

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XE

Product Status	Obsolete
Core Processor	MIPS-I
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	33MHz
Co-Processors/DSP	System Control; CP0
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	_
Ethernet	-
SATA	-
USB	_
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 85°C (TC)
Security Features	-
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79r3041-33pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INTRODUCTION

The IDT RISController family is a series of high-performance 32-bit microprocessors featuring a high-level of integration, and targeted to high-performance but cost sensitive embedded processing applications. The RISController family is designed to bring the high-performance inherent in the MIPS RISC architecture into low-cost, simplified, power sensitive applications.

Thus, functional units have been integrated onto the CPU core in order to reduce the total system cost, rather than to increase the inherent performance of the integer engine. Nevertheless, the RISController family is able to offer 35MIPS of integer performance at 40MHz without requiring external SRAM or caches.

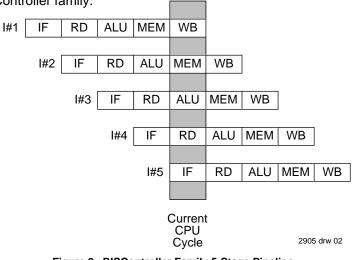
Further, the RISController family brings dramatic power reduction to these embedded applications, allowing the use of low-cost packaging. Thus, the RISController family allows customer applications to bring maximum performance at minimum cost.

The R3041 extends the range of price/performance achiev-

able with the RISController family, by dramatically lowering the cost of using the MIPS architecture. The R3041 is designed to achieve minimal system and components cost, yet maintain the high-performance inherent in the MIPS architecture. The R3041 also maintains pin and software compatibility with the RISController and R3081.

The RISController family offers a variety of price/performance features in a pin-compatible, software compatible family. Table 1 provides an overview of the current members of the RISController family. Note that the R3051, R3052, and R3081 are also available in pin-compatible versions that include a full-function memory management unit, including 64-entry TLB. The R3051/2 and R3081 are described in separate manuals and data sheets.

Figure 1 shows a block level representation of the functional units within the R3041. The R3041 can be viewed as the embodiment of a discrete solution built around the R3000A. By integrating this functionality on a single chip, dramatic cost and power reductions are achieved.


An overview of these blocks is presented here, followed with detailed information on each block.

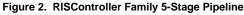

Device Name	Instruction Cache	Data Cache	Floating Point	Bus Options
R3051	4kB	2kB	Software Emulation	Mux'ed A/D
R3052	8kB	2kB	Software Emulation	Mux'ed A/D
R3071 R3081	16kB or 8kB	4kB or 8kB	On-chip Hardware	1/2 frequency bus option
R3041	2kB	512B	Software Emulation Programmable timing support	8-, 16-, and 32-bit port width support
				2905 tbl 01

Table 1. Pin-Compatible RISController Family

CPU Core

The CPU core is a full 32-bit RISC integer execution engine, capable of sustaining close to a single cycle execution rate. The CPU core contains a five stage pipeline, and 32 orthogonal 32-bit registers. The RISController family implements the MIPS-I Instruction Set Architecture (ISA). In fact, the execution engine of the R3041 is the same as the execution engine of the R3000A. Thus, the R3041 is binary compatible with those CPU engines, as well as compatible with other members of the RISController family. The execution engine of the RISController family uses a five-stage pipeline to achieve close to single cycle execution. A new instruction can be started in every clock cycle; the execution engine actually processes five instructions concurrently (in various pipeline stages). The five parts of the pipeline are the Instruction Fetch, Read register, ALU execution, Memory, and Write Back stages. Figure 2 shows the concurrency achieved by the RISController family pipeline.

R3041.

SYSTEM USAGE

The IDT RISController family is specifically designed to easily connect to low-cost memory systems. Typical low-cost memory systems use inexpensive EPROMs, DRAMs, and application specific peripherals.

Figure 4 shows some of the flexibility inherent in the R3041. In this example system, which is typical of a laser printer, a 32bit PROM interface is used due to the size of the PDL interpreter. An embedded system can optionally use an 8-bit boot PROM instead. A 16-bit font/program cartridge interface is provided for add-in cards. A 16-bit DRAM interface is used for a low-cost page frame buffer. In this system example, a field or manufacturing upgrade to a 32-bit page frame buffer is supported by the boot software and DRAM controller. Embedded systems may optionally substitute SRAMs for the DRAMs. Finally various 8/16/32-bit I/O ports such as RS-232/ 422, SCSI, and LAN as well as the laser printer engine interface are supported. Such a system features a very low entry price, with a range of field upgrade options including the ability to upgrade to a more powerful member of the RISController family.

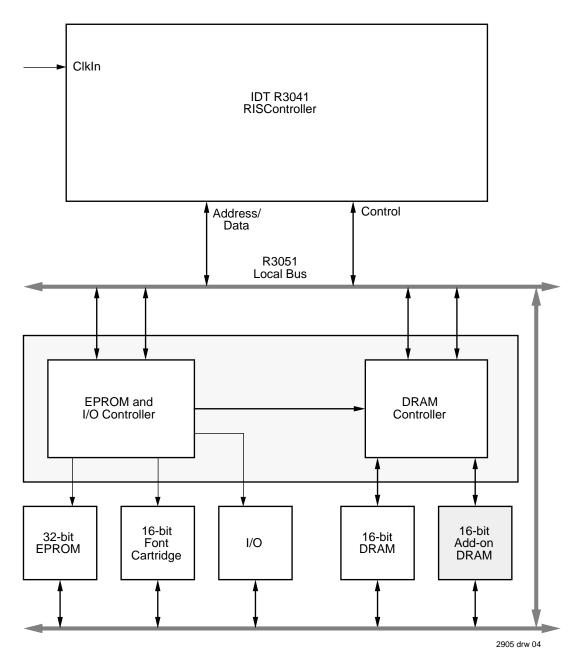


Figure 4. Typical R3041-Based Application

DEVELOPMENT SUPPORT

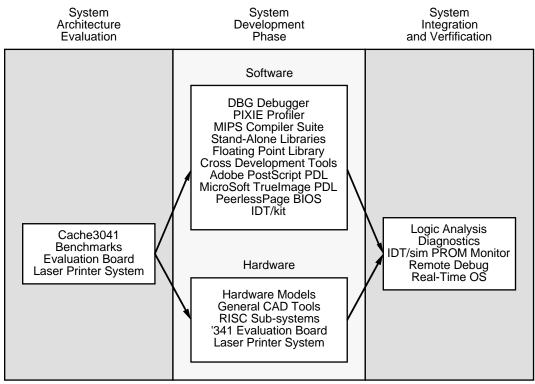
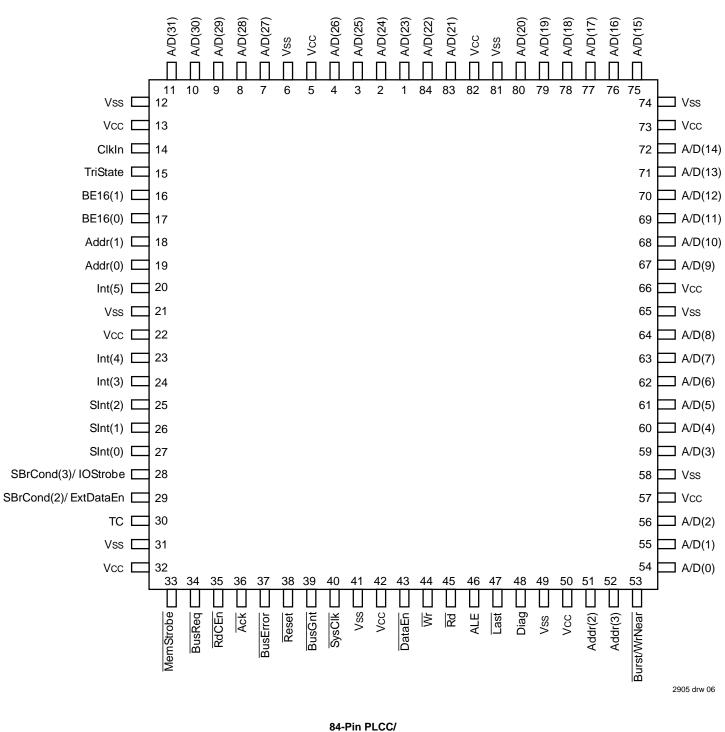

The IDT RISController family is supported by a rich set of development tools, ranging from system simulation tools through PROM monitor and debug support, applications software and utility libraries, logic analysis tools, and sub-system modules.

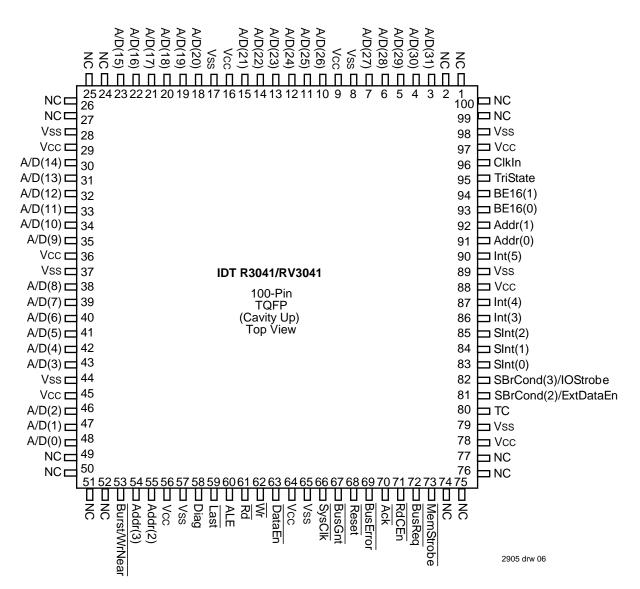
Figure 5 is an overview of the system development process typically used when developing R3041 applications. The RISController family is supported in all phases of project development. These tools allow timely, parallel development of hardware and software for RISController family based applications, and include tools such as:

· Optimizing compilers from MIPS Technology, the acknowl-

edged leader in optimizing compiler technology.


- Cross development tools, available in a variety of development environments.
- The high-performance IDT floating point emulation library software.
- The IDT Evaluation Board, which includes RAM, EPROM, I/O, and the IDT PROM Monitor.
- IDT Laser Printer System boards, which directly drive a lowcost print engine, and runs Adobe PostScript[™] Page Description Language
- Adobe PostScript Page Description Language running on the IDT RISController family.
- The IDT/sim[™] PROM Monitor, which implements a full PROM monitor (diagnostics, remote debug support, peek/

2905 drw 05


Figure 5. R3041 Development Environment

PIN CONFIGURATIONS

Top View (Cavity Down)

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN NAME	I/O		DESCRIPTION
A/D(31:0)	I/O		e multiplexed bus which indicates the desired address for a bus transaction and to transmit data between the CPU and external memory resources during
			are logically separated into two phases: during the first phase, information ted to the memory system to be captured using the ALE output. This
		Address(31:4):	The high-order address for the transfer is presented on A/D(31:4).
		BE(3:0):	These strobes indicate which bytes of the 32-bit bus will be involved in the transfer, and are presented on A/D(3:0). $\overline{BE(3)}$ indicates that A/D(31:24) will be used, and $\overline{BE(0)}$ corresponds to A/D(7:0). These strobes are only valid for accesses to 32-bit wide memory ports. Note that $\overline{BE(3:0)}$ can be held in-active during reads by setting the appropriate bit of CP0; thus when latched, these signals can be directly used as Write Enable strobes.
		During the second phase, the	nese signals are the data bus for the transaction.
		Data(31:0):	During write cycles, the bus contains the data to be stored and is driver from the internal write buffer. On read cycles, the bus receives the data from the external resource, in either a single data transaction or in a burst of four words, and places is into the on-chip read buffer.
			The byte lanes used during the transfer are a function of the datum size the memory port width, and the system byte-ordering.
Addr(3:0)	0	processor. For 32-bit port w Addr(3:1) are valid; for 8-bit the address of the current da output the specific target ad	bus which indicates which word/halfword/byte is currently expected by the vidths, only Addr(3:2) is valid during the transfer; for 16-bit port widths, only port widths, all of Addr(3:0) are valid. These address lines always contain rum to be transferred. In writes and single datum reads, the addresses initially dress, and will increment if the size of the datum is wider than the target d reads, these outputs function as a counter starting at '0000', and he width of the memory port.
	I (1)	During Reset, the Addr(3:0) BootProm8, ReservedHigh,	pins act as Reset Configuration Mode bit inputs for the $\overline{\text{BootProm16}}$, and $\overline{\text{ExtAddrHold}}$ options.
		The R3041 Addr(1:0) outpu R3081.	pins are designated as the unconnected Rsvd(1:0) pins in the R3051 and
Diag	0	•	It indicates whether the current bus read transaction is due to an on- the read is an instruction or data. It is time multiplexed as described below
		Cached/Uncached:	During the phase in which the A/D bus presents address information, this pin is an active high output which indicates whether or not the current read is a result of a cache miss. The value of this pin at this time othe than in read cycles is undefined.
		₩ <u>D</u> :	A high at this time indicates an instruction reference, and a low indicates a data reference. The value of this pin at this time other than in read cycles is undefined.
		The R3041 Diag output pin	is designated as the Diag(1) output pin in the R3051 and R3081.
ALE	0		sed to indicate that the A/D bus contains valid address information for nal is used by external logic to capture the address for the transfer, typically s.
DataEn	O		dicates that the A/D bus is no longer being driven by the processor memory system may enable the drivers of the memory
		hout having a bus conflict occur. D	

1. Reset Configuration Mode bit input when Reset is asserted, normal signal function when Reset is de-asserted.

ABSOLUTE MAXIMUM RATINGS^(1, 3) R3041

Symbol	Rating	Commercial	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тс	Operating Case Temperature	0 to +85	°C
TBIAS	Temperature Under Bias	–55 to +125	°C
Тѕтс	Storage Temperature	-55 to +125	°C
Vin	Input Voltage	-0.5 to +7.0	V

NOTES:

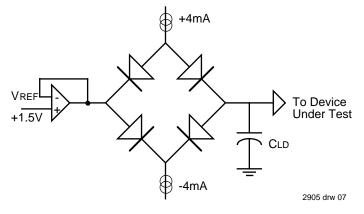
2905 tbl 06 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS

may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VIN minimum = -3.0V for pulse width less than 15ns. VIN should not exceed Vcc +0.5 Volts.

3. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.

AC TEST CONDITIONS R3041


Symbol	Parameter	Min.	Max.	Unit
Viн	Input HIGH Voltage	3.0		V
VIL	Input LOW Voltage	—	0	V
Vihs	Input HIGH Voltage	3.5	—	V
VILS	Input LOW Voltage	—	0	V
				2905 tbl 08

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Commercial	0°C to +85°C	0V	5.0 ±5%
	(Case)		

2905 tbl 07

OUTPUT LOADING FOR AC TESTING

Signal	Cld
All Signals	25 pF
	2905 tbl 09

DC ELECTRICAL CHARACTERISTICS R3041 — (Tc = 0°C to +85°C, Vcc = +5.0V ±5%)

			16.67MHz		16.67MHz 20MHz		25MHz		33MHz		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -4mA	3.5	—	3.5	—	3.5	—	3.5		V
Vol	Output LOW Voltage	Vcc = Min., IoL = 4mA	—	0.4	_	0.4		0.4		0.4	V
Vih	Input HIGH Voltage ⁽³⁾	_	2.0	—	2.0	—	2.0	_	2.0	ų	V
VIL	Input LOW Voltage ⁽¹⁾	_	—	0.8		0.8		0.8	—	0.8	V
Vihs	Input HIGH Voltage ^(2,3)	_	3.0		3.0	_	3.0	_	3.0		V
VILS	Input LOW Voltage ^(1,2)	_	—	0.4		0.4	_	0.4		0.4	V
CIN	Input Capacitance ⁽⁴⁾	_	—	10	_	10		10		10	pF
Соит	Output Capacitance ⁽⁴⁾	_	—	10	_	10		10	+	10	pF
lcc	Operating Current	Vcc = 5V, Tc = 25°C	_	225	_	250	_	300	T	370	mA
Ін	Input HIGH Leakage	VIH = VCC	_	100	—	100	_	100		100	μΑ
lı∟	Input LOW Leakage	VIL = GND	-100	_	-100	_	-100	_	-100		μΑ
loz	Output Tri-state Leakage	VOH = 2.4V, VOL = 0.5V	-100	100	-100	100	-100	100	-100	100	μΑ

NOTES:

1. VIL Min. = -3.0V for pulse width less than 15ns. VIL should not fall below -0.5 volts for larger periods.

2. VIHS and VILS apply to ClkIn and Reset.

3. VIH should not be held above Vcc + 0.5 volts.

4. Guaranteed by design.

2905 tbl 10

AC ELECTRICAL CHARACTERISTICS R3041 ^(1, 2, 3) (Tc = 0°C to +85°C, Vcc = +5.0V ±5%)

			16.6	67MHz	20	MHz	25N	//Hz	33M	IHz	
Symbol	Signals	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t1	BusReq, Ack, BusError, RdCEn	Set-up to SysClk rising	11	_	8	_	5.5	_	5.5	+	ns
t1a	A/D	Set-up to SysClk falling	12	_	9	_	7	_	7	+	ns
t2	BusReq, Ack, BusError, RdCEn	Hold from SysClk rising	4	_	3	_	2.5	_	2.5		ns
t2a	A/D	Hold from SysClk falling	2	_	2	_	1	_	1	+	ns
t3	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Tri-state from SysClk rising (after driven condition)		13	_	10	—	10		10	ns
t4	A/D, Addr, Diag, ALE, Wr Burst/WrNear, Rd, DataEn	Driven from SysClk falling (after tri-state condition)	_	13	—	10	—	10	-	10	ns
t5	BusGnt	Asserted from SysClk rising	_	10	_	8	_	7	_	7	ns
t6	BusGnt	Negated from SysClk falling	_	10	_	8	_	7	_	7	ns
t7	Wr, Rd, Burst/WrNear, TC	Valid from SysClk rising	_	8	_	6	_	5		5	ns
t7a	A/D	Valid from SysClk rising	_	12	_	9	_	8	-	8	ns
t7b	Last	Valid from SysClk rising	_	12	_	9	_	8	1	8	ns
t8	ALE	Asserted from SysClk rising	_	5	—	4	_	4		4	ns
t9	ALE	Negated from SysClk falling	_	5	—	4	_	4	+	4	ns
t10	A/D	Hold from ALE negated	2		2	_	2	_	1.5	7	ns
t11	DataEn	Asserted from SysClk	_	19	_	15	_	15		15	ns
t12	DataEn	Asserted from A/D tri-state ⁽⁴⁾	0		0	_	0	_	0	_	ns
t14	A/D	Driven from SysClk rising ⁽⁴⁾	0		0	_	0	_	0		ns
t15	Wr, Rd, DataEn, Burst/WrNear, Last, TC	Negated from SysClk falling	_	9	_	7	_	6	<u> </u>	6	ns
t16	Addr(3:0), BE 16(1:0)	Valid from SysClk	_	11	_	8	_	7	—	7	ns
t17	Diag	Valid from SysClk	_	15	_	12	_	11	_	11	ns
t18	A/D	Tri-state from SysClk	_	13	_	10	_	10	_	10	ns
t19	A/D	SysClk to data out	_	16	_	13	_	12	+	12	ns
t20	ClkIn	Pulse Width High	12		10	_	8	_	6.5	_	ns
t21	ClkIn	Pulse Width Low	12		10		8	_	6.5		ns
t22	ClkIn	Clock Period	30	250	25	250	20	250	15	250	ns
t23	Reset	Pulse Width from Vcc valid	200		200	_	200	_	200	_	μs
t24	Reset	Minimum Pulse Width	32		32	_	32	_	32	_	sys
t25	Reset	Set-up to SysClk falling	8		6	_	5	_	5		ns
t26	Int	Mode set-up to Reset rising	8		6	_	5	_	5	+	ns
t27	Int	Mode hold from Reset rising	2.5		2.5	_	2.5	_	2.5	+	ns
t28	SInt, SBrCond	Set-up to SysClk falling	8	_	6	_	5	_	5	_	ns
t29	SInt, SBrCond	Hold from SysClk falling	4		3	_	3	_	3	1	ns
t30	Int, BrCond	Set-up to SysClk falling	8	_	6	_	5	_	5		ns
t31	Int, BrCond	Hold from SysClk falling	4	_	3	_	3	_	3	4	ns
tsys	SysClk	Pulse Width	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	ns
t32	SysClk	Clock High Time	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2			t22 + 2	ns
t33	SysClk	Clock Low Time				t22 + 2					

2905 tbl 11

AC ELECTRICAL CHARACTERISTICS R3041 (CONT.)

			16.6	16.67MHz 20MH		20MHz		MHz	33MHz	
Symbol	Signals	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min. Max.	Unit
t45	ExtDataEn	Tri-state from SysClk rising (after driven condition)	-	13	-	10	-	10		ns
t46	ExtDataEn	Driven from SysClk falling (after driven condition)	-	13	-	10	-	10		ns
t47	IOStrobe	Valid from SysClk falling	_	10	—	8	_	7	+ 7	ns
t48	ExtDataEn, DataEn	Asserted from SysClk rising	_	15	—	12	_	9	- 9	ns
t49	ExtDataEn	Negated from SysClk rising	_	9	—	7	-	6	6	ns
t50	MemStrobe	Asserted from SysClk rising	_	19	—	15	_	15	15	ns
t51	MemStrobe	Negated from SysClk falling	_	19	—	15	-	15	- 15	ns
t52	MemStrobe	Asserted from Addr(3:0) valid ⁽⁴⁾	0	_	0	_	0	_	0 -	ns
tderate	All outputs	Timing deration for loading over 25pF ^(4, 5)	-	0.5	-	0.5	-	0.5	- 0.5	ns/ 25pF
NOTES:	I	· · ·	1		1		1		2	2905 tb

1. All timings referenced to 1.5 Volts, with a rise and fall time of less than 2.5ns.

2. All outputs tested with 25pF loading.

3. The AC values listed here reference timing diagrams contained in the R3041 Hardware User's Manual.

4. Guaranteed by design.

5. This parameter is used to derate the AC timings according to the loading of the system. This parameter provides a deration for loads over the specified test condition; that is, the deration factor is applied for each 25pF over the specified test load condition.

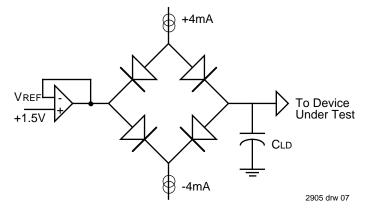
6. Timings t34 - t44 are reserved for other RISController family members.

ABSOLUTE MAXIMUM RATINGS^(1, 3) RV3041

Symbol	Rating	Commercial	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тс	Operating Case Temperature	0 to +85	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Vin	Input Voltage	-0.5 to +7.0	V
NOTES:			2905 tbl 06

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VIN minimum = -3.0V for pulse width less than 15ns. VIN should not exceed Vcc +0.5 Volts.
- 3. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.

AC TEST CONDITIONS RV3041


Symbol	Parameter	Min.	Max.	Unit
Vih	Input HIGH Voltage	3.0		V
VIL	Input LOW Voltage		0	V
VIHS	Input HIGH Voltage	3.0	_	V
VILS	Input LOW Voltage	_	0	V

2905 tbl 08

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Commercial	0°C to +85°C	0V	3.3 ±5%
RV3041	(Case)		
			2905 tbl 07

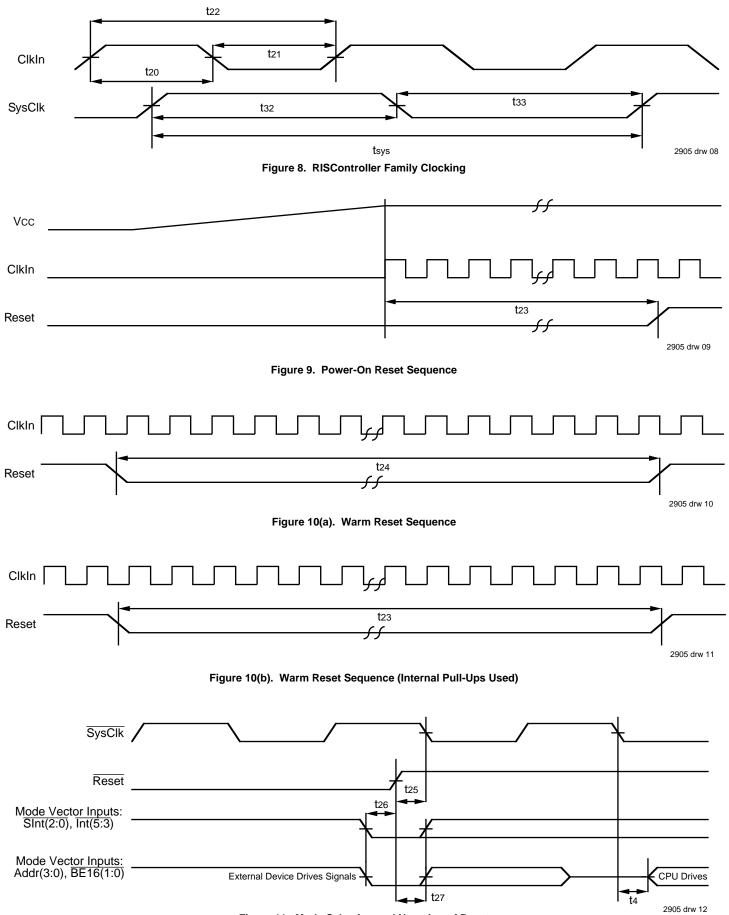
OUTPUT LOADING FOR AC TESTING

Signal	Cld
All Signals	25 pF
	2905 tbl 09

			16.67 MHz		20 MHz		25MHz		33MHz		
Symbol	Signals	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Uni
t18	A/D	Tri-state from SysClk	_	13		10	_	10	—	10	ns
t19	A/D	SysClk to data out	_	16	_	13	_	12	_	12	ns
t20	ClkIn	Pulse Width High	12		10		8		6.5	-	ns
t21	ClkIn	Pulse Width Low	12	_	10	_	8		6.5		ns
t22	ClkIn	Clock Period	30	250	25	250	20	250	15	250	ns
t23	Reset	Pulse Width from Vcc valid	200		200		200		200		μs
t24	Reset	Minimum Pulse Width	32		32	_	32		32		sys
t25	Reset	Set-up to SysClk falling	8		6		5		5	1	ns
t26	Int	Mode set-up to Reset rising	8	—	6	_	5		5	+	ns
t27	Int	Mode hold from Reset rising	2.5		2.5		2.5		2.5	-	ns
t28	SInt, SBrCond	Set-up to SysClk falling	8	_	6	_	5		5		ns
t29	SInt, SBrCond	Hold from SysClk falling	4	_	3	_	3		3		ns
t30	Int, BrCond	Set-up to SysClk falling	8	_	6	_	5		5	-	ns
t31	Int, BrCond	Hold from SysClk falling	4		3		3		3		ns
tsys	SysClk	Pulse Width	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	2*t22	ns
t32	SysClk	Clock High Time	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	ns
t33	SysClk	Clock Low Time	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	t22 - 2	t22 + 2	ns
t45	ExtDataEn	Tri-state from SysClk rising (after driven condition)	_	13	—	10	—	10		10	ns
t46	ExtDataEn	Driven from SysClk falling (after driven condition)	_	13	—	10	—	10		10	ns
t47	IOStrobe	Valid from SysClk falling		10	—	8	—	7		7	ns
t48	ExtDataEn,	Asserted from SysClk rising		15	—	12	—	9	_	9	ns
t49	ExtDataEn DataEn	Negated from SysClk rising	_	9	_	7	—	6	_	6	ns
t50	MemStrobe	Asserted from SysClk rising	_	19	_	15	_	15	<u> </u>	15	ns
t51	MemStrobe	Negated from SysClk falling	—	19	—	15		15	—	15	ns
t52	MemStrobe	Asserted from Addr(3:0) valid ⁽⁴⁾	0	_	0		0		0	-	ns
tderate	All outputs	Timing deration for loading over $25pF^{(4, 5)}$		0.5	-	0.5	-	0.5	-	0.5	ns/ 25pl

AC ELECTRICAL CHARACTERISTICS RV3041 (CONT.)

1. All timings referenced to 1.5 Volts, with a rise and fall time of less than 2.5ns.


2. All outputs tested with 25pF loading.

3. The AC values listed here reference timing diagrams contained in the R3041 Hardware User's Manual.

4. Guaranteed by design.

5. This parameter is used to derate the AC timings according to the loading of the system. This parameter provides a deration for loads over the specified test condition; that is, the deration factor is applied for each 25pF over the specified test load condition.

6. Timings t34 - t44 are reserved for other RISController family members.

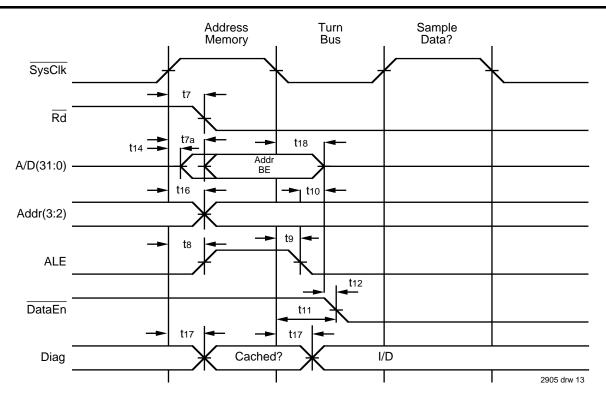
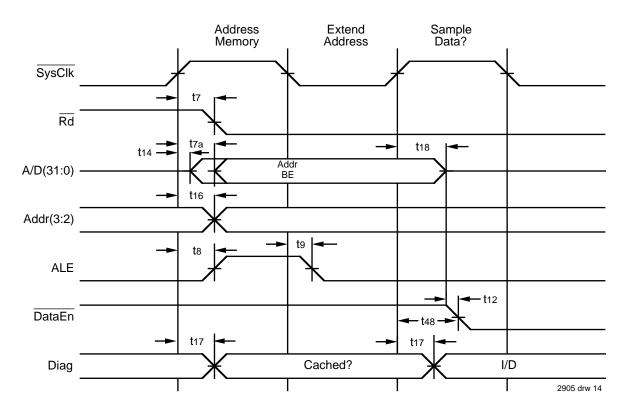
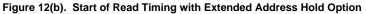




Figure 12(a). Start of Read Timing with Non-Extended Address Hold Option

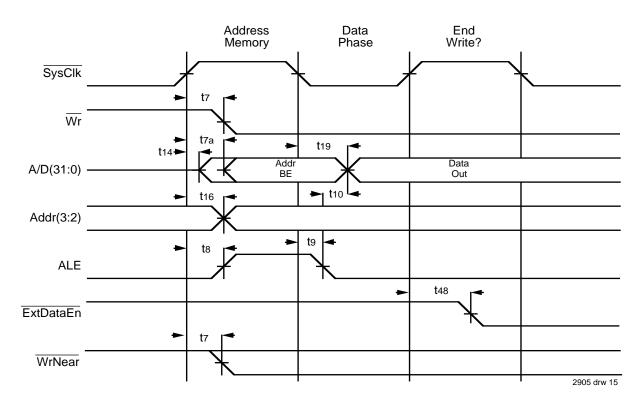


Figure 12(c). Start of Write Timing with Non-Extended Address Hold Option

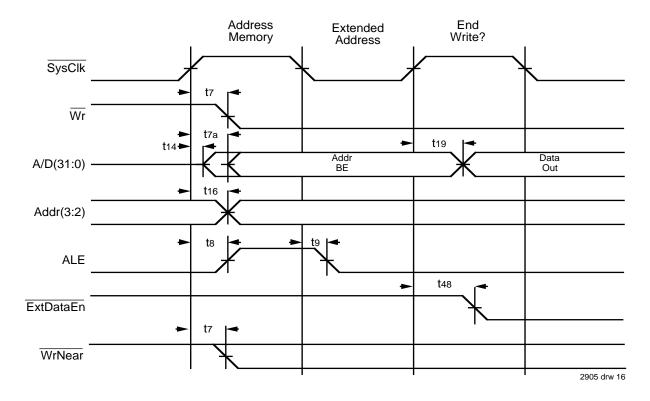


Figure 12(d). Start of Write Timing with Extended Address Hold Option

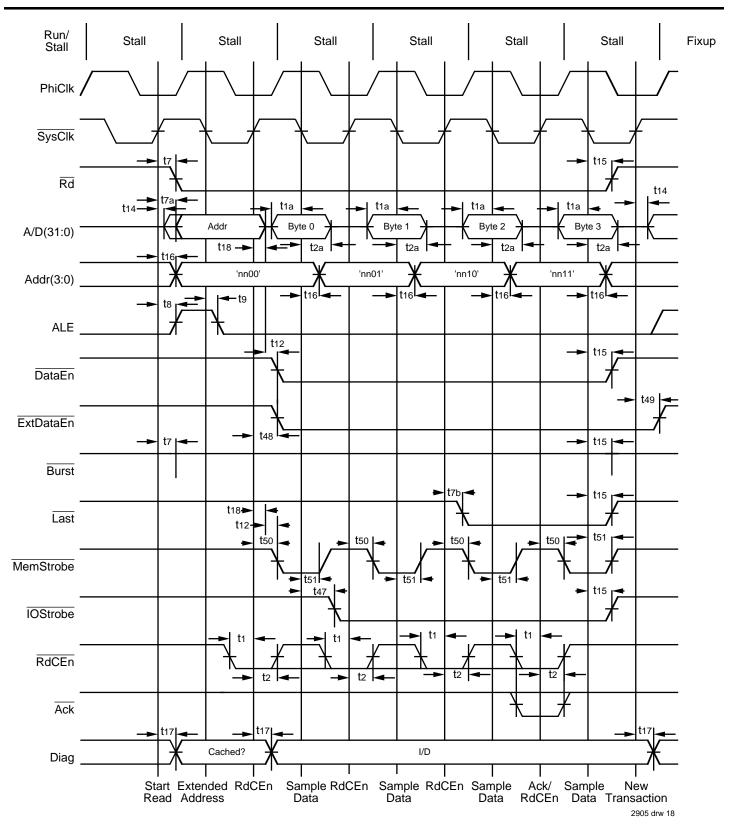


Figure 14. Mini-burst read of 32-bit datum from 8-bit wide memory port

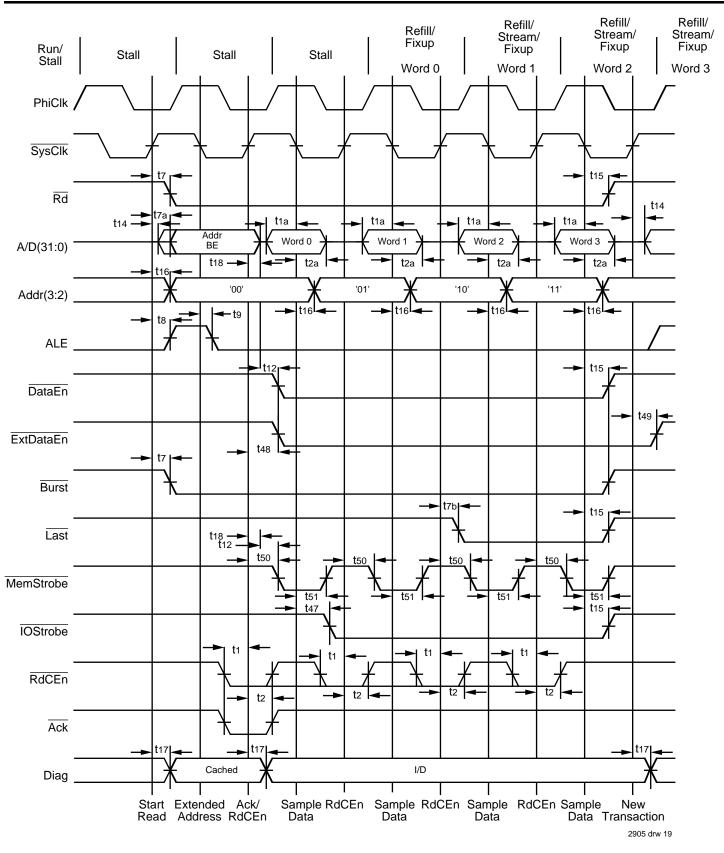
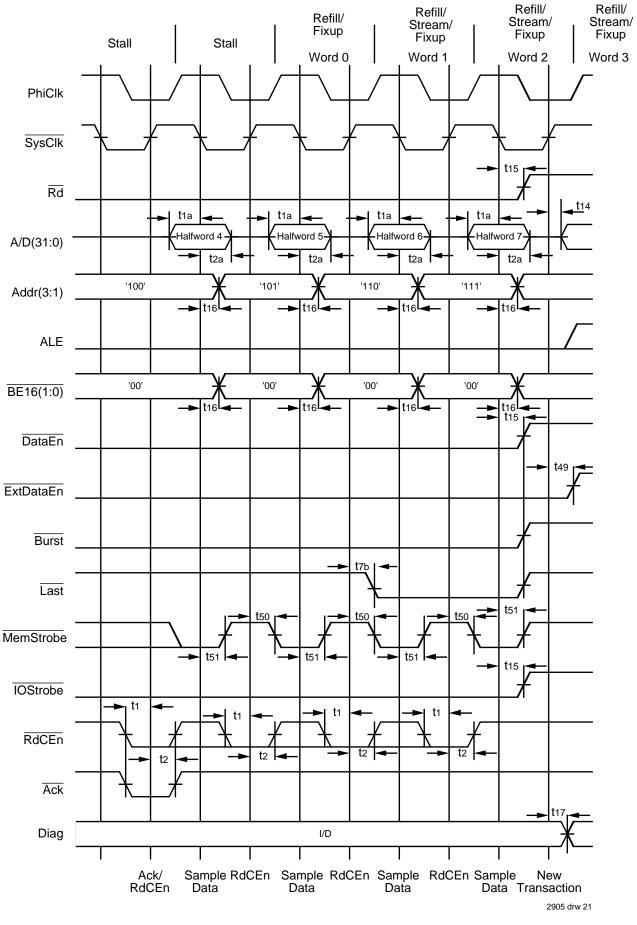



Figure 15. R3041 Quad Word Read

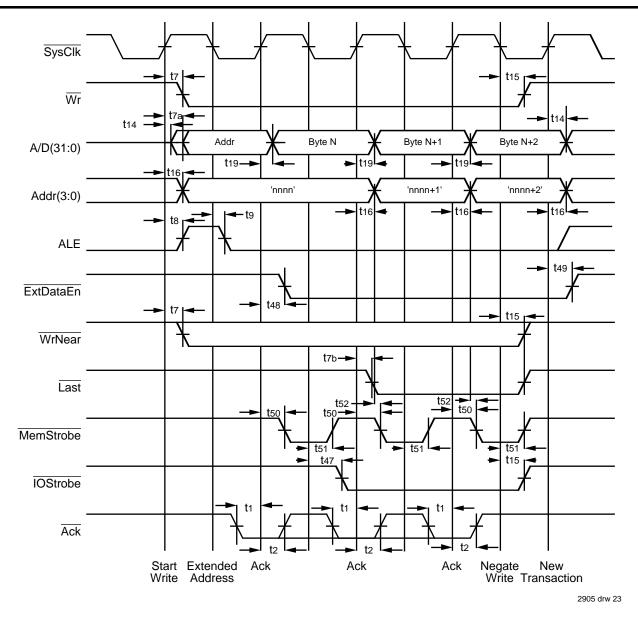
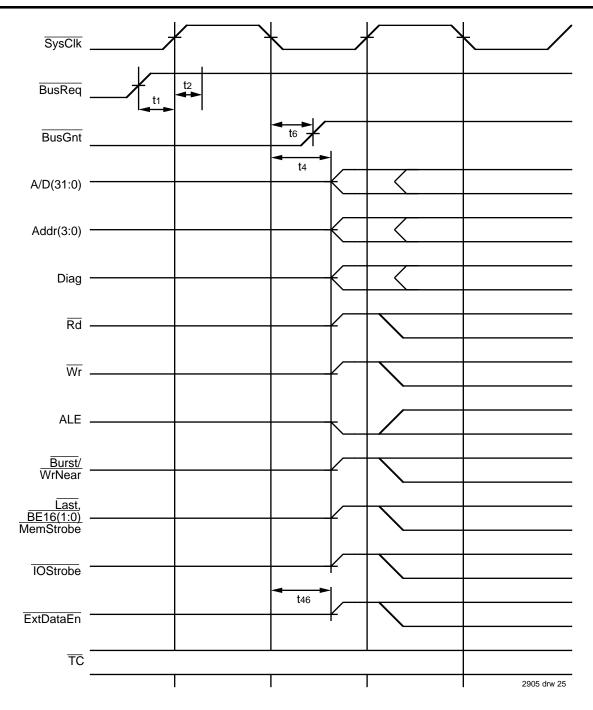
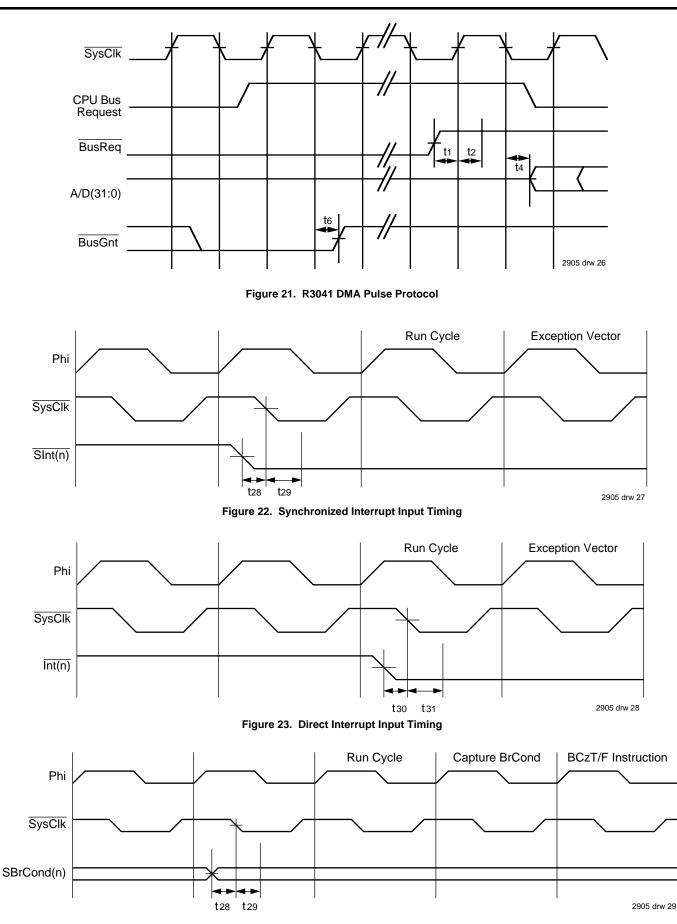
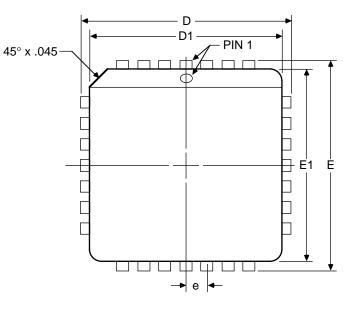
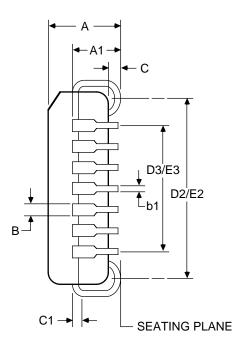


Figure 18. Tri-Byte Mini-burst Write to 8-bit Port


Figure 20. R3041 Regaining Bus Mastership



84 LEAD PLCC (SQUARE)

2905 drw 31

DWG #	J84-1 84			
# of Leads				
Symbol	Min.	Max.		
А	165	.180		
A1	.095	.115		
В	.026	.032		
b1	.013	.021		
С	.020	.040		
C1	.008	.012		
D	1.185	1.195		
D1	1.150	1.156		
D2/E2	1.090	1.130		
D3/E3	1.000 REF			
E	1.185	1.195		
E1	1.150	1.156		
е	.050 BSC			
ND/NE	21			

NOTES:

- 1. All dimensions are in inches, unless otherwise noted.
- 2. BSC—Basic lead Spacing between Centers.
 3. D & E do not include mold flash or protutions.
- 4. Formed leads shall be planar with respect to one another and within .004" at the seating plane.
- 5. ND & NE represent the number of leads in the D & E directions respectively.
- 6. D1 & E1 should be measured from the bottom of the package.7. PLCC is pin & form compatible with MQUAD; the MQUAD package is used in other RISController family members.