

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS-I
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	25MHz
Co-Processors/DSP	System Control; CP0
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 85°C (TC)
Security Features	-
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79r3041-25j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INTRODUCTION

The IDT RISController family is a series of high-performance 32-bit microprocessors featuring a high-level of integration, and targeted to high-performance but cost sensitive embedded processing applications. The RISController family is designed to bring the high-performance inherent in the MIPS RISC architecture into low-cost, simplified, power sensitive applications.

Thus, functional units have been integrated onto the CPU core in order to reduce the total system cost, rather than to increase the inherent performance of the integer engine. Nevertheless, the RISController family is able to offer 35MIPS of integer performance at 40MHz without requiring external SRAM or caches.

Further, the RISController family brings dramatic power reduction to these embedded applications, allowing the use of low-cost packaging. Thus, the RISController family allows customer applications to bring maximum performance at minimum cost.

The R3041 extends the range of price/performance achiev-

able with the RISController family, by dramatically lowering the cost of using the MIPS architecture. The R3041 is designed to achieve minimal system and components cost, yet maintain the high-performance inherent in the MIPS architecture. The R3041 also maintains pin and software compatibility with the RISController and R3081.

The RISController family offers a variety of price/performance features in a pin-compatible, software compatible family. Table 1 provides an overview of the current members of the RISController family. Note that the R3051, R3052, and R3081 are also available in pin-compatible versions that include a full-function memory management unit, including 64-entry TLB. The R3051/2 and R3081 are described in separate manuals and data sheets.

Figure 1 shows a block level representation of the functional units within the R3041. The R3041 can be viewed as the embodiment of a discrete solution built around the R3000A. By integrating this functionality on a single chip, dramatic cost and power reductions are achieved.

An overview of these blocks is presented here, followed with detailed information on each block.

Device Name	Instruction Cache	Data Cache	Floating Point	Bus Options
R3051	4kB	2kB	Software Emulation	Mux'ed A/D
R3052	8kB	2kB	Software Emulation	Mux'ed A/D
R3071 R3081	16kB or 8kB	4kB or 8kB	On-chip Hardware	1/2 frequency bus option
R3041	2kB	512B	Software Emulation Programmable timing support	8-, 16-, and 32-bit port width support

2905 tbl 01

Table 1. Pin-Compatible RISController Family

CPU Core

The CPU core is a full 32-bit RISC integer execution engine, capable of sustaining close to a single cycle execution rate. The CPU core contains a five stage pipeline, and 32 orthogonal 32-bit registers. The RISController family implements the MIPS-I Instruction Set Architecture (ISA). In fact, the execution engine of the R3041 is the same as the execution engine of the R3000A. Thus, the R3041 is binary compatible with those CPU engines, as well as compatible with other members of the RISController family.

The execution engine of the RISController family uses a five-stage pipeline to achieve close to single cycle execution. A new instruction can be started in every clock cycle; the execution engine actually processes five instructions concurrently (in various pipeline stages). The five parts of the pipeline are the Instruction Fetch, Read register, ALU execution, Memory, and Write Back stages. Figure 2 shows the concurrency achieved by the RISController family pipeline.

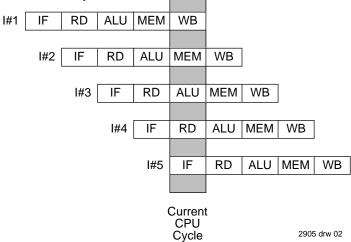


Figure 2. RISController Family 5-Stage Pipeline

System Control Co-Processor

The R3041 also integrates on-chip a System Control Coprocessor, CP0. CP0 manages the exception handling capability of the R3041, the virtual to physical address mapping of the R3041, and the programmable bus interface capabilities of the R3041. These topics are discussed in subsequent sections.

The R3041 does not include the optional TLB found in other members of the RISController family, but instead performs the same virtual to physical address mapping of the base version of the RISController family. These devices still support distinct kernel and user mode operation, but do not require page management software or an on-chip TLB, leading to a simpler software model and a lower-cost processor.

The memory mapping used by these devices is illustrated in Figure 3. Note that the reserved address spaces shown are for compatibility with future family members; in the current family members, references to these addresses are translated in the same fashion as their respective segments, with no traps or exceptions taken.

When using the base versions of the architecture, the system designer can implement a distinction between the user tasks and the kernel tasks, without having to execute page management software. This distinction can take the form of physical memory protection, accomplished by ad-

dress decoding, or in other system specific forms. In systems which do not wish to implement memory protection, and wish to have the kernel and user tasks operate out of a single unified memory space, upper address lines can be ignored by the address decoder, and thus all references will be seen in the lower gigabyte of the physical address space.

The R3041 adds additional resources into the on-chip CP0. These resources are detailed in the R3041 User's Manual. They allow kernel software to directly control activity of the processor internal resources and bus interface, and include:

- Cache Configuration Register: This register controls the data cache block size and miss refill algorithm.
- Bus Control Register: This register controls the behavior of the various bus interface signals.
- Count and Compare Registers: Together, these two registers implement a programmable 24-bit timer, which can be used for DRAM refresh or as a general purpose timer.
- Port Size Control Register: This register allows the kernel to indicate the port width of reads and writes to various sub-regions of the physical address space. Thus, the R3041 can interface directly with 8-, 16-, and 32-bit memory ports, including a mix of sizes, for both instruction and data references, without requiring additional external logic.

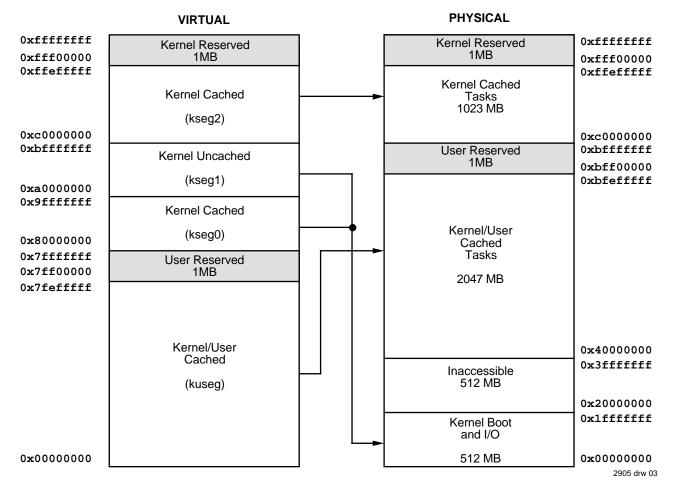


Figure 3. Virtual to Physical Mapping of Base Architecture Versions

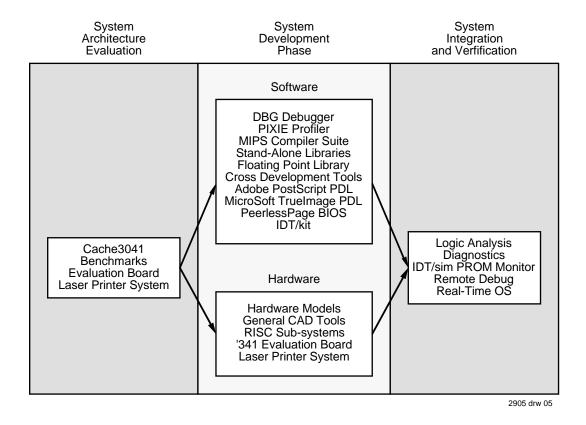
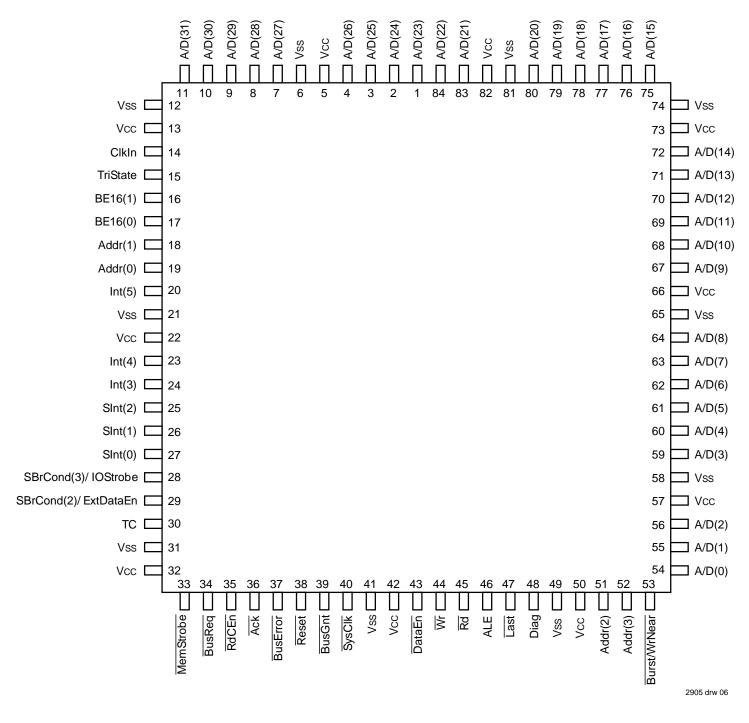
DEVELOPMENT SUPPORT

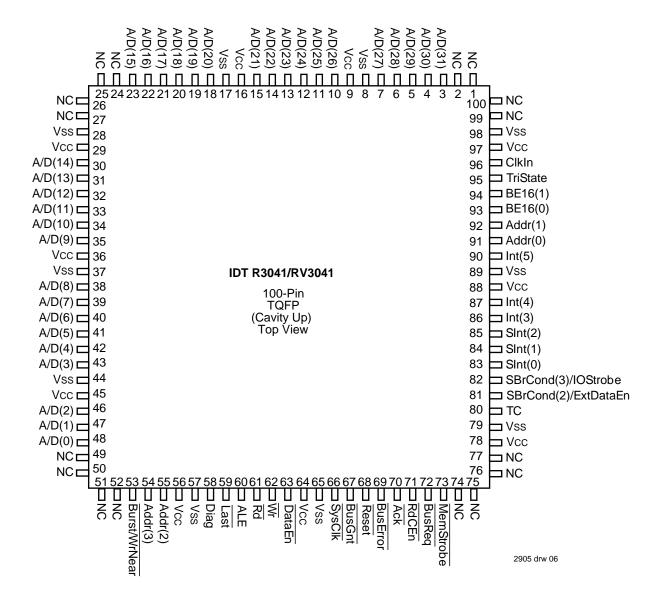
The IDT RISController family is supported by a rich set of development tools, ranging from system simulation tools through PROM monitor and debug support, applications software and utility libraries, logic analysis tools, and sub-system modules.

Figure 5 is an overview of the system development process typically used when developing R3041 applications. The RISController family is supported in all phases of project development. These tools allow timely, parallel development of hardware and software for RISController family based applications, and include tools such as:

Optimizing compilers from MIPS Technology, the acknowl-

- edged leader in optimizing compiler technology.
- Cross development tools, available in a variety of development environments.
- The high-performance IDT floating point emulation library software.
- The IDT Evaluation Board, which includes RAM, EPROM, I/O, and the IDT PROM Monitor.
- IDT Laser Printer System boards, which directly drive a lowcost print engine, and runs Adobe PostScript[™] Page Description Language
- Adobe PostScript Page Description Language running on the IDT RISController family.
- The IDT/sim[™] PROM Monitor, which implements a full PROM monitor (diagnostics, remote debug support, peek/


Figure 5. R3041 Development Environment

PIN CONFIGURATIONS

84-Pin PLCC/ Top View (Cavity Down)

PIN CONFIGURATIONS

PIN DESCRIPTION

about the transfer is presented to the memory system to be captured using the ALE output. This information consists of: Address(31:4): The high-order address for the transfer is presented on A/D(31:4). BE(3:0): These strobes indicate which bytes of the 32-bit bus will be involved the transfer, and are presented on A/D(3:0). Bindicates that A/D(31:24) will be used, and BE(0) corresponds to A/D(7:0). These strobes are only valid for accesses to 32-bit whemenory ports. No that BE(3:0) can be held in-active during reads by setting the appropria bit of CP0; thus when latched, these signals can be directly used as Writer (3:0): During the second phase, these signals are the data bus for the transaction. Data(31:0): During write cycles, the bus receives the data from the external resource, either a single data transaction or in a burst of four words, and places into the on-chip read buffer. The byte lanes used during the transfer are a function of the datum siz the memory port width, and the system byte-ordering. Addr(3:0) O Low Address (3:0) A 4-bit bus which indicates which word/haltword/byte is currently expected by the memory port. Processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer for 16-bit port widths, all of Addr(3:0) are valid. These address for 16-bit port widths, all of Addr(3:0) are valid. These address since shays contain the address of the current datum to be transferred. In writes and single datum reads, the addresses of the addresses of the addresses of the current datum to be transferred. In writes and single datum reads, the addresses of the addresses in the transfer are a function of the transfer are a function of the datum is wider than the target memory port. For quad word reads, these outputs function as a counter starting at '0000', and incrementing according to the width of the memory port. During Reser, the Addr(3:0) pins act as Reset Configuration Mode bit inputs for the BootProm16, BootProm6, Reserveditigh, and ExtAddrificial options. The R3041 Addr(1:	PIN NAME	1/0		DESCRIPTION								
about the transfer is presented to the memory system to be captured using the ALE output. This information consists of: Address(31:4): The high-order address for the transfer is presented on A/D(31:4). BE(3:0): These strobes indicate which bytes of the 32-bit bus will be involved the transfer, and are presented on A/D(31). Bit of decay that A/D(31:24) will be used, and BE(0) corresponds to A/D(7:0). These strobes are only valid for accesses to 32-bit will memory ports. No that BE(3:0) can be held in-active during reads by setting the appropria bit of CPC; thus when latched, these signals can be directly used as Writer (A) and be appropriate to the data to be stored and is drive from the internal write buffer. Data(31:0): During the second phase, those signals are the data bus for the transaction. Data(31:0): During write cycles, the bus receives the data from the external resource, either a single data transaction or in a burst of four words, and places into the on-chip read buffer. The byte lanse used during the transfer are a function of the datum size the memory port width, and the system byte-ordering. Addr(3:0) O Low Address (3:0) A 4-bit bus which indicates which word/haltword/byte is currently expected by the processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer for 16-bit port widths, only Addr(3:2) is valid during the transfer for 16-bit port widths, only Addr(3:2) is valid during the transfer for 16-bit port widths, only Addr(3:2) is valid during the transfer for 16-bit port widths, only Addr(3:2) is valid during the transfer of 16-bit port widths, only Addr(3:2) is valid during the transfer of 16-bit port widths, only Addr(3:2) is valid during the transfer of 16-bit port widths, only Addr(3:2) is valid during the transfer of 16-bit port widths, only Addr(3:2) is valid during the transfer of 16-bit port widths, only Addr(3:2) is valid during the transfer of 16-bit port widths, and 16-bit port widths, and 16-bit port widths, and 16-bit port widths, and 16-bit port wi	A/D(31:0)	I/O	in one phase, and which is us									
BE(3:0): These strobes indicate which bytes of the 32-bit bus will be involved the transfer, and are presented on AD(3:0). BE(3) indicates that AD(3:1-2) will be used, and BE(0) corresponds to AD(7:0). These strobes are only valid for accesses to 32-bit wide memory ports. Not that BE(3:0) can be held in-active during reads by setting the appropria bit of CP0; thus when latched, these signals can be directly used as Writenable strobes. During the second phase, these signals are the data bus for the transaction.			about the transfer is present									
the transfer, and are presented on Ar(D(3:0), BE(3) indicates that AD(3:124) will be used, and BE(0) corresponds to AV(D(7:0). These strobes are only valid for accesses to 32-bit wide memory ports. No hat BE(3:0) can be held in-active during reads by setting the appropria bit of CP0; thus when latched, these signals can be directly used as Wife Enable strobes. During the second phase, these signals are the data bus for the transaction. Data(31:0): During write cycles, the bus contains the data to be stored and is drive from the internal write buffer. On read cycles, the bus receives the data from the external resource, either a single data transaction or in a burst of four words, and places into the on-chip read buffer. The byte lanes used during the transfer are a function of the datum size the memory port width, and the system byte-ordering. Addr(3:0) O Low Address (3:0) A 4-bit bus which indicates which word/halfword/byte is currently expected by the processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, only Addr(3:1) are valid; for 8-bit port widths, all of Addr(3:0) are valid. These address lines always contain the address of the current datum to be transferred. In writes and single dature dash, the address of the current datum to be transferred. In writes and single dature reads, the addresses initial output the specific target address, and will increment if the size of the datum is wider than the target memory port. For quad word reads, these outputs function as a counter starting at '10000', and incrementing according to the width of the memory port. During Reset, the Addr(3:0) pins act as Reset Configuration Mode bit inputs for the BootProm16, BootProm8, Reservedfield, and ExtAddrHold options. The R3041 Addr(1:0) output pins are designated as the unconnected Rsvd(1:0) pins in the R3051 and R3081. Diag Diagnostic Pin. This output indicates whether the current bus read transaction is due to an on-chip cache miss and whether the read is an instru			Address(31:4):	The high-order address for the transfer is presented on A/D(31:4).								
Data(31:0): During write cycles, the bus contains the data to be stored and is drive from the internal write buffer. On read cycles, the bus receives the data from the external resource, either a single data transaction or in a burst of four words, and places into the on-chip read buffer. The byte lanes used during the transfer are a function of the datum siz the memory port width, and the system byte-ordering. Addr(3:0) O Low Address (3:0) A 4-bit bus which indicates which word/halfword/byte is currently expected by the processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, only Addr(3:0) are valid; for 8-bit port widths, all of Addr(3:0) are valid; for 8-bit port widths, all of Addr(3:0) are valid; for the specific target address, and will increment if the size of the datum is wider than the target memory port. For quad word reads, these outputs function as a counter starting at '0000', and incrementing according to the width of the memory port. During Reset, the Addr(3:0) pins act as Reset Configuration Mode bit inputs for the BootProm16, BootProm8, ReservedHigh, and ExtRddrHold options. The R3041 Addr(1:0) output pins are designated as the unconnected Rsvd(1:0) pins in the R3051 an R3081. Diag O Diagnostic Pin. This output indicates whether the current bus read transaction is due to an on-chip cache miss and whether the read is an instruction or data. It is time multiplexed as described belowed than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal indicates that the A/D bus contains valid address for the transfer, typica by using transparent latches. DataEn O Data Enable: T			BE(3:0):	A/D(31:24) will be used, and $\overline{BE(0)}$ corresponds to A/D(7:0). These strobes are only valid for accesses to 32-bit wide memory ports. Note that $\overline{BE(3:0)}$ can be held in-active during reads by setting the appropriate bit of CP0; thus when latched, these signals can be directly used as Write								
from the internal write buffer. On read cycles, the bus receives the data from the external resource, either a single data transaction or in a burst of four words, and places into the on-chip read buffer. The byte lanes used during the transfer are a function of the datum siz the memory port width, and the system byte-ordering. Addr(3:0) O Low Address (3:0) A 4-bit bus which indicates which word/halfword/byte is currently expected by the processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, on Addr(3:1) are valid. These address sines always contain the address of the current datum to be transferred. In writes and single datum reads, the addresses initial output the specific target address, and will increment if the size of the datum is wider than the target memory port. For quad word reads, these outputs function as a counter starting at '0000', and incrementing according to the width of the memory port. During Reset, the Addr(3:0) pins act as Reset Configuration Mode bit inputs for the BootProm16, BootProm8, ReservedHigh, and ExtAddrHold options. The R3041 Addr(1:0) output pins are designated as the unconnected Rsvd(1:0) pins in the R3051 ar R3081. Diag O Diagnostic Pin. This output indicates whether the current bus read transaction is due to an on-chip cache miss and whether the read is an instruction or data. It is time multiplexed as described belowed the start of the bust reads and the start of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time oth than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by us			During the second phase, th	nese signals are the data bus for the transaction.								
Addr(3:0) O Low Address (3:0) A 4-bit bus which indicates which word/halfword/byte is currently expected by the processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, only Addr(3:0) are valid. These address lines always contathe address of the current datum to be transferred. In writes and single datum reads, the addresses initia output the specific target address, and will increment if the size of the datum is wider than the target memory port. For quad word reads, these outputs function as a counter starting at '0000', and incrementing according to the width of the memory port. During Reset, the Addr(3:0) pins act as Reset Configuration Mode bit inputs for the BootProm16, BootProm8, ReservedHigh, and ExtAddrHold options. The R3041 Addr(1:0) output pins are designated as the unconnected Rsvd(1:0) pins in the R3051 are R3081. Diag O Diagnostic Pin. This output indicates whether the current bus read transaction is due to an on-chip cache miss and whether the read is an instruction or data. It is time multiplexed as described below Cached/Uncached: During the phase in which the A/D bus presents address information, the pin is an active high output which indicates whether or not the current read is a result of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEnable: This signal indicates that the A/D bus is no longer being driven by the processor during			Data(31:0):	On read cycles, the bus receives the data from the external resource, in either a single data transaction or in a burst of four words, and places it								
processor. For 32-bit port widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, or Addr(3:1) are valid; for 8-bit port widths, all of Addr(3:0) are valid. These address intense always contains the address of the current dutum to be transferred. In writes and single datum reads, the addresses initial output the specific target address, and will increment if the size of the datum is wider than the target memory port. For quad word reads, these outputs function as a counter starting at '0000', and incrementing according to the width of the memory port. I(1) During Reset, the Addr(3:0) pins act as Reset Configuration Mode bit inputs for the BootProm16, BootProm8, ReservedHigh, and ExtAddrHold options. The R3041 Addr(1:0) output pins are designated as the unconnected Rsvd(1:0) pins in the R3051 at R3081. Diag O Diagnostic Pin. This output indicates whether the current bus read transaction is due to an onchip cache miss and whether the read is an instruction or data. It is time multiplexed as described below the pins are active high output which indicates whether or not the current ead is a result of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D:				The byte lanes used during the transfer are a function of the datum size, the memory port width, and the system byte-ordering.								
BootProm8, ReservedHigh, and ExtAddrHold options. The R3041 Addr(1:0) output pins are designated as the unconnected Rsvd(1:0) pins in the R3051 ar R3081. Diag O Diagnostic Pin. This output indicates whether the current bus read transaction is due to an onchip cache miss and whether the read is an instruction or data. It is time multiplexed as described below Cached/Uncached: During the phase in which the A/D bus presents address information, the pin is an active high output which indicates whether or not the current read is a result of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus tran	Addr(3:0)	0	processor. For 32-bit port w Addr(3:1) are valid; for 8-bit the address of the current dat output the specific target ad memory port. For quad wor	widths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, only port widths, all of Addr(3:0) are valid. These address lines always contain turn to be transferred. In writes and single datum reads, the addresses initially dress, and will increment if the size of the datum is wider than the target dreads, these outputs function as a counter starting at '0000', and								
Diag O Diagnostic Pin. This output indicates whether the current bus read transaction is due to an onchip cache miss and whether the read is an instruction or data. It is time multiplexed as described below Cached/Uncached: During the phase in which the A/D bus presents address information, the pin is an active high output which indicates whether or not the current read is a result of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typical by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus		I (1)										
Cached/Uncached: During the phase in which the A/D bus presents address information, the pin is an active high output which indicates whether or not the currer read is a result of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus												
pin is an active high output which indicates whether or not the currer read is a result of a cache miss. The value of this pin at this time oth than in read cycles is undefined. I/D: A high at this time indicates an instruction reference, and a low indicate a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus	Diag	0	•									
a data reference. The value of this pin at this time other than in read cycles is undefined. The R3041 Diag output pin is designated as the Diag(1) output pin in the R3051 and R3081. ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus			Cached/Uncached:	During the phase in which the A/D bus presents address information, this pin is an active high output which indicates whether or not the current read is a result of a cache miss. The value of this pin at this time other than in read cycles is undefined.								
ALE O Address Latch Enable: Used to indicate that the A/D bus contains valid address information for the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus tran			I∕Ō:	A high at this time indicates an instruction reference, and a low indicates a data reference. The value of this pin at this time other than in read cycles is undefined.								
the bus transaction. This signal is used by external logic to capture the address for the transfer, typica by using transparent latches. DataEn O Data Enable: This signal indicates that the A/D bus is no longer being driven by the processor during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus			The R3041 Diag output pin	is designated as the Diag(1) output pin in the R3051 and R3081.								
during read cycles, and thus the external memory system may enable the drivers of the memory system onto this bus without having a bus conflict occur. During write cycles, or when no bus	ALE	0	the bus transaction. This sig	nal is used by external logic to capture the address for the transfer, typically								
action is occurring, this signal is negated, thus disabling the external memory drivers.	system onto th	during in	read cycles, and thus the external out having a bus conflict occur. Do	memory system may enable the drivers of the memory uring write cycles, or when no bus trans-								

NOTE:

Reset Configuration Mode bit input when Reset is asserted, normal signal function when Reset is de-asserted.

PIN DESCRIPTION (Continued):

	I/O	DESCRIPTION
Burst/ WrNear	0	Burst Transfer/Write Near: On read transactions, the Burst signal indicates that the current bus read is requesting a block of four contiguous words from memory. This signal is asserted only in read cycles due to cache misses; it is asserted for all I-Cache miss read cycles, and for D-Cache miss read cycles if the 4-word data block refill option is selected in the CP0 Cache Config Register.
		On write transactions, the WrNear output tells the external memory system that the bus interface unit is performing back-to-back write transactions to an address within the same 256 byte page as the prior write transaction. This signal is useful in memory systems which employ page mode or static column DRAMs, and allows nearby writes to be retired quickly.
Rd	0	Read: An output which indicates that the current bus transaction is a read.
Wr	0	Write: An output which indicates that the current bus transaction is a write.
Ack	I	Acknowledge: An input which indicates to the device that the memory system has sufficiently processed the bus transaction. On write transactions, this signal indicates that the CPU may either progress to the next data item (for mini-burst writes of wide datums to narrow memories), or terminate the write cycle. On read transactions, this signal indicates that the memory system has sufficiently processed the read, and that the processor core may begin processing the data from this read transfer.
RdCEn	I	Read Buffer Clock Enable: An input which indicates to the device that the memory system has placed valid data on the A/D bus, and that the processor may move the data into the on-chip Read Buffer.
SysClk	0	System Reference Clock: An output from the CPU which reflects the timing of the internal processor "System" clock. This clock is used to control state transitions in the read buffer, write buffer, memory controller, and bus interface unit.
BusReq	Ι	DMA Arbiter Bus Request: An input to the device which requests that the CPU tri-state its bus interface signals so that they may be driven by an external master. The negation of this input relinquishes mastership back to the CPU.
BusGnt	0	DMA Arbiter Bus Grant. An output from the CPU used to acknowledge that a BusReq has been detected, and that the bus is relinquished to the external master.
		The R3041 adds an additional DMA protocol, under the control of CP0. If the DMA Protocol is enabled, the R3041 can request that the external master relinquish bus mastership back to the processor by negating the BusGnt output early, and waiting for the BusReq input to be negated.
SBrCond(3)/ IOStrobe	I/O	Branch Condition Port/IO Strobe: The use of this signal depends on the setting of various bits of the CP0 Bus Control register. If BrCond mode is selected, this input is logically connected to CpCond(3), and can be used by the branch on co-processor condition instructions as an input port. The SBrCond(3) input has special internal logic to synchronize the input, and thus may be driven by asynchronous agents.
		If this pin is selected to function as $\overline{\text{IOStrobe}}$, it may be asserted as an output on reads, writes, or both, as programmed into CP0. This strobe asserts in the second clock cycle of a transfer, and thus can be used to strobe various control signals on the bus interface.
SBrCond(2)/ ExtDataEn	I/O	Branch Condition Port/Extended Data Enable: The use of this signal depends on the settings in the CP0 Bus Control register. If BrCond mode is selected, this input is logically connected to CpCond(2), and can be used by the branch on co-processor condition instructions as an input port. The SBrCond(2) input has special internal logic to synchronize the input, and thus may be driven by asynchronous agents.
		If this pin is selected to function as Extended Data Enable, it may be asserted as an output on reads, writes, or both, as programmed into CP0. This strobe can be used as an extended data enable strobe, in that it is held asserted for one-half clock cycle after the negation of \overline{Rd} or \overline{Wr} . This signal may typically be used as a write enable control line for transceivers, as a write line for I/O, or as an address mux select for DRAMs.
MemStrobe	0	Memory Strobe: This active low output pulses low for each data read or written, as configured in the CP0 Bus Control register. Thus, it can be used as a read strobe, write strobe, or both, for SRAM type memories or for I/O devices.
		The R3041 MemStrobe output pin is designated as the BrCond(0) input pin in the R3051 and R3081.

PIN DESCRIPTION (Continued):

PIN NAME	1/0	DESCRIPTION
BE16(1:0)	0	Byte Enable Strobes for 16-bit Memory Port: These active low outputs are the byte lane strobes for accesses to 16-bit wide memory ports; they are not necessarily valid for 8- or 32-bit wide ports. If BE16(1) is asserted, then the most significant byte (either D(31:24) or D(15:8), depending on system endianness) is going to be used in this transfer. If BE16(0) is asserted, the least significant byte (D(23:16) or D(7:0)) will be used.
		$\overline{\text{BE16}(1:0)}$ can be held inactive (masked) during read transfers, according to the programming of the CP0 Bus Control register.
	[(1)	During $\overline{\text{Reset}}$, the $\overline{\text{BE16}(1:0)}$ act as Reset Configuration Mode bit inputs for two ReservedHigh options.
		The $\overline{\text{BE16}(1:0)}$ output pins are designated as the unconnected Rsvd(3:2) pins in the R3051 and R3081.
Last	0	Last Datum in Mini-Burst: This active low output indicates that this is the last datum transfer in a given transaction. It is asserted after the next to last \overline{RdCEn} (reads) or \overline{Ack} (writes), and is negated when \overline{Rd} or \overline{Wr} is negated.
		The \overline{Last} output pin is designated in the R3051 and R3081 as the Diag(0) output pin.
TC	0	Terminal Count: This is an active low output from the processor which indicates that the on-chip timer has reached its terminal count. It will remain low for either 1.5 clock cycles, or until software resets the timer, depending on the mode selected in the CP0 Bus Control register. Thus, the on-chip timer can function either as a free running timer for system functions such as DRAM refresh, or can operate as a software controlled time-slice timer, or real-time clock.
		The $\overline{\text{TC}}$ output pin is designated in the R3051 as the BrCond(1) input pin, and in the R3081 as the Run pin output.
BusError	-	Bus Error: Input to the bus interface unit to terminate a bus transaction due to an external bus error. This signal is only sampled during read and write operations. If the bus transaction is a read operation, then the CPU will take a bus error exception.
Int(5:3) SInt(2:0)	1	Processor Interrupt: During normal operation, these signals are logically the same as the Int(5:0) signals of the R3000A. During processor reset, these signals perform mode initialization of the CPU, but in a different (simpler) fashion than the interrupt signals on the original R3000A.
	I ⁽¹⁾	During Reset, Int(3) and SInt(0) act as Reset Configuration Mode bit inputs for the AddrDisplayAndForceCacheMiss and BigEndian options.
		There are two types of interrupt inputs: the SInt inputs are internally synchronized by the processor, and may be driven by an asynchronous external agent. The direct interrupt inputs are not internally synchronized, and thus must be externally synchronized to the CPU. The direct interrupt inputs have one cycle lower latency than the synchronized interrupts.
ClkIn	1	Master Clock Input: This is a double frequency input used to control the timing of the CPU.
Reset	I	Master Processor Reset: This signal initializes the CPU. Reset initialization mode selection is performed during the last cycle of Reset.
TriState		Tri-State: This input to the R3041 requests that the R3041 tri-state all of its outputs. In addition to those outputs tri-stated during DMA, tri-state will cause SysClk, TC, and BusGnt to tri-state. This signal is intended for use during board testing and emulation during debug and board manufacture.
		The TriState input pin is designated as the unconnected Rsvd(4)pin in the R3051 and R3081.
Vcc	I	Power: These inputs must be supplied with the rated supply voltage (VCC). All Vcc inputs must be connected to insure proper operation.
Vss		Ground: These inputs must be connected to ground (GND). All Vss inputs must be connected to insure proper operation.

NOTE:

Reset Configuration Mode bit input when Reset is asserted, normal signal function when Reset is de-asserted.

ABSOLUTE MAXIMUM RATINGS^(1, 3) R3041

Symbol	Rating	Commercial	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Tc	Operating Case Temperature	0 to +85	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
VIN	Input Voltage	-0.5 to +7.0	V

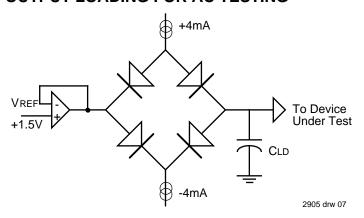
NOTES:

2905 tbl 06

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
 may cause permanent damage to the device. This is a stress rating only
 and functional operation of the device at these or any other conditions
 above those indicated in the operational sections of this specification is not
 implied. Exposure to absolute maximum rating conditions for extended
 periods may affect reliability.
- 2. VIN minimum = -3.0V for pulse width less than 15ns. VIN should not exceed Vcc +0.5 Volts.
- 3. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.

AC TEST CONDITIONS R3041

Symbol	Parameter	Min.	Max.	Unit
ViH	Input HIGH Voltage	3.0	_	V
VIL	Input LOW Voltage	_	0	V
Vihs	Input HIGH Voltage	3.5	_	V
VILS	Input LOW Voltage	_	0	V


2905 tbl 08

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Commercial	0°C to +85°C	0V	5.0 ±5%
	(Case)		

2905 tbl 07

OUTPUT LOADING FOR AC TESTING

Signal	Cld
All Signals	25 pF

2905 tbl 09

DC ELECTRICAL CHARACTERISTICS R3041 — (Tc = 0° C to +85°C, Vcc = +5.0V ±5%)

			16.67	16.67MHz		MHz	25MHz		33MHz		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -4mA	3.5	_	3.5	_	3.5	_	3.5		V
Vol	Output LOW Voltage	Vcc = Min., IoL = 4mA	_	0.4	_	0.4	_	0.4		0.4	V
VIH	Input HIGH Voltage ⁽³⁾	_	2.0	_	2.0	_	2.0	_	2.0	ų	V
VIL	Input LOW Voltage ⁽¹⁾	_	_	0.8	_	0.8	_	0.8	_	0.8	V
VIHS	Input HIGH Voltage ^(2,3)	_	3.0	_	3.0	_	3.0	_	3.0		V
VILS	Input LOW Voltage ^(1,2)	_	_	0.4	_	0.4	_	0.4		0.4	V
CIN	Input Capacitance ⁽⁴⁾	_	_	10	_	10	_	10		10	pF
Соит	Output Capacitance ⁽⁴⁾	_	_	10	_	10	_	10	<u></u>	10	pF
Icc	Operating Current	Vcc = 5V, Tc = 25°C	_	225	_	250	_	300	-	370	mA
Iн	Input HIGH Leakage	VIH = VCC	_	100	_	100	_	100	-(100	μΑ
lı∟	Input LOW Leakage	VIL = GND	-100	_	-100	_	-100	_	-100		μΑ
loz	Output Tri-state Leakage	VoH = 2.4V, VoL = 0.5V	-100	100	-100	100	-100	100	-100	100	μΑ

NOTES:

- 1. VIL Min. = −3.0V for pulse width less than 15ns. VIL should not fall below −0.5 volts for larger periods.
- 2. Vihs and Vils apply to ClkIn and Reset.
- 3. Vih should not be held above Vcc + 0.5 volts.
- 4. Guaranteed by design.

AC ELECTRICAL CHARACTERISTICS R3041 (1, 2, 3)— (Tc = 0° C to +85°C, Vcc = +5.0V \pm 5%)

			16.6	16.67MHz		MHz	z 25MHz		33MHz		
Symbol	Signals	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t1	BusReq, Ack, BusError, RdCEn	Set-up to SysClk rising	11	_	8	_	5.5	_	5.5	7	ns
t1a	A/D	Set-up to SysClk falling	12	_	9	_	7	_	7	+	ns
t2	BusReq, Ack, BusError, RdCEn	Hold from SysClk rising	4	_	3	_	2.5	_	2.5		ns
t2a	A/D	Hold from SysClk falling	2	_	2	_	1	_	1	7	ns
t3	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Tri-state from SysClk rising (after driven condition)		13	_	10	_	10		10	ns
t4	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Driven from SysClk falling (after tri-state condition)	_	13	_	10	_	10		10	ns
t5	BusGnt	Asserted from SysClk rising	_	10	_	8	_	7	_	7	ns
t6	BusGnt	Negated from SysClk falling		10	_	8	_	7	-	7	ns
t7	Wr, Rd, Burst/WrNear, TC	Valid from SysClk rising		8	_	6	_	5	_	5	ns
t7a	A/D	Valid from SysClk rising	_	12	_	9	_	8	+	8	ns
t7b	Last	Valid from SysClk rising	1	12	_	9	_	8	1	8	ns
t8	ALE	Asserted from SysClk rising	1	5	_	4	_	4	_	4	ns
t9	ALE	Negated from SysClk falling		5	_	4	_	4	+	4	ns
t10	A/D	Hold from ALE negated	2	_	2	_	2	_	1.5		ns
t11	DataEn	Asserted from SysClk	_	19	_	15	_	15		15	ns
t12	DataEn	Asserted from A/D tri-state ⁽⁴⁾	0	_	0	_	0	_	0		ns
t14	A/D	Driven from SysClk rising(4)	0	_	0	_	0	_	0	7	ns
t15	Wr, Rd, DataEn, Burst/WrNear, Last, TC	Negated from SysClk falling	_	9	_	7	_	6		6	ns
t16	Addr(3:0), BE 16(1:0)	Valid from SysClk		11	_	8	_	7	_	7	ns
t17	Diag	Valid from SysClk	_	15	_	12	_	11	+	11	ns
t18	A/D	Tri-state from SysClk	_	13	_	10	_	10		10	ns
t19	A/D	SysClk to data out	_	16	_	13	_	12	+	12	ns
t20	ClkIn	Pulse Width High	12		10	_	8	_	6.5	_	ns
t21	ClkIn	Pulse Width Low	12	_	10	_	8	_	6.5		ns
t22	ClkIn	Clock Period	30	250	25	250	20	250	15	250	ns
t23	Reset	Pulse Width from Vcc valid	200		200	_	200	_	200	_	μs
t24	Reset	Minimum Pulse Width	32	_	32	_	32	_	32	_	sys
t25	Reset	Set-up to SysClk falling	8	_	6	_	5	_	5	+	ns
t26	Īnt	Mode set-up to Reset rising	8	_	6	_	5	_	5	+	ns
t27	Īnt	Mode hold from Reset rising	2.5	_	2.5	_	2.5	_	2.5	+	ns
t28	SInt, SBrCond	Set-up to SysClk falling	8	_	6	_	5	_	5	_	ns
t29	Slnt, SBrCond	Hold from SysClk falling	4	_	3	_	3	_	3	1	ns
t30	Int, BrCond	Set-up to SysClk falling	8	_	6	_	5	_	5		ns
t31	Int, BrCond	Hold from SysClk falling	4	_	3	_	3	_	3	4	ns
tsys	SysClk	Pulse Width	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	ns
t32	SysClk	Clock High Time	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	ns
t33	SysClk	Clock Low Time	t22 - 2			t22 + 2				_	

2905 thl 11

DC ELECTRICAL CHARACTERISTICS RV3041 — (Tc = 0° C to +85°C, Vcc = +3.3V ±5%)

			16.67	16.67MHz		MHz	25MHz		33MHz	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Min. Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -4mA	2.4	_	2.4	_	2.4	_	2.4 —	٧
Vol	Output LOW Voltage	Vcc = Min., IoL = 4mA	_	0.4	_	0.4	_	0.4	- 0.4	٧
VIH	Input HIGH Voltage ⁽³⁾	_	2.0	_	2.0	_	2.0	_	2.0 —	V
VIL	Input LOW Voltage ⁽¹⁾	_	_	0.8	_	0.8	_	0.8	0.8	V
Vihs	Input HIGH Voltage ^(2,3)	_	2.5	_	2.5	_	2.5	_	2.5 —	V
VILS	Input LOW Voltage(1,2)	_	_	0.4	_	0.4	_	0.4	- 0.4	V
CIN	Input Capacitance ⁽⁴⁾	_	_	10	_	10	_	10	10	pF
Соит	Output Capacitance ⁽⁴⁾	_	_	10	_	10	_	10	10	pF
Icc	Operating Current	Vcc = 3.3V, Tc = 25°C	_	130	_	150	_	180	— 225	mA
Iн	Input HIGH Leakage	VIH = VCC	_	100	_	100	_	100	- 100	mA
lıL	Input LOW Leakage	VIL = GND	-100	_	-100	_	-100	_	-100 -	mA
loz	Output Tri-state Leakage	VOH = 2.4V, VOL = 0.5V	-100	100	-100	100	-100	100	-100 100	mA

NOTES:

2905 tbl 10

- 1. VIL Min. = -3.0V for pulse width less than 15ns. VIL should not fall below -0.5 volts for larger periods.
- 2. VIHS and VILS apply to ClkIn and Reset.
- 3. VIH should not be held above Vcc + 0.5 volts.
- 4. Guaranteed by design.

AC ELECTRICAL CHARACTERISTICS RV3041 (1, 2, 3)— (Tc = 0°C to +85°C, Vcc = +3.3V ±5%)

			16.6	7MHz	201	ИHz	25N	1Hz	33MHz	
Symbol	Signals	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min. Max.	Unit
t1	BusReq, Ack, BusError, RdCEn	Set-up to SysClk rising	11	_	8	_	5.5	_	5.5 —	ns
t1a	A/D	Set-up to SysClk falling	12	_	9	_	7	_	7 —	ns
t2	BusReq, Ack, BusError, RdCEn	Hold from SysClk rising	4	_	3	_	2.5	_	2.5 —	ns
t2a	A/D	Hold from SysClk falling	2	_	2	_	1	_	1	ns
t3	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Tri-state from SysClk rising (after driven condition)		13	1	10	_	10	10	ns
t4	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Driven from SysClk falling (after tri-state condition)		13	_	10	_	10	10	ns
t5	BusGnt	Asserted from SysClk rising	_	10	_	8	_	7	7	ns
t6	BusGnt	Negated from SysClk falling	_	10		8	_	7	7	ns
t7	Wr, Rd, Burst/WrNear, TC	Valid from SysClk rising	_	8	_	6	_	5	_ 5	ns
t7a	A/D	Valid from SysClk rising	_	12	_	9		8	_ 8	ns
t7b	Last	Valid from SysClk rising	_	12	_	9	_	8	_ 8	ns
t8	ALE	Asserted from SysClk rising	_	5	_	4	_	4	4	ns
t9	ALE	Negated from SysClk falling		5	_	4	_	4	<u> </u>	ns
t10	A/D	Hold from ALE negated	2		2	_	2	_	1.5	ns
t11	DataEn	Asserted from SysClk		19	_	15	_	15	15	ns
t12	DataEn	Asserted from A/D tri-state(4)	0		0	_	0	_	0 —	ns
t14	A/D	Driven from SysClk rising(4)	0	_	0	_	0	_	0 —	ns
t15	Wr, Rd, DataEn, Burst/WrNear, Last, TC	Negated from SysClk falling		9	_	7	_	6	- 6	ns
t16	Addr(3:0), BE 16(1:0)	Valid from SysClk	_	11		8		7	– 7	ns
t17	Diag	Valid from SysClk	_	15	_	12		11	— 11	ns

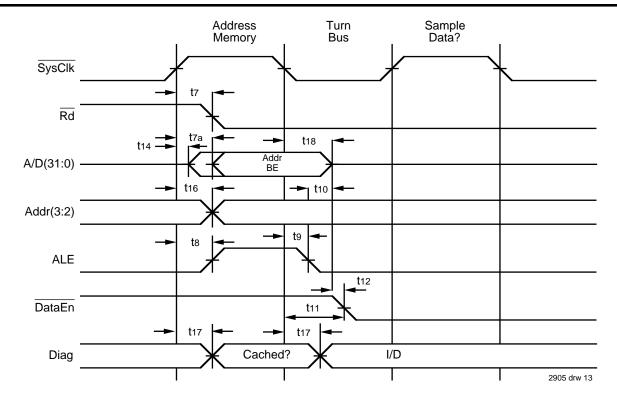


Figure 12(a). Start of Read Timing with Non-Extended Address Hold Option

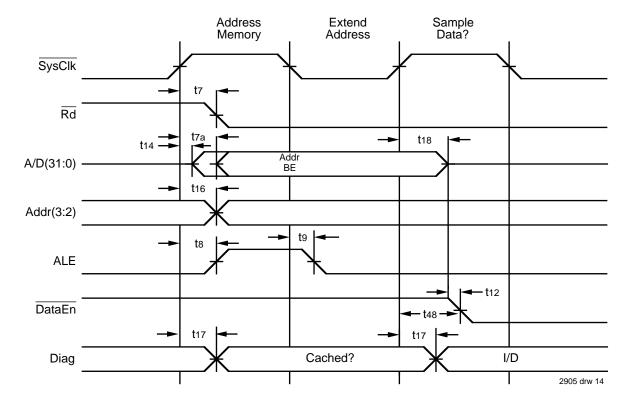


Figure 12(b). Start of Read Timing with Extended Address Hold Option

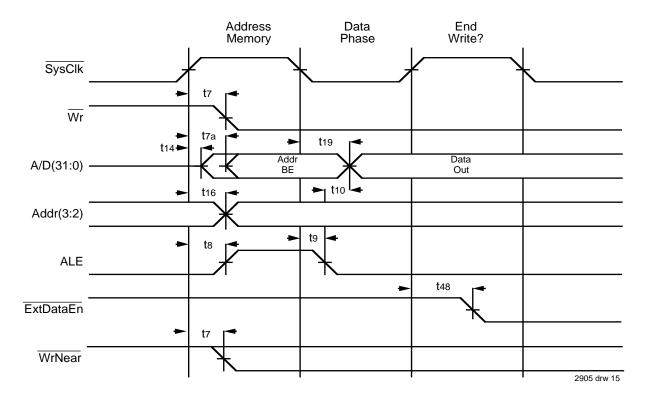


Figure 12(c). Start of Write Timing with Non-Extended Address Hold Option

Figure 12(d). Start of Write Timing with Extended Address Hold Option

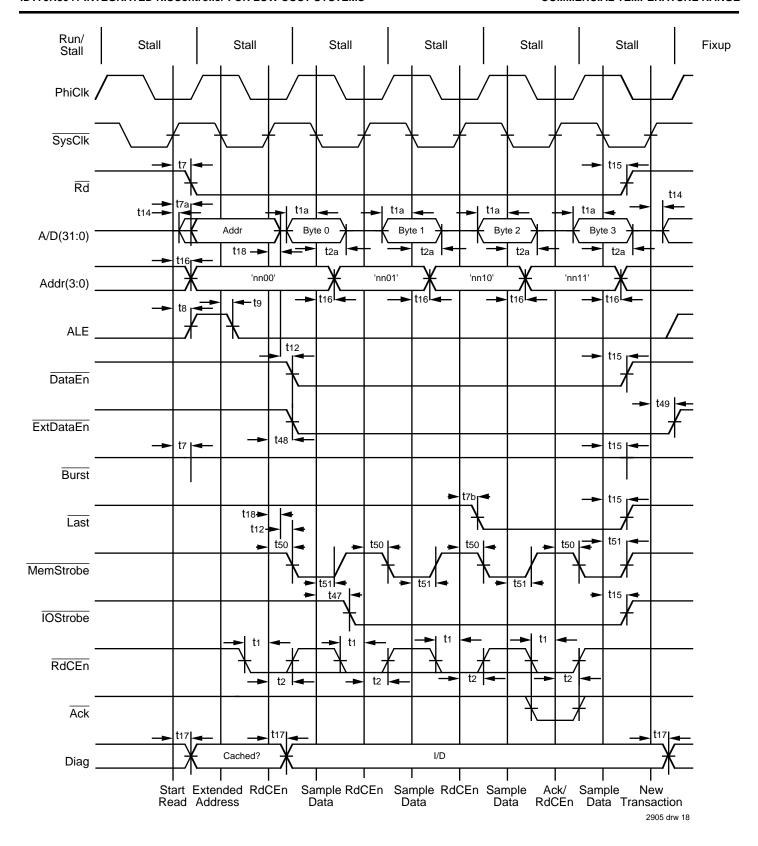


Figure 14. Mini-burst read of 32-bit datum from 8-bit wide memory port

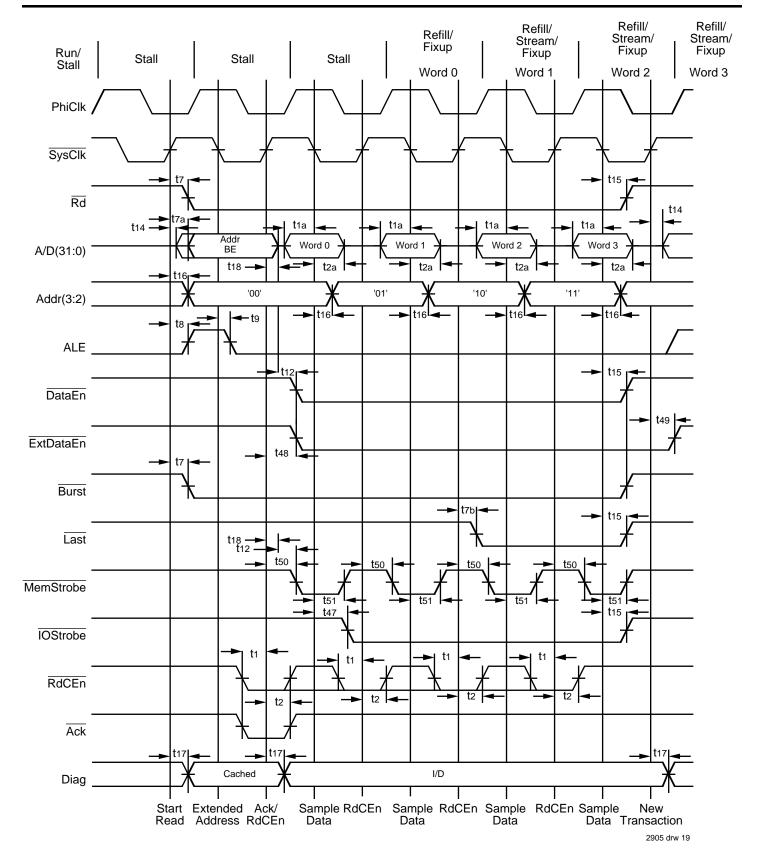


Figure 15. R3041 Quad Word Read

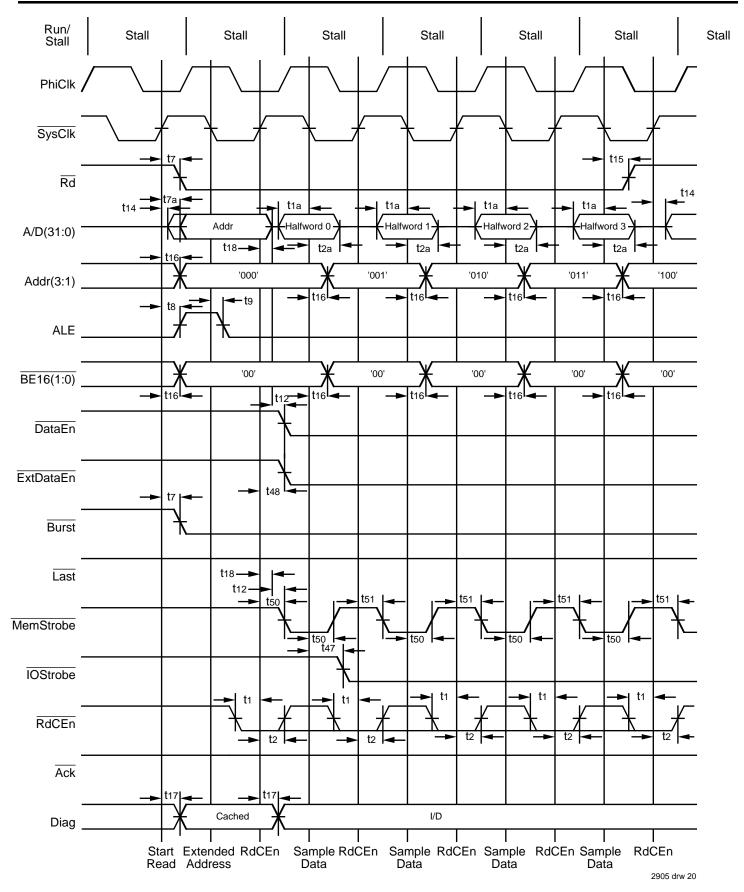


Figure 16(a). Quad Word Read to 16-bit wide Memory Port

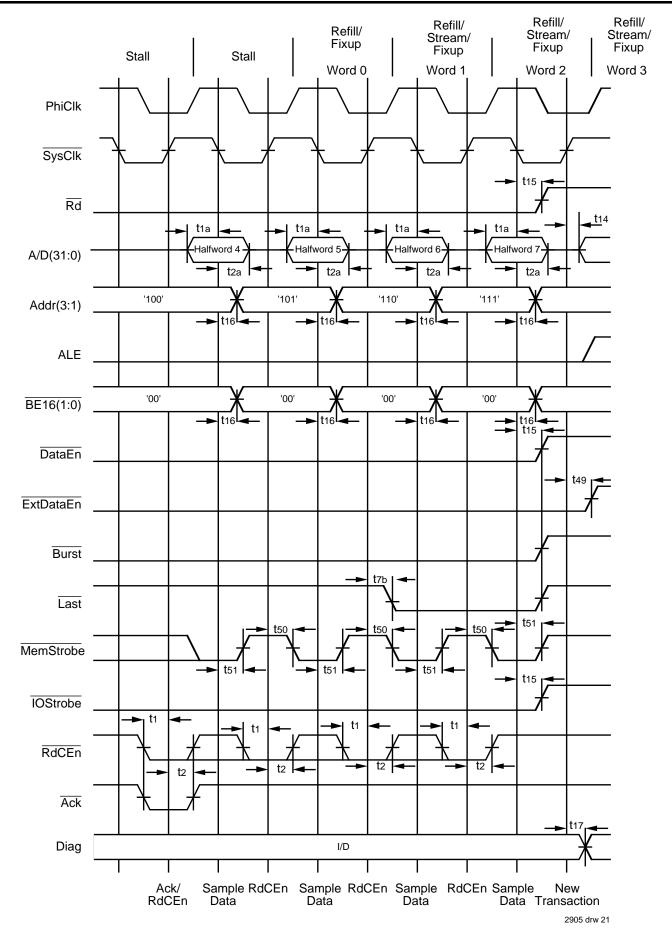


Figure 16(b). End of Quad Word read from 16-bit Wide Memory Port

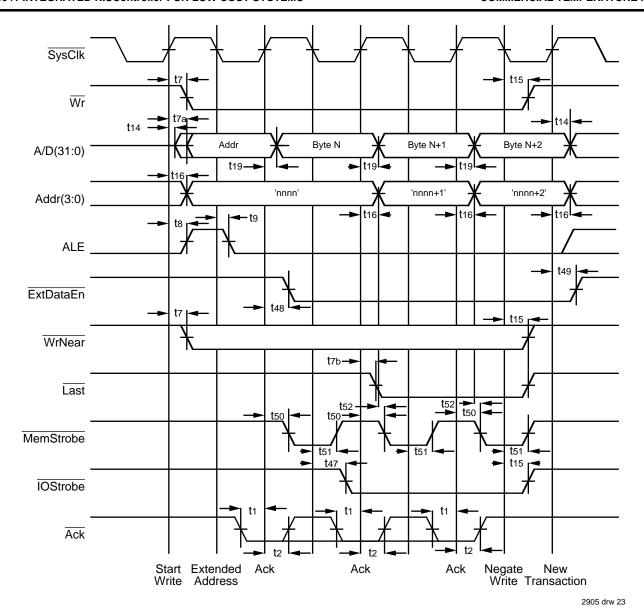


Figure 18. Tri-Byte Mini-burst Write to 8-bit Port

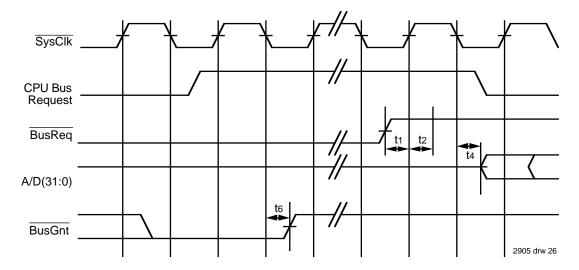


Figure 21. R3041 DMA Pulse Protocol

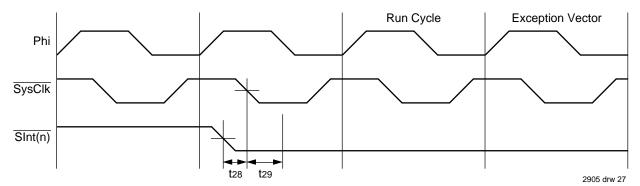


Figure 22. Synchronized Interrupt Input Timing

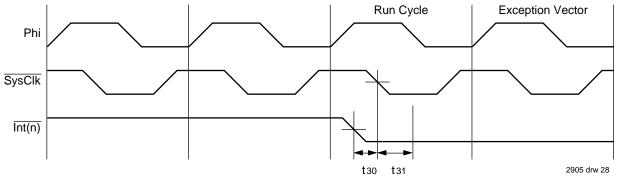


Figure 23. Direct Interrupt Input Timing

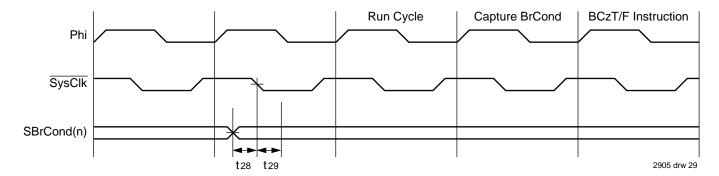
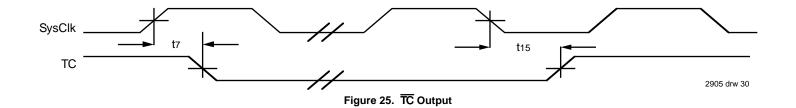
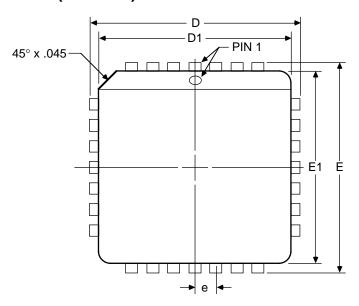
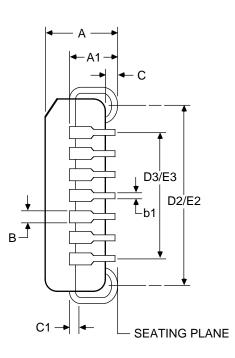





Figure 24. Synchronized Branch Condition Input Timing

84 LEAD PLCC (SQUARE)

2905 drw 31

DWG #	J84-1					
# of Leads	84					
Symbol	Min.	Max.				
А	165	.180				
A1	.095	.115				
В	.026	.032				
b1	.013	.021				
С	.020	.040				
C1	.008	.012				
D	1.185	1.195				
D1	1.150	1.156				
D2/E2	1.090	1.130				
D3/E3	1.000 REF					
E	1.185	1.195				
E1	1.150	1.156				
е	.050 BSC					
ND/NE	21					

2905 tbl 13

NOTES:

- 1. All dimensions are in inches, unless otherwise noted.
- 2. BSC—Basic lead Spacing between Centers.
- 3. D & E do not include mold flash or protutions.
- 4. Formed leads shall be planar with respect to one another and within .004" at the seating plane.
- 5. ND & NE represent the number of leads in the D & E directions respectively.
- 6. D1 & E1 should be measured from the bottom of the package.7. PLCC is pin & form compatible with MQUAD; the MQUAD package is used in other RISController family members.