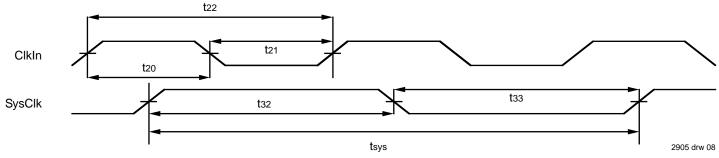


Figure 8. RISController Family Clocking

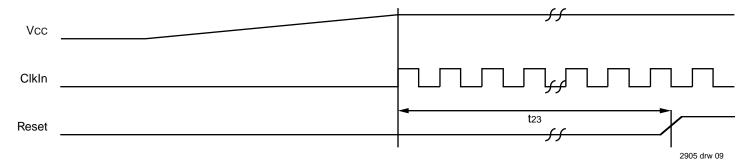


Figure 9. Power-On Reset Sequence

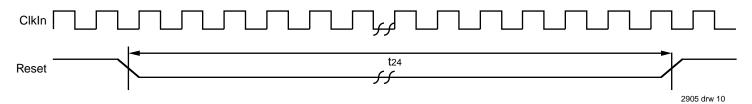


Figure 10(a). Warm Reset Sequence

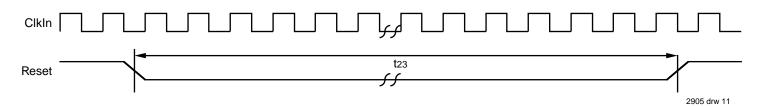


Figure 10(b). Warm Reset Sequence (Internal Pull-Ups Used)

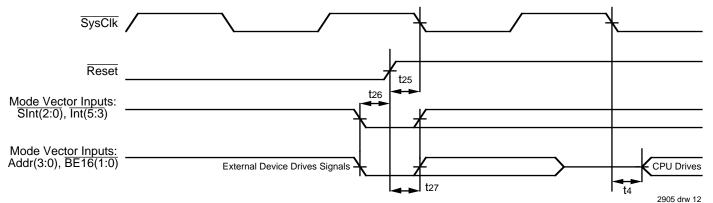


Figure 11. Mode Selection and Negation of Reset

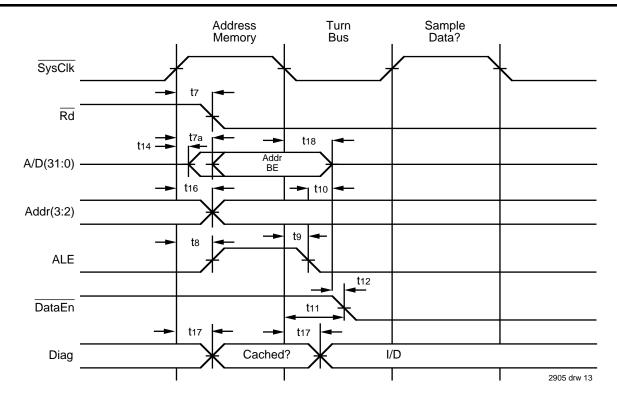


Figure 12(a). Start of Read Timing with Non-Extended Address Hold Option

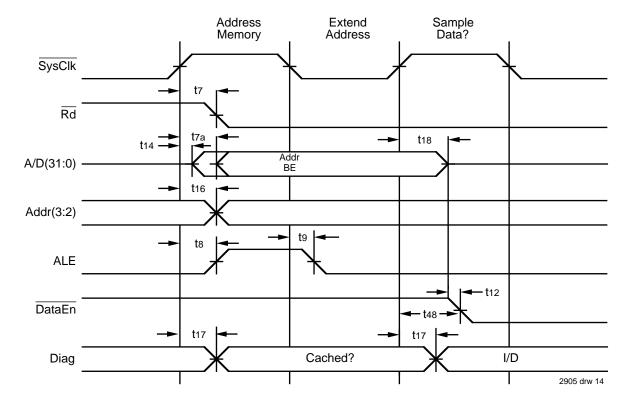


Figure 12(b). Start of Read Timing with Extended Address Hold Option

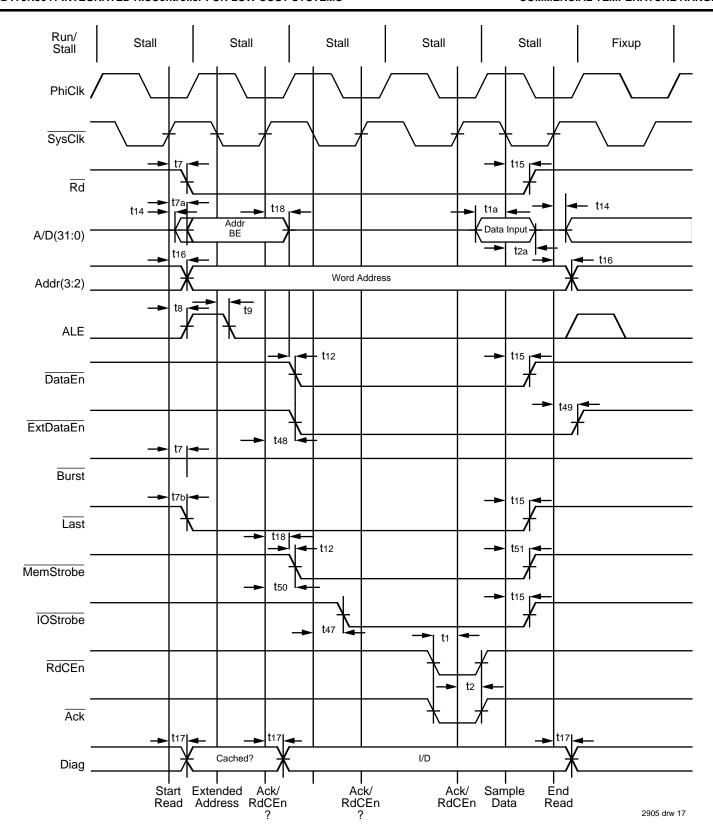


Figure 13. Single Datum Read

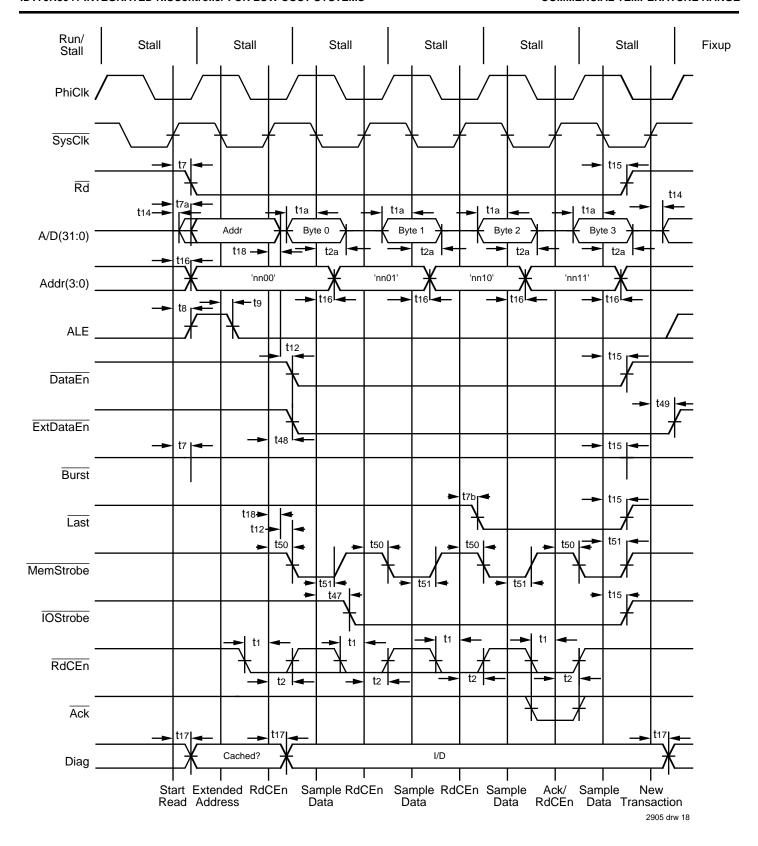


Figure 14. Mini-burst read of 32-bit datum from 8-bit wide memory port

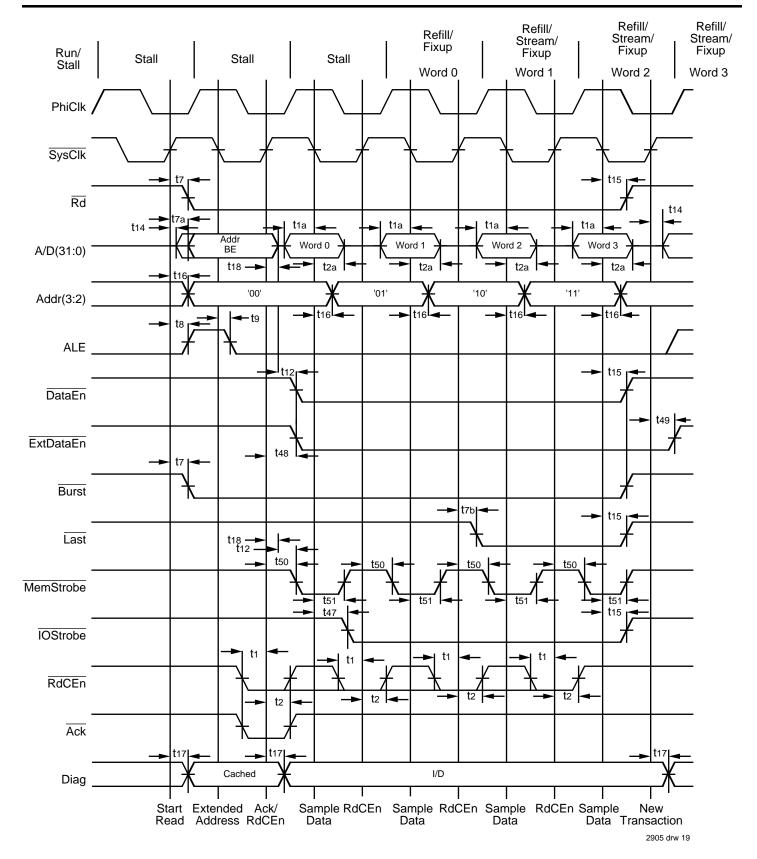


Figure 15. R3041 Quad Word Read

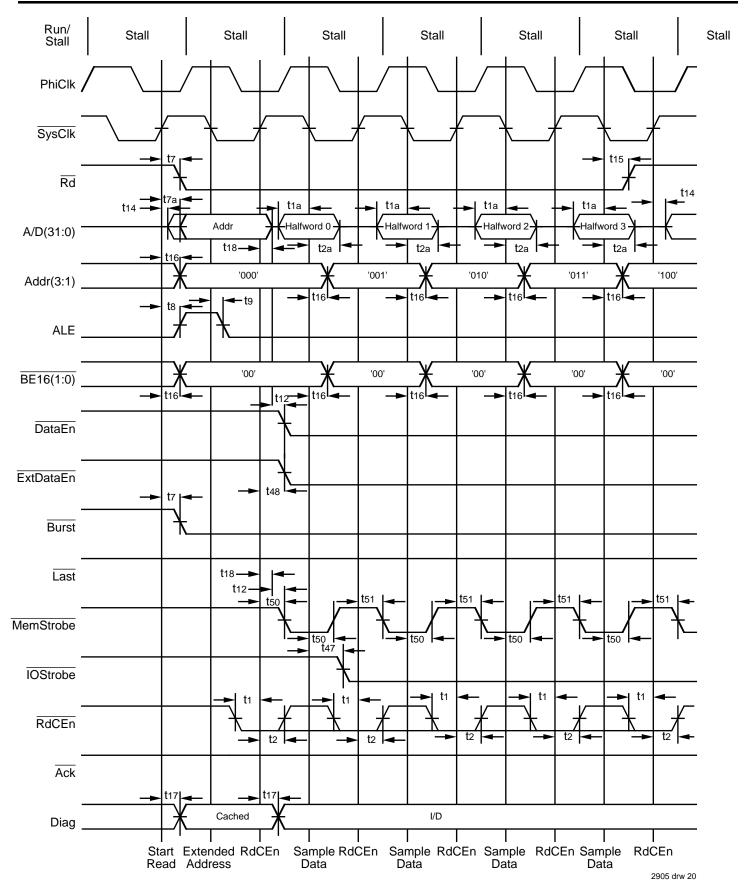


Figure 16(a). Quad Word Read to 16-bit wide Memory Port

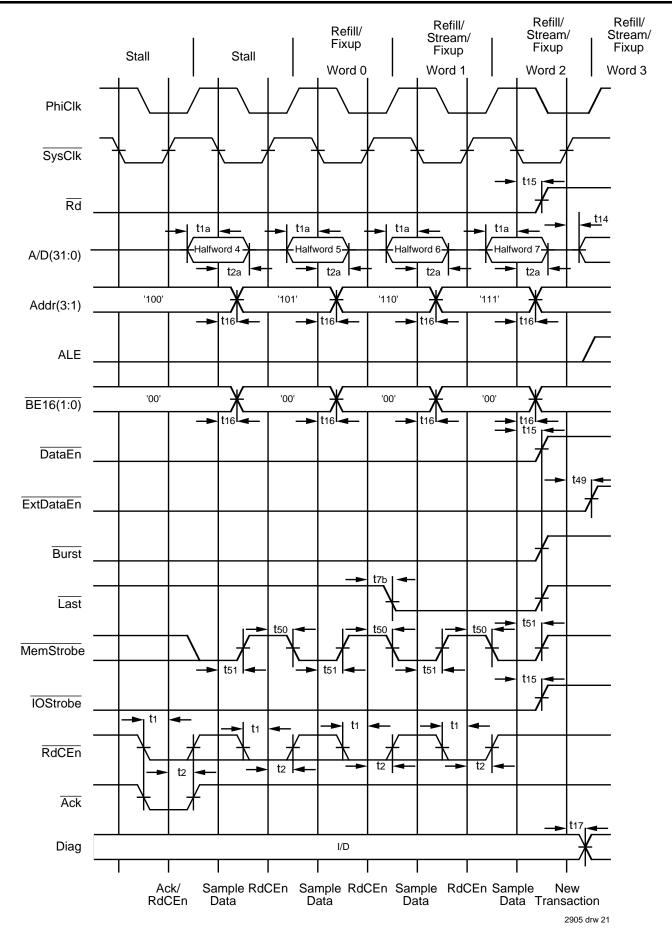


Figure 16(b). End of Quad Word read from 16-bit Wide Memory Port

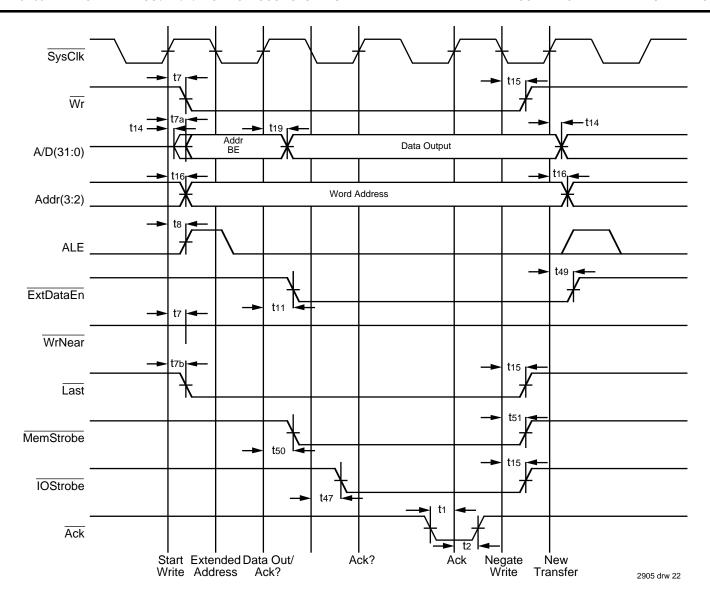


Figure 17. Basic Write to 32-bit Memory Port

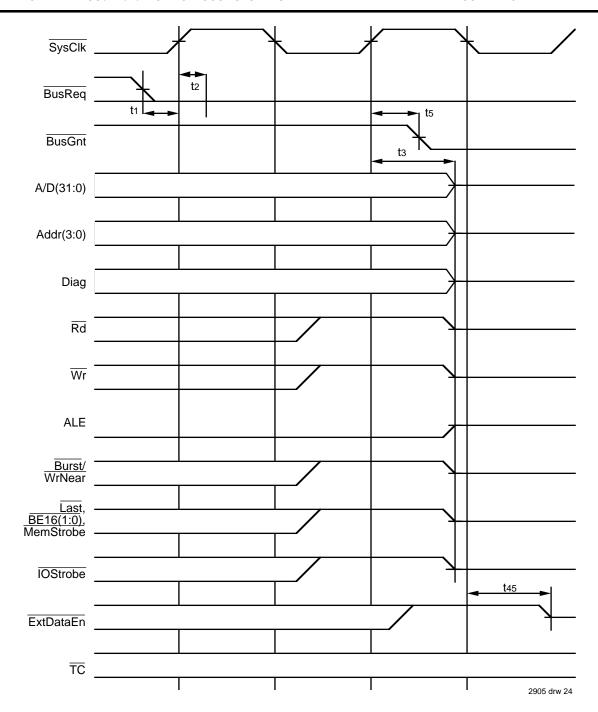


Figure 19. Request and Relinquish of R3041 Bus to External Master

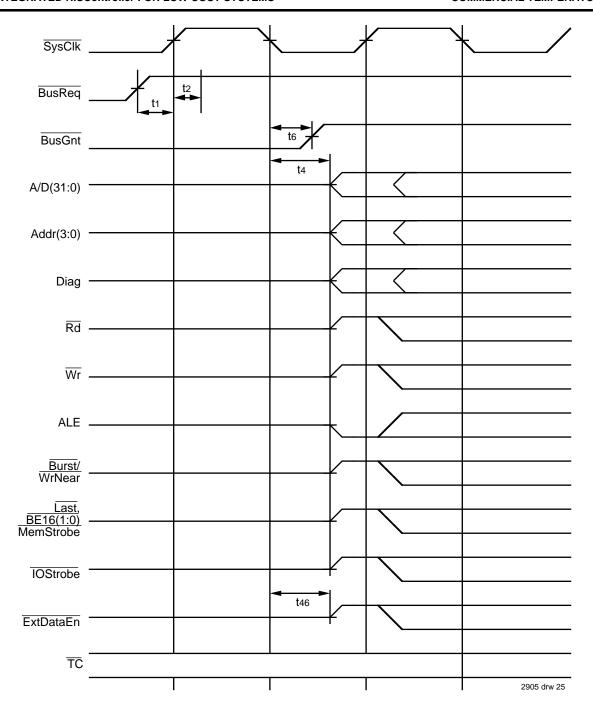
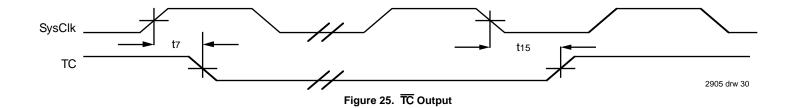
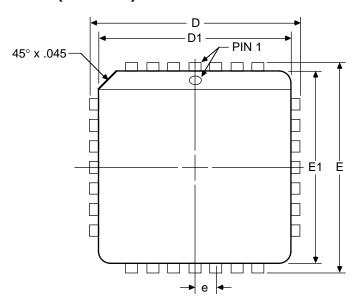
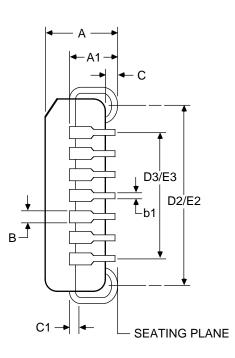
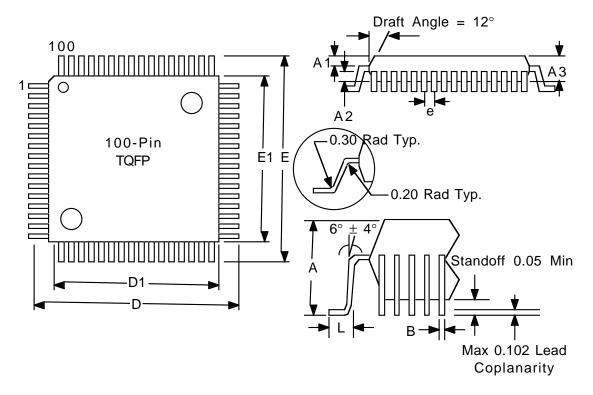





Figure 20. R3041 Regaining Bus Mastership

84 LEAD PLCC (SQUARE)

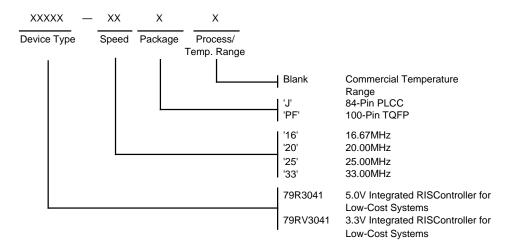
2905 drw 31


DWG #	J84-1				
# of Leads	84				
Symbol	Min.	Max.			
А	165	.180			
A1	.095	.115			
В	.026	.032			
b1	.013	.021			
С	.020	.040			
C1	.008	.012			
D	1.185	1.195			
D1	1.150	1.156			
D2/E2	1.090	1.130			
D3/E3	1.00	0 REF			
E	1.185	1.195			
E1	1.150	1.156			
е	.050 BSC				
ND/NE	21				

2905 tbl 13

NOTES:

- 1. All dimensions are in inches, unless otherwise noted.
- 2. BSC—Basic lead Spacing between Centers.
- 3. D & E do not include mold flash or protutions.
- 4. Formed leads shall be planar with respect to one another and within .004" at the seating plane.
- 5. ND & NE represent the number of leads in the D & E directions respectively.
- 6. D1 & E1 should be measured from the bottom of the package.7. PLCC is pin & form compatible with MQUAD; the MQUAD package is used in other RISController family members.


100-PIN TQFP

DWG #	TQFP				
# of Leads	100				
Symbol	Min.	Max.			
А	_	1.60			
A1	0.5	0.15			
A2	1.35	1.45			
D	15.75	16.25			
D1	13.95	14.05			
E	15.75	16.25			
E1	13.95	14.05			
L	0.45	0.70			
N	10	00			
е	0.50	BSC			
b	0.17	0.27			
ccc	_	0.08			
ddd	_	0.08			
R	0.08	0.20			
R1	0.08	_			
θ	0	7.0			
θ1	11.0	13.0			
θ2	11.0	13.0			
С	0.09	0.16			

2905 tbl 14

ORDERING INFORMATION

2905 drw 32

VALID COMBINATIONS

79R3041 - 16	TQFP, PLCC Package
79R3041 - 20	TQFP, PLCC Package
79R3041 - 25	TQFP, PLCC Package
79R3041 - 33	PLCC Package Only
79RV3041 - 16	TQFP, PLCC Package
79RV3041 - 20	TQFP, PLCC Package
79RV3041 - 25	TQFP, PLCC Package
79RV3041 - 33	TQFP, PLCC Package