

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C500
Core Size	8-Bit
Speed	10MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	49
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	4.25V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	P-MQFP-80-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c515c8emcafxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2003-02 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2003.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O ¹⁾	Function				
	P-MQFP-80-1						
PE/SWD	75	1	Power saving mode enable / Start watchdog timer A low level on this pin allows the software to ente the power down, idle and slow down mode. In cas the low level is also seen during reset, the watchdo timer function is off on default. Use of the software controlled power saving mode is blocked, when this pin is held on high level. A hig level during reset performs an automatic start of th watchdog timer immediately after reset. When lef unconnected this pin is pulled high by a weak internal pull-up resistor.				
V _{SSCLK}	13	_	Ground (0 V) for on-chip oscillator This pin is used for ground connection of the on-chip oscillator circuit.				
V _{DDCLK}	14	_	Supply voltage for on-chip oscillator This pin is used for power supply of the on-chip oscillator circuit.				
V_{DDE1} V_{DDE2}	32 68	-	Supply voltage for I/O ports These pins are used for power supply of the I/O ports during normal, idle, and power down mode.				
$V_{\rm SSE1}$ $V_{\rm SSE2}$	35 70	_	Ground (0 V) for I/O ports These pins are used for ground connections of the I/O ports during normal, idle, and power down mode.				
V _{DD1}	33	_	Supply voltage for internal logic This pins is used for the power supply of the internal logic circuits during normal, idle, and power down mode.				
V _{SS1}	34	_	Ground (0 V) for internal logic This pin is used for the ground connection of the internal logic circuits during normal, idle, and power down mode.				

C515C

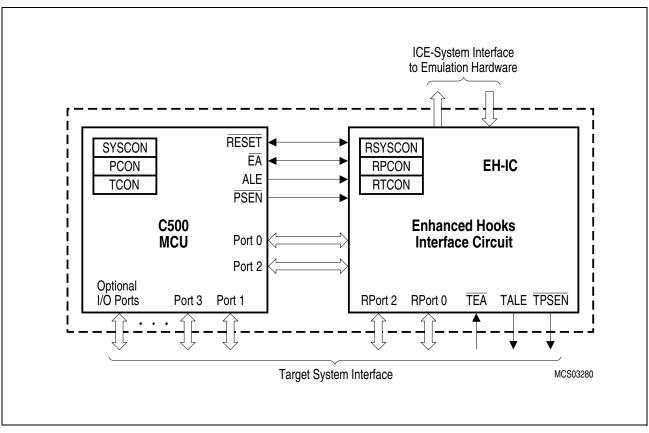
The XRAM/CAN controller can be accessed by read/write instructions (MOVX A,DPTR, MOVX @DPTR,A), which use the 16-bit DPTR for indirect addressing. For accessing the XRAM or CAN controller, the effective address stored in DPTR must be in the range of F700_H to FFFF_H.

The XRAM can be also accessed by read/write instructions (MOVX A,@Ri, MOVX @Ri,A), which use only an 8-bit address (indirect addressing with registers R0 or R1). Therefore, a special page register XPAGE which provides the upper address information (A8-A15) during 8-bit XRAM accesses. The behaviour of Port 0 and P2 during a MOVX access depends on the control bits XMAP0 and XMAP1 in register SYSCON and on the state of pin EA. Table 3 lists the various operating conditions.

Table 3Behaviour of P0/P2 and RD/WR During MOVX Accesses

				XMAP1, XMAP0	
			00	10	X1
EA = 0	MOVX @DPTR	DPTR < XRAM/CAN address range	a) P0/P2→Bus b) RD/WR active c) ext.memory is used	a) P0/P2→Bus b) RD/WR active c) ext.memory is used	a) P0/P2→Bus b) RD/WR active c) ext.memory is used
		DPTR ≥ XRAMCAN address range	a) P0/P2→Bus (RD/WR-Data) b) RD/WR inactive c) XRAM is used	a) P0/P2→Bus (RD/WR-Data) b) RD/WR active c) XRAM is used	a) P0/P2→Bus b) RD/WR active c) ext.memory is used
	MOVX @ Ri	XPAGE < XRAMCAN addr. page range	a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used	a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used	a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used
		XPAGE ≥ XRAMCAN addr. page range	a) P0→Bus (RD/WR-Data) P2→I/O b) RD/WR inactive c) XRAM is used	a) P0 \rightarrow Bus (RD/WR-Data only) P2 \rightarrow I/O b) RD/WR active c) XRAM is used	a) P0 \rightarrow Bus P2 \rightarrow I/O b) $\overline{\text{RD}}/\overline{\text{WR}}$ active c) ext.memory is used
EA = 1	MOVX @DPTR	DPTR < XRAM/CAN address range	a) P0/P2→Bus b) RD/WR active c) ext.memory is used	a) P0/P2→Bus b) RD/WR active c) ext.memory is used	a) P0/P2→Bus b) RD/WR active c) ext.memory is used
		DPTR ≥ XRAMCAN address range	a) P0/P2→I/0 b) RD/WR inactive c) XRAM is used	a) P0/P2→Bus (RD/WR-Data) b) RD/WR active c) XRAM is used	 a) P0/P2→Bus b) RD/WR active c) ext.memory is used
	MOVX @ Ri	XPAGE < XRAMCAN addr. page range	a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used	a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used	a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used
		XPAGE ≥ XRAMCAN addr. page range	a) P2→I/O P0/P2→I/O b) RD/WR inactive c) XRAM is used	a) P0→Bus ($\overline{RD}/\overline{WR}$ -Data) P2→I/O b) $\overline{RD}/\overline{WR}$ active c) XRAM is used	 a) P0→Bus P2→I/O b) RD/WR active c) ext.memory is used

modes compatible to 8051/C501 family



Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative way to control the execution of C500 MCUs and to gain extensive information on the internal operation of the controllers. Emulation of on-chip ROM based programs is possible, too.

Each production chip has built-in logic for the support of the Enhanced Hooks Emulation Concept. Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation and production chips are identical.

The Enhanced Hooks Technology, which requires embedded logic in the C500 allows the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate all operating modes of the different versions of the C500 microcontrollers. This includes emulation of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in single step mode and to read the SFRs after a break.

Figure 9 Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks Emulation Concept to control the operation of the device during emulation and to transfer informations about the program execution and data transfer between the external emulation hardware (ICE-system) and the C500 MCU.

Table 4	Special	Function Registers - Functional Blo	DCK	
Block	Symbol	Name	Addr	Contents after Reset
CPU	ACC B DPH DPL DPSEL PSW SP SYSCON ¹⁾	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Data Pointer Select Register Program Status Word Register Stack Pointer System Control Register C515C-8R C515C-8E	E0 _H ²⁾ F0 _H ²⁾ 83 _H 82 _H 92 _H D0 _H ²⁾ 81 _H B1 _H B1 _H	$\begin{array}{c} 00_{\rm H} \\ 00_{\rm H} \\ 00_{\rm H} \\ 00_{\rm H} \\ XXXXX000_{\rm B}^{3)} \\ 00_{\rm H} \\ 07_{\rm H} \\ X010XX01_{\rm B}^{3)} \\ X010X001_{\rm B}^{3)} \end{array}$
A/D- Converter	ADCON0 ¹⁾ ADCON1 ADDATH ADDATL	A/D Converter Control Register 0 A/D Converter Control Register 1 A/D Converter Data Register High Byte A/D Converter Data Register Low Byte	D8 _H ²⁾ DC _H D9 _H DA _H	$\begin{array}{c} 00_{H} \\ 0XXXX000_{B}{}^{3)} \\ 00_{H} \\ 00XXXXX_{B}{}^{3)} \end{array}$
Interrupt System		Interrupt Enable Register 0 Interrupt Enable Register 1 Interrupt Enable Register 2 Interrupt Priority Register 0 Interrupt Priority Register 1 Timer Control Register Timer 2 Control Register Serial Channel Control Register Interrupt Request Control Register	A8 _H ²⁾ B8 _H ²⁾ 9A _H A9 _H B9 _H 88 _H ²⁾ C8 _H ²⁾ 98 _H ²⁾ C0 _H ²⁾	$\begin{array}{c} 00_{\rm H} \\ 00_{\rm H} \\ XX00X00X_{\rm B}{}^{3)} \\ 00_{\rm H} \\ 0X0000000_{\rm B}{}^{3)} \\ 00_{\rm H} \end{array}$
XRAM	XPAGE SYSCON ¹⁾	Page Address Register for Extended on-chip XRAM and CAN Controller System Control Register C515C-8R C515C-8E	91 _H B1 _H B1 _H	00 _H X010XX01 _B ³⁾ X010X001 _B ³⁾
Ports	P0 P1 P2 P3 P4 P5 DIR5 P6 P7 SYSCON ¹⁾	Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 5 Direction Register Port 6, Analog/Digital Input Port 7 System Control Register C515C-8R C515C-8E	80 _H ²⁾ 90 _H ²⁾ A0 _H ²⁾ B0 _H ²⁾ E8 _H ²⁾ F8 _H ²⁾ F8 _H DB _H FA _H B1 _H	$\begin{array}{c} FF_{H} \\ A_{V_{V}} \\ V_{V_{V}} \\ V_{V} \\ V_{V} \\ V_{V}} \\ V_{V} \\ V_{V} \\ V_{V} \\ V_{V} \\ V_{V} \\ V_{V}} \\ V_{V} \\ V $
Watchdog	WDTREL IEN0 ¹⁾ IEN1 ¹⁾ IP0 ¹⁾	Watchdog Timer Reload Register Interrupt Enable Register 0 Interrupt Enable Register 1 Interrupt Priority Register 0	86 _H A8_H ²⁾ B8_H ²⁾ A9 _H	00 _H 00 _H 00 _H 00 _H

Table 4 Special Function Registers - Functional Block

Table 5Contents of the SFRs, SFRs in Numeric Order
of their Addresses

Addr.	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80 _H ²⁾	P0	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
86 _H	WDTREL	00 _H	WDT PSEL	.6	.5	.4	.3	.2	.1	.0
87 _H	PCON	00 _H	SMOD	PDS	IDLS	SD	GF1	GF0	PDE	IDLE
88 _H ²⁾	TCON	00 _H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
88 _H ³⁾	PCON1 ⁴⁾	0XXX- XXXX _B	EWPD	-	-	-	-	_	-	-
88 _H ³⁾	PCON1 ⁵⁾	0XX0- XXXX _B	EWPD	-	-	WS	-	_	-	-
89 _H	TMOD	00 _H	GATE	C/T	M1	M0	GATE	C/T	M1	MO
8A _H	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8B _H	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8C _H	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8D _H	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
90 _H ²⁾	P1	FF _H	T2	CLK- OUT	T2EX	INT2	INT6	INT5	INT4	INT3
91 _H	XPAGE	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
92 _H	DPSEL	XXXX- X000 _B	-	-	-	-	-	.2	.1	.0
93 _H	SSCCON	07 _H	SCEN	TEN	MSTR	CPOL	CPHA	BRS2	BRS1	BRS0
94 _H	STB	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
95 _H	SRB	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
96 _H	SSCMOD	00 _H	LOOPB	TRIO	0	0	0	0	0	LSBSM
98 _H ²⁾	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
99 _H	SBUF	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
9A _H	IEN2	X00X- X00X _B	_	_	EX8	EX7	_	ESSC	ECAN	-
A0 _H ²⁾	P2	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
A8 _H ²⁾	IEN0	00 _H	EAL	WDT	ET2	ES	ET1	EX1	ET0	EX0
A9 _H	IP0	00 _H	OWDS	WDTS	.5	.4	.3	.2	.1	.0

Table 5Contents of the SFRs, SFRs in Numeric Order
of their Addresses (cont'd)

Addr.	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AA _H	SRELL	D9 _H	.7	.6	.5	.4	.3	.2	.1	.0
AB _H	SCF	XXXX- XX00 _B	-	-	-	-	-	-	WCOL	тс
AC _H	SCIEN	XXXX- XX00 _B	-	-	-	-	-	-	WCEN	TCEN
80 _H ²⁾	P3	FF _H	RD	WR	T1	то	INT1	INT0	TxD	RxD
B1 _H	SYSCON ⁴⁾	X010- XX01 _B	-	PMOD	EALE	RMAP	-	-	XMAP1	XMAP0
B1 _H	SYSCON ⁵⁾	X010- X001 _B	-	PMOD	EALE	RMAP	-	CSWO	XMAP1	XMAP0
88 _H ²⁾	IEN1	00 _H	EXEN2	SWDT	EX6	EX5	EX4	EX3	EX2	EADC
B9 _H	IP1	0X00- 0000 _B	PDIR	-	.5	.4	.3	.2	.1	.0
BA _H	SRELH	XXXX- XX11 _B	-	-	-	-	-	-	.1	.0
C0 _H ²⁾	IRCON	00 _H	EXF2	TF2	IEX6	IEX5	IEX4	IEX3	IEX2	IADC
C1 _H	CCEN	00 _H	COCA H3	COCA L3	COCA H2	COCA L2	COCA H1	COCA L1	COCA H0	COCA L0
C2 _H	CCL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C3 _H	CCH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C4 _H	CCL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C5 _H	CCH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C6 _H	CCL3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C7 _H	ССНЗ	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C8 _H ²⁾	T2CON	00 _H	T2PS	I3FR	I2FR	T2R1	T2R0	T2CM	T2I1	T2I0
CA _H	CRCL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CB _H	CRCH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CC _H	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CD _H	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

Table 5Contents of the SFRs, SFRs in Numeric Order
of their Addresses (cont'd)

Addr.	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D0 _H ²⁾	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
D8 _H ²⁾	ADCON0	00 _H	BD	CLK	ADEX	BSY	ADM	MX2	MX1	MX0
D9 _H	ADDATH	00 _H	.9	.8	.7	.6	.5	.4	.3	.2
DA _H	ADDATL	00XX- XXXX _B	.1	.0	-	-	-	-	_	-
DB _H	P6	-	.7	.6	.5	.4	.3	.2	.1	.0
DC _H	ADCON1	0XXX- X000 _B	ADCL	-	-	-	0	MX2	MX1	MX0
E0 _H ²⁾	ACC	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E8 _H ²⁾	P4	FF _H	RXDC	TXDC	INT8	SLS	STO	SRI	SCLK	ADST
F0 _H ²⁾	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F8 _H ²⁾	P5	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
F8 _H ²⁾	DIR5 ⁶⁾	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
FA _H	P7	XXXX- XXX1 _B	_	-	-	-	-	-	_	INT7
FC _H	VR0 ⁷⁾⁸⁾	C5 _H	1	1	0	0	0	1	0	1
FD _H	VR1 ⁷⁾⁸⁾	95 _H	1	0	0	1	0	1	0	1
FE _H	VR2 ⁷⁾⁸⁾	02 _H 9)	0	0	0	0	0	0	1	0

¹⁾ "X" means that the value is undefined and the location is reserved.

²⁾ Bit-addressable special function registers

³⁾ SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.

⁴⁾ This SFR is available in the C515C-8R and C515C-L.

⁵⁾ This SFR is available in the C515C-8E.

- ⁶⁾ This SFR is a mapped SFR. For accessing this SFR, bit PDIR in SFR IP1 must be set.
- ⁷⁾ This SFR is a mapped SFR. For accessing this SFR, bit RMAP in SFR SYSCON must be set.
- ⁸⁾ These SFRs are read-only registers (C515C-8E only).
- ⁹⁾ The content of this SFR varies with the actual step of the C515C-8E (e.g. 01_{H} for the first step).

Port Structure Selection of Port 5

After a reset operation of the C515C, the quasi-bidirectional 8051-compatible port structure is selected. For selection of the bidirectional (CMOS) port 5 structure the bit PMOD of SFR SYSCON must be set. Because each port 5 pin can be programmed as an input or an output, additionally, after the selection of the bidirectional mode the direction register DIR5 of port 5 must be written. This direction register is mapped to the port 5 register. This means, the port register address is equal to its direction register address. **Figure 10** illustrates the port and direction register configuration.

Figure 10 Port Register, Direction Register

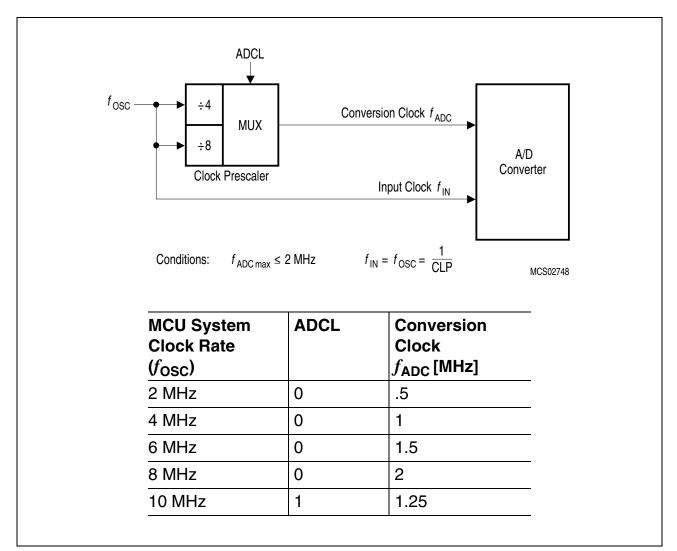


Figure 18 A/D Converter Clock Selection

Interrupt System

The C515C provides 17 interrupt sources with four priority levels. Seven interrupts can be generated by the on-chip peripherals (timer 0, timer 1, timer 2, serial interface, A/D converter, SSC interface, CAN controller), and ten interrupts may be triggered externally (P1.5/T2EX, P3.2/INT0, P3.3/INT1, P1.4/INT2, P1.0/INT3, P1.1/INT4, P1.2/INT5, P1.3/INT6, P7.0/INT7, P4.5/INT8). The wake-up from power-down mode interrupt has a special functionality which allows to exit from the software power-down mode by a short low pulse at pin P3.2/INT0.

In the C515C the 17 interrupt sources are combined to six groups of two or three interrupt sources. Each interrupt group can be programmed to one of the four interrupt priority levels. **Figure 20** to **Figure 22** give a general overview of the interrupt sources and illustrate the interrupt request and control flags.

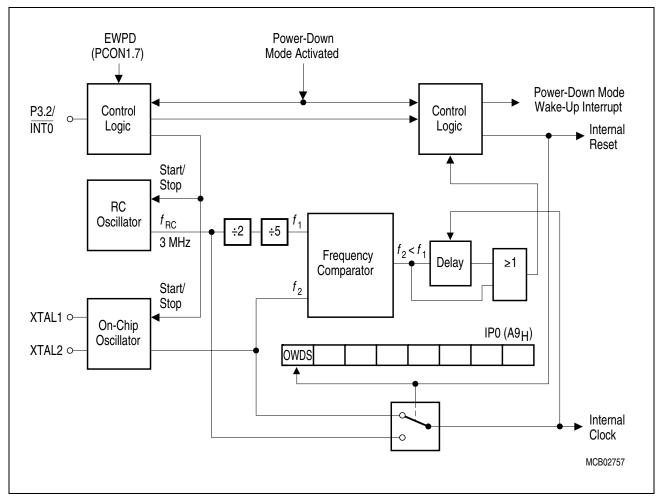


Figure 24 Block Diagram of the Oscillator Watchdog

Power Saving Modes

The C515C provides two basic power saving modes, the idle mode and the power down mode. Additionally, a slow down mode is available. This power saving mode reduces the internal clock rate in normal operating mode and it can be also used for further power reduction in idle mode.

Idle mode

The CPU is gated off from the oscillator. All peripherals are still provided with the clock and are able to work. Idle mode is entered by software and can be left by an interrupt or reset.

Power down mode

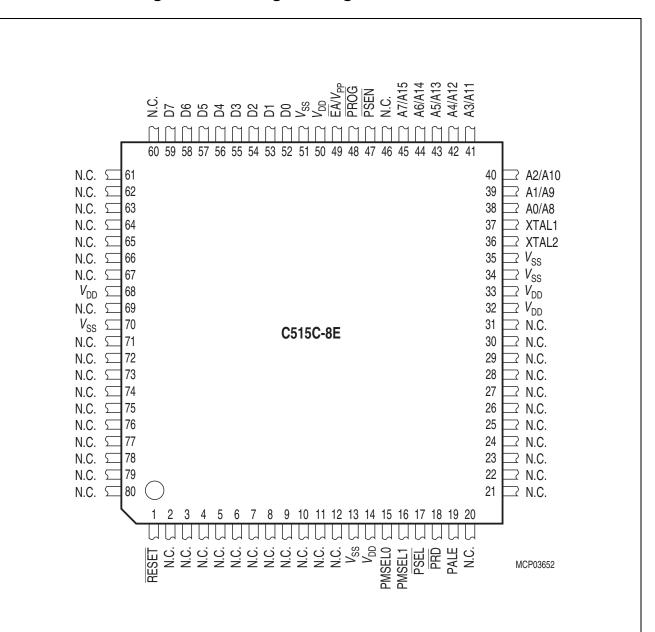
The operation of the C515C is completely stopped and the oscillator is turned off. This mode is used to save the contents of the internal RAM with a very low standby current. **Software power down mode:** Software power down mode is entered by software and can be left by reset or by a short low pulse at pin P3.2/INT0 (or P4.7/RXDC, C515C-8E only).

Hardware power down mode: Hardware power down mode is entered when the pin HWPD is put to low level.

• Slow-down mode

The controller keeps up the full operating functionality, but its normal clock frequency is internally divided by 32. This slows down all parts of the controller, the CPU and all peripherals, to 1/32th of their normal operating frequency. Slowing down the frequency significantly reduces power consumption. The slow down mode can be combined with the idle mode.

 Table 11 gives a general overview of the entry and exit conditions of the power saving modes.


In the power down mode of operation, $V_{\rm DD}$ can be reduced to minimize power consumption. It must be ensured, however, that $V_{\rm DD}$ is not reduced before the power down mode is invoked, and that $V_{\rm DD}$ is restored to its normal operating level, before the power down mode is terminated.

If e.g. the idle mode is left through an interrupt, the microcontroller state (CPU, ports, peripherals) remains preserved. If a power saving mode is left by a hardware reset, the microcontroller state is disturbed and replaced by the reset state of the C515C.

If WS (bit 4) is SFR PCON1 is set (C515C-8E only), pin P4.7/RXDC is alternatively selected as wake-up pin for the software power down mode. If WS (bit 4) is SFR PCON1 is cleared (C515C-8E only), pin P3.2/INTO is selected as wake-up pin for the software power down mode.

For the C515C-8R, P3.2/INTO is always selected as wake-up pin.

C515C-8E Pin Configuration in Programming Mode

Figure 26 P-MQFP-80-1 Pin Configuration of the C515C-8E in Programming Mode (top view)

Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit	Notes	
		min.	max.		
Storage temperature	T _{ST}	-65	150	°C	-
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	-10	10	mA	-
Absolute sum of all input currents during overload condition	-	-	1100 mAl	mA	-
Power dissipation	P _{DISS}	_	1	W	_

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Power Supply Current Calculation Formulas

Parameter		Symbol	Formula
Active mode	C515C-8R/ C515C-LM	I _{DD typ} I _{DD max}	$1.71 \times f_{OSC} + 1.71$ $1.84 \times f_{OSC} + 2.7$
	C515C-8E	I _{DD typ} I _{DD max}	$\begin{array}{c} {\rm 1.59} \times f_{\rm OSC} + 1.76 \\ {\rm 1.79} \times f_{\rm OSC} + 2.2 \end{array}$
Idle mode	C515C-8R/ C515C-LM	I _{DD typ} I _{DD max}	$0.89 \times f_{OSC}$ + 1.56 1.00 × f_{OSC} + 1.87
	C515C-8E	I _{DD typ} I _{DD max}	$0.19 \times f_{OSC}$ + 2.81 $0.20 \times f_{OSC}$ + 3.5
Active mode with slow-down enabled	C515C-8R/ C515C-LM	I _{DD typ} I _{DD max}	$0.14 \times f_{OSC} + 3.22$ $0.18 \times f_{OSC} + 3.95$
	C515C-8E	I _{DD typ} I _{DD max}	$0.16 \times f_{OSC} + 3.05$ $0.19 \times f_{OSC} + 3.63$
Idle mode with slow-down enabled	C515C-8R/ C515C-LM	I _{DD typ} I _{DD max}	$0.08 \times f_{OSC}$ + 3.06 $0.11 \times f_{OSC}$ + 3.8
	C515C-8E	$I_{ m DD \ typ}$ $I_{ m DD \ max}$	$0.13 \times f_{OSC}$ + 2.84 $0.14 \times f_{OSC}$ + 3.37

Note: f_{OSC} is the oscillator frequency in MHz. I_{DD} values are given in mA.

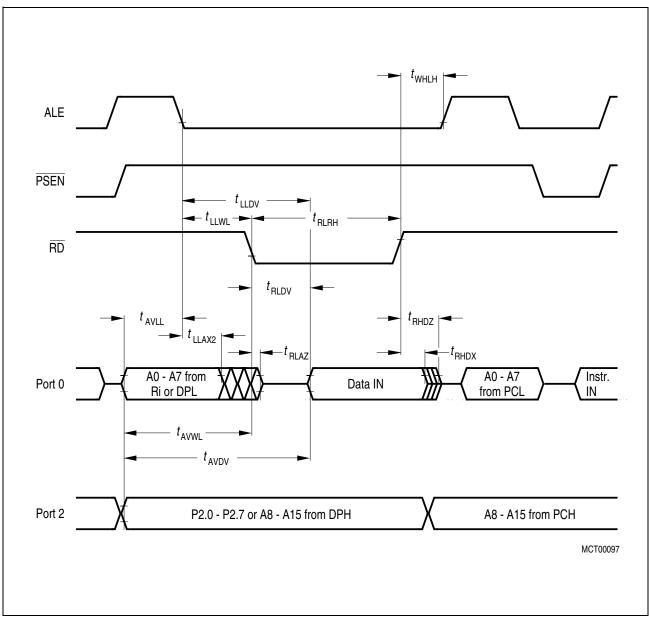
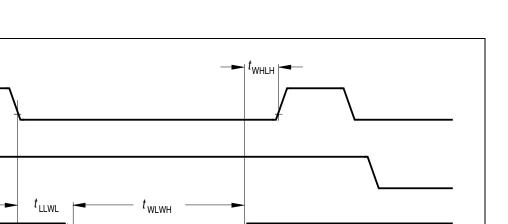



Figure 31 Data Memory Read Cycle

ALE

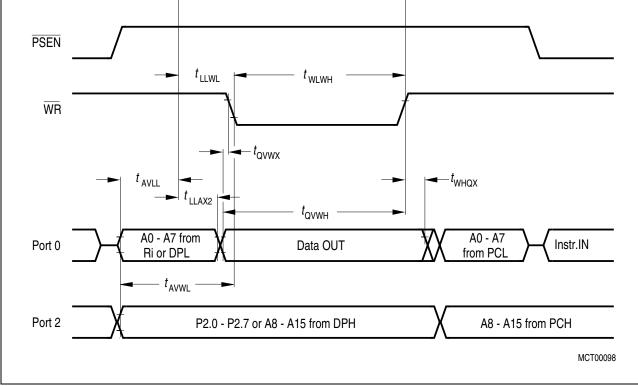


Figure 32 Data Memory Write Cycle

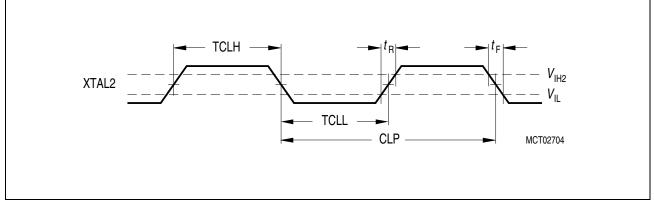


Figure 33 External Clock Drive at XTAL2

C515C

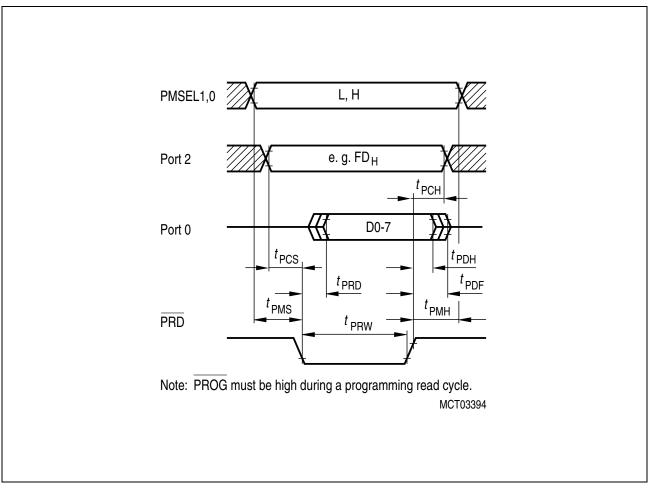


Figure 38 Version Byte - Read Timing