

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C500
Core Size	8-Bit
Speed	10MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	49
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	4.25V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	PG-MQFP-80-7
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c515c8emcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The C515C-8R contains a non-volatile 64 Kbytes read-only program memory. The C515C-L is identical to the C515C-8R, except that it lacks the on-chip program memory. The C515C-8E is the OTP version in the C515C microcontroller with an on-chip 64 Kbytes one-time programmable (OTP) program memory. The C515C is mounted in a P-MQFP-80-1 package.

If compared to the C515C-8R and C515C-L, the C515C-8E OTP version additionally provides two features:

- The wake-up from software power down mode can, additionally to the external pin P3.2/INT0 wake-up capability, also be triggered alternatively by a second pin P4.7/RXDC.
- For power consumption reasons the on-chip CAN controller can be switched off.

 Device
 Internal Program Memory

 ROM
 OTP

 C515C-LM

Table 1Differences in Internal Program Memory of the C505 MCUs

Note: The term C515C refers to all versions described within this document unless otherwise noted.

64 Kbytes

Ordering Information

C515C-8RM

C515C-8EM

The ordering code for Infineon Technologies' microcontrollers provides an exact reference to the required product. This ordering code identifies:

• The derivative itself, i.e. its function set

64 Kbytes

- The specified temperature rage
- The package and the type of delivery

For the available ordering codes for the C515C please refer to the "**Product information Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Number	I/O ¹⁾	Function
	P-MQFP-80-1		
PE/SWD	75	I	Power saving mode enable / Start watchdog timer A low level on this pin allows the software to enter the power down, idle and slow down mode. In case the low level is also seen during reset, the watchdog timer function is off on default. Use of the software controlled power saving modes is blocked, when this pin is held on high level. A high level during reset performs an automatic start of the watchdog timer immediately after reset. When left unconnected this pin is pulled high by a weak internal pull-up resistor.
V _{SSCLK}	13	_	Ground (0 V) for on-chip oscillator This pin is used for ground connection of the on-chip oscillator circuit.
V _{DDCLK}	14	_	Supply voltage for on-chip oscillator This pin is used for power supply of the on-chip oscillator circuit.
V_{DDE1} V_{DDE2}	32 68	_	Supply voltage for I/O ports These pins are used for power supply of the I/O ports during normal, idle, and power down mode.
$V_{\rm SSE1}$ $V_{\rm SSE2}$	35 70	_	Ground (0 V) for I/O ports These pins are used for ground connections of the I/O ports during normal, idle, and power down mode.
V _{DD1}	33	_	Supply voltage for internal logic This pins is used for the power supply of the internal logic circuits during normal, idle, and power down mode.
V _{SS1}	34	_	Ground (0 V) for internal logic This pin is used for the ground connection of the internal logic circuits during normal, idle, and power down mode.

CPU

The C515C is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 6 MHz crystal, 58% of the instructions are executed in 1 μ s (10 MHz: 600 ns).

PSW

Special Funct	tion Re	egister		(D() _H)			Reset V	/alue: 00 _H
Bit No.	MSB							LSB	
	D7	De	D5	D4	רצם.	ר2.	D1	D0	

Bit	Function	1					
CY	Carry Fla Used by	g arithmetic	instruction.				
AC	Auxiliary Used by	Carry Flag	s which execute BCD operations.				
F0	General	Purpose Fl	ag				
RS1 RS0	Register These bit	Bank seleo s are usec	ct control bits I to select one of the four register banks.				
	RS1	RS0	Function				
	0	0	Bank 0 selected, data address 00 _H -07 _H				
	0	1	Bank 1 selected, data address 08 _H -0F _H				
	1	0	Bank 2 selected, data address 10 _H -17 _H				
	1	1	Bank 3 selected, data address 18 _H -1F _H				
OV	Overflow Used by	Flag arithmetic	instruction.				
F1	General	General Purpose Flag					
P	Parity Fla Set/clear odd/even	ig ed by hai number o	rdware after each instruction to indicate an f "one" bits in the accumulator, i.e. even parity.				

Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative way to control the execution of C500 MCUs and to gain extensive information on the internal operation of the controllers. Emulation of on-chip ROM based programs is possible, too.

Each production chip has built-in logic for the support of the Enhanced Hooks Emulation Concept. Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation and production chips are identical.

The Enhanced Hooks Technology, which requires embedded logic in the C500 allows the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate all operating modes of the different versions of the C500 microcontrollers. This includes emulation of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in single step mode and to read the SFRs after a break.

Figure 9 Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks Emulation Concept to control the operation of the device during emulation and to transfer informations about the program execution and data transfer between the external emulation hardware (ICE-system) and the C500 MCU.

	Special			l)
Block	Symbol	Name	Addr	Contents after Reset
Serial Channel	ADCON0 ¹⁾ PCON ¹⁾ SBUF SCON SRELL SRELH	A/D Converter Control Register 0 Power Control Register Serial Channel Buffer Register Serial Channel Control Register Serial Channel Reload Register, low byte Serial Channel Reload Register, high byte	D8_H ²⁾ 87 _H 99 _H 98_H ²⁾ AA _H BA _H	$\begin{array}{c} 00_{\rm H} \\ 00_{\rm H} \\ XX_{\rm H}^{3)} \\ 00_{\rm H} \\ D9_{\rm H} \\ XXXXX11_{\rm B}^{3)} \end{array}$
CAN Controller	CR SR IR BTR0 BTR1 GMS0 GMS1 UGML0 UGML1 LGML0 LGML1 UMLM0 UMLM1	Control Register Status Register Interrupt Register Bit Timing Register Low Bit Timing Register High Global Mask Short Register Low Global Mask Short Register High Upper Global Mask Long Register Low Upper Global Mask Long Register High Lower Global Mask Long Register High Upper Mask of Last Message Register High Lower Mask of Last Message Register	F700 _H F701 _H F702 _H F705 _H F705 _H F706 _H F707 _H F708 _H F709 _H F708 _H F70B _H F70B _H F70D _H F70D _H	$\begin{array}{c} 101_{H} \\ XX_{H}^{6)} \\ XX_{H}^{6)} \\ UU_{H}^{6)} \\ 0UUUUUUUUB_{B}^{6)} \\ UUU_{H}^{6)} \\ UUU_{H}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UUUUU0000_{B}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \end{array}$
	LMLM1 MCR0 MCR1 UAR0 UAR1 LAR0 LAR1 MCFG DB0n DB1n DB2n DB3n DB2n DB3n DB4n DB5n DB6n DB6n DB7n	Lower Mask of Last Message Register High Message Object Registers: Message Control Register Low Message Control Register High Upper Arbitration Register High Lower Arbitration Register High Lower Arbitration Register Low Lower Arbitration Register High Message Configuration Register Message Data Byte 0 Message Data Byte 0 Message Data Byte 1 Message Data Byte 2 Message Data Byte 3 Message Data Byte 4 Message Data Byte 5 Message Data Byte 6 Message Data Byte 7	$\begin{array}{c} {\sf F70F_H} \\ {\sf F7n0_H}^{5)} \\ {\sf F7n1_H}^{5)} \\ {\sf F7n2_H}^{5)} \\ {\sf F7n3_H}^{5)} \\ {\sf F7n3_H}^{5)} \\ {\sf F7n5_H}^{5)} \\ {\sf F7n6_H}^{5)} \\ {\sf F7n6_H}^{5)} \\ {\sf F7n8_H}^{5)} \\ {\sf F7n8_H}^{5)} \\ {\sf F7nB_H}^{5)} \\ {\sf F7nC_H}^{5)} \\ {\sf F7nC_H}^{5)} \\ {\sf F7nC_H}^{5)} \\ {\sf F7nC_H}^{5)} \\ {\sf F7nE_H}^{5)} \end{array}$	$\begin{array}{c} UUUUU0000_{B}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UU_{H}^{6)} \\ UUUUU0000_{B}^{6)} \\ UUUUUU0000_{B}^{6)} \\ XX_{H}^{6)} \\ X$

Table 4 Special Function Registers - Functional Block (cont'd)

Table 5Contents of the SFRs, SFRs in Numeric Order
of their Addresses

Addr.	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80 _H ²⁾	P0	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
86 _H	WDTREL	00 _H	WDT PSEL	.6	.5	.4	.3	.2	.1	.0
87 _H	PCON	00 _H	SMOD	PDS	IDLS	SD	GF1	GF0	PDE	IDLE
88 _H ²⁾	TCON	00 _H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
88 _H ³⁾	PCON1 ⁴⁾	0XXX- XXXX _B	EWPD	-	-	-	-	_	-	-
88 _H ³⁾	PCON1 ⁵⁾	0XX0- XXXX _B	EWPD	-	-	WS	-	-	-	-
89 _H	TMOD	00 _H	GATE	C/T	M1	M0	GATE	C/T	M1	M0
8A _H	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8B _H	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8C _H	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8D _H	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
90 _H ²⁾	P1	FF _H	T2	CLK- OUT	T2EX	INT2	INT6	INT5	INT4	INT3
91 _H	XPAGE	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
92 _H	DPSEL	XXXX- X000 _B	_	-	_	_	_	.2	.1	.0
93 _H	SSCCON	07 _H	SCEN	TEN	MSTR	CPOL	CPHA	BRS2	BRS1	BRS0
94 _H	STB	ХХ _Н	.7	.6	.5	.4	.3	.2	.1	.0
95 _H	SRB	ХХ _Н	.7	.6	.5	.4	.3	.2	.1	.0
96 _H	SSCMOD	00 _H	LOOPB	TRIO	0	0	0	0	0	LSBSM
98 _H ²⁾	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99 _H	SBUF	ХХ _Н	.7	.6	.5	.4	.3	.2	.1	.0
9A _H	IEN2	X00X- X00X _B	_	-	EX8	EX7	-	ESSC	ECAN	_
A0 _H ²⁾	P2	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
A8 _H ²⁾	IEN0	00 _H	EAL	WDT	ET2	ES	ET1	EX1	ET0	EX0
A9 _H	IP0	00 _H	OWDS	WDTS	.5	.4	.3	.2	.1	.0

Table 5Contents of the SFRs, SFRs in Numeric Order
of their Addresses (cont'd)

Addr.	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AA _H	SRELL	D9 _H	.7	.6	.5	.4	.3	.2	.1	.0
AB _H	SCF	XXXX- XX00 _B	_	_	_	_	_	_	WCOL	тс
AC _H	SCIEN	XXXX- XX00 _B	_	_	_	_	_	_	WCEN	TCEN
80 _H ²⁾	P3	FF _H	RD	WR	T1	Т0	INT1	INT0	TxD	RxD
B1 _H	SYSCON ⁴⁾	X010- XX01 _B	_	PMOD	EALE	RMAP	_	_	XMAP1	XMAP0
B1 _H	SYSCON ⁵⁾	X010- X001 _B	_	PMOD	EALE	RMAP	_	CSWO	XMAP1	XMAP0
88 _H 2)	IEN1	00 _H	EXEN2	SWDT	EX6	EX5	EX4	EX3	EX2	EADC
B9 _H	IP1	0X00- 0000 _B	PDIR	-	.5	.4	.3	.2	.1	.0
BA _H	SRELH	XXXX- XX11 _B	-	-	-	-	-	-	.1	.0
C0 _H ²⁾	IRCON	00 _H	EXF2	TF2	IEX6	IEX5	IEX4	IEX3	IEX2	IADC
C1 _H	CCEN	00 _H	COCA H3	COCA L3	COCA H2	COCA L2	COCA H1	COCA L1	COCA H0	COCA L0
C2 _H	CCL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C3 _H	CCH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C4 _H	CCL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C5 _H	CCH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C6 _H	CCL3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C7 _H	CCH3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C8 _H ²⁾	T2CON	00 _H	T2PS	I3FR	I2FR	T2R1	T2R0	T2CM	T2I1	T2I0
CA _H	CRCL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CB _H	CRCH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CD _H	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0

Table 5Contents of the SFRs, SFRs in Numeric Order
of their Addresses (cont'd)

Addr.	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D0 _H ²⁾	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Ρ
D8 _H ²⁾	ADCON0	00 _H	BD	CLK	ADEX	BSY	ADM	MX2	MX1	MX0
D9 _H	ADDATH	00 _H	.9	.8	.7	.6	.5	.4	.3	.2
DA _H	ADDATL	00XX- XXXX _B	.1	.0	_	-	-	_	_	-
DB _H	P6	-	.7	.6	.5	.4	.3	.2	.1	.0
DC _H	ADCON1	0XXX- X000 _B	ADCL	-	-	-	0	MX2	MX1	MX0
E0 _H ²⁾	ACC	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E8 _H ²⁾	P4	FF _H	RXDC	TXDC	INT8	SLS	STO	SRI	SCLK	ADST
F0 _H ²⁾	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F8 _H ²⁾	P5	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
F8 _H ²⁾	DIR5 ⁶⁾	FF _H	.7	.6	.5	.4	.3	.2	.1	.0
FA _H	P7	XXXX- XXX1 _B	_	-	_	-	-	_	_	INT7
FC _H	VR0 ⁷⁾⁸⁾	C5 _H	1	1	0	0	0	1	0	1
FD _H	VR1 ⁷⁾⁸⁾	95 _H	1	0	0	1	0	1	0	1
FE _H	VR2 ⁷⁾⁸⁾	02 _H ⁹⁾	0	0	0	0	0	0	1	0

¹⁾ "X" means that the value is undefined and the location is reserved.

²⁾ Bit-addressable special function registers

³⁾ SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.

⁴⁾ This SFR is available in the C515C-8R and C515C-L.

⁵⁾ This SFR is available in the C515C-8E.

- ⁶⁾ This SFR is a mapped SFR. For accessing this SFR, bit PDIR in SFR IP1 must be set.
- ⁷⁾ This SFR is a mapped SFR. For accessing this SFR, bit RMAP in SFR SYSCON must be set.
- ⁸⁾ These SFRs are read-only registers (C515C-8E only).
- ⁹⁾ The content of this SFR varies with the actual step of the C515C-8E (e.g. 01_{H} for the first step).

Table 6Contents of the CAN Registers in Numeric Order
of their Addresses

Addr. n = 1 to $F_{H}^{(1)}$	Regis- ter	Content after Reset ²⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
F700 _H	CR	01 _H	TEST	CCE	0	0	EIE	SIE	IE	INIT
F701 _H	SR	XX _H	BOFF	EWRN	-	RXOK	ТХОК	LEC2	LEC1	LEC0
F702 _H	IR	XX _H				IN	TID			
F704 _H	BTR0	UU _H	S	JW			BI	RP		
F705 _H	BTR1	0UUU. UUUU _B	0		TSEG2			TSI	EG1	
F706 _H	GMS0	UU _H				ID2	8-21			
F707 _H	GMS1	UUU1. 1111 _B		ID20-18		1	1	1	1	1
F708 _H	UGML0	UU _H				ID2	8-21			
F709 _H	UGML1	UU _H				ID2	0-13			
F70A _H	LGML0	UU _H				ID1	2-5			
F70B _H	LGML1	UUUU. U000 _B	ID4-0 0 0 0					0		
F70C _H	UMLM0	UU _H				ID2	8-21			
F70D _H	UMLM1	UU _H	ID20-18 ID17-13							
F70E _H	LMLM0	UU _H				ID1	2-5			
F70F _H	LMLM1	UUUU. U000 _B			ID4-0			0	0	0
F7n0 _H	MCR0	UU _H	MSC	GVAL	ТХ	ίE	R	XIE	INT	PND
F7n1 _H	MCR1	UU _H	RMT	PND	ТХ	RQ	MSC CPU	GLST IUPD	NEV	VDAT
F7n2 _H	UAR0	UU _H				ID2	8-21			
F7n3 _H	UAR1	UU _H		ID20-18				ID17-13		
F7n4 _H	LAR0	UU _H				ID1	2-5			
F7n5 _H	LAR1	UUUU. U000 _B			ID4-0			0	0	0
F7n6 _H	MCFG	UUUU. UU00 _B	DLC DIR XTD 0 0					0		
F7n7 _H	DB0n	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
F7n8 _H	DB1n	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
F7n9 _H	DB2n	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
F7nA _H	DB3n	XX _H	.7	.6	.5	.4	.3	.2	.1	.0
F7nB _H	DB4n	XX _H	.7	.6	.5	.4	.3	.2	.1	.0

Timer 2 Compare Modes

The compare function of a timer/register combination operates as follows: the 16-bit value stored in a compare or compare/capture register is compared with the contents of the timer register; if the count value in the timer register matches the stored value, an appropriate output signal is generated at a corresponding port pin and an interrupt can be generated.

Compare Mode 0

In compare mode 0, upon matching the timer and compare register contents, the output signal changes from low to high. It goes back to a low level on timer overflow. As long as compare mode 0 is enabled, the appropriate output pin is controlled by the timer circuit only and writing to the port will have no effect. **Figure 13** shows a functional diagram of a port circuit when used in compare mode 0. The port latch is directly controlled by the timer overflow and compare match signals. The input line from the internal bus and the write-to-latch line of the port latch are disconnected when compare mode 0 is enabled.

Figure 13 Port Latch in Compare Mode 0

Figure 19 A/D Converter Block Diagram

Figure 22Interrupt Request Sources (Part 3)

Table 10 Interrupt Source and Vectors

Interrupt Source	Interrupt Vector Address	Interrupt Request Flags
External Interrupt 0	0003 _H	IE0
Timer 0 Overflow	000B _H	TF0
External Interrupt 1	0013 _H	IE1
Timer 1 Overflow	001B _H	TF1
Serial Channel	0023 _H	RI / TI
Timer 2 Overflow / Ext. Reload	002B _H	TF2 / EXF2
A/D Converter	0043 _H	IADC
External Interrupt 2	004B _H	IEX2
External Interrupt 3	0053 _H	IEX3
External Interrupt 4	005B _H	IEX4
External Interrupt 5	0063 _H	IEX5
External Interrupt 6	006B _H	IEX6
Wake-up from power-down mode	007B _H	-
CAN controller	008B _H	-
External Interrupt 7	00A3 _H	-
External Interrupt 8	00AB _H	-
SSC interface	0093 _H	TC / WCOL

Symbol	Pin Number	I/O ¹⁾	Function
A0/A8 - A7/A15	38 - 45	I	Address lines P2.0-7 are used as multiplexed address input lines A0-A7 and A8-A15. A8-A15 must be latched with PALE.
PSEN	47	I	Program store enable This input must be at static "0" level during the whole programming mode.
PROG	48	1	Programming mode write strobe This input is used in programming mode as a write strobe for OTP memory program and lock bit write operations. During basic programming mode selection a low level must be applied to PROG.
EA/V _{PP}	49	1	External Access / Programming voltage This pin must be at 11.5 V (V_{PP}) voltage level during programming of an OTP memory byte or lock bit. During an OTP memory read operation this pin must be at high level (V_{IH}). This pin is also used for basic programming mode selection. At basic programming mode selection a low level must be applied to \overline{EA}/V_{PP} .
D0 - 7	52 - 58	I/O	Data lines 0-7 During programming mode, data bytes are read or written from or to the C515C-8E via the bidirectional D0-7 which are located at port 0.
V _{SS}	13, 34, 35, 51, 70	-	Circuit ground potential must be applied to these pins in programming mode.
V _{DD}	14, 32, 33, 50, 69	-	Power supply terminal must be applied to these pins in programming mode.
N.C.	2-12, 20-31, 46, 60-67, 69, 71-80	_	Not Connected These pins should not be connected in programming mode.

Table 12 Pin Definitions and Functions in Programming Mode (cont'd)

¹⁾ I = Input; O = Output

Table 13 Access Modes Sele	ection
----------------------------	--------

Access Mode	EA/	PROG	PRD	PMSEL		Address	Data
	V_{PP}			1	0	(Port 2)	(Port 0)
Program OTP memory byte	V _{PP}	11	Н	Н	Н	A0-7 A8-15	D0-7
Read OTP memory byte	V_{IH}	Н					
Program OTP lock bits	V_{PP}		Н	Н	L	_	D1, D0
Read OTP lock bits	V_{IH}	Н					see Table 14
Read OTP version byte	V _{IH}	Η	1.	L	Η	Byte addr. of version byte	D0-7

C515C-8E Lock Bits Programming / Read

The C515C-8E has two programmable lock bits which, when programmed according **Table 14**, provide four levels of protection for the on-chip OTP code memory. The state of the lock bits can also be read.

DC Characteristics (Operating Conditions apply)

Parameter	Sym-	Limit	Values	Unit	Test	
	bol	min.	max.		Condition	
Input low voltages all except EA, RESET, HWPD EA pin RESET and HWPD pins Port 5 in CMOS mode	$V_{\rm IL}$ $V_{\rm IL1}$ $V_{\rm IL2}$ $V_{\rm ILC}$	-0.5 -0.5 -0.5 -0.5	0.2 V _{DD} - 0.1 0.2 V _{DD} - 0.3 0.2 V _{DD} + 0.1 0.3 V _{DD}	V	-	
Input high voltages all except XTAL2, RESET, and HWPD) XTAL2 pin RESET and HWPD pins Port 5 in CMOS mode	$V_{\rm IH}$ $V_{\rm IH1}$ $V_{\rm IH2}$ $V_{\rm IHC}$	0.2 V _{DD} + 0.9 0.7 V _{DD} 0.6 V _{DD} 0.7 V _{DD}	$V_{\rm DD}$ + 0.5 $V_{\rm DD}$ + 0.5 $V_{\rm DD}$ + 0.5 $V_{\rm DD}$ + 0.5	V	_	
Output low voltages Ports 1, 2, 3, 4, 5, 7 (incl. CMOS) Port 0, ALE, PSEN, CPUR P4.1, P4.3 in push-pull mode	V_{OL} V_{OL1} V_{OL3}		0.45 0.45 0.45	V	$I_{OL} = 1.6 \text{ mA}^{1)}$ $I_{OL} = 3.2 \text{ mA}^{1)}$ $I_{OL} = 3.75 \text{ mA}^{1)}$	
Output high voltages Ports 1, 2, 3, 4, 5, 7 Port 0 in external bus mode, ALE, PSEN, CPUR Port 5 in CMOS mode	V _{OH} V _{OH2} V _{OHC}	2.4 0.9 V _{DD} 2.4 0.9 V _{DD} 0.9 V _{DD}	- - - -	V	$I_{OH} = -80 \ \mu A$ $I_{OH} = -10 \ \mu A$ $I_{OH} = -800 \ \mu A$ $I_{OH} = -80 \ \mu A^{2)}$ $I_{OH} = -800 \ \mu A$	
Logic 0 input current Ports 1, 2, 3, 4, 5, 7	I _{IL}	-10	-70	μA	$V_{\rm IN} = 0.45 \text{ V}$	
Logical 0-to-1 transition current Ports 1, 2, 3, 4, 5, 7	I _{TL}	-65	-650	μA	$V_{\rm IN}$ = 2 V	
Input leakage current Port 0, EA, P6, HWPD, AIN0-7	I _{LI}	_	±1	μA	0.45 < V _{IN} < V _{DD}	
Input low current To RESET for reset XTAL2 PE/SWD	I_{LI2} I_{LI3} I_{LI4}		-100 -15 -20	μA	$V_{\rm IN} = 0.45 \text{ V}$ $V_{\rm IN} = 0.45 \text{ V}$ $V_{\rm IN} = 0.45 \text{ V}$	
Pin capacitance	C _{IO}	-	10	pF	$f_{c} = 1 \text{ MHz},$ $T_{A} = 25 \text{ °C}$	
Overload current	I _{OV}	-	±5	mA	3)4)	
Programming voltage	V_{PP}	10.9	12.1	V	11.5 V ± 5%	

Power Supply Current

Parameter			Sym- bol	Limit Values		Unit	Test Condition
				typ. ¹⁾	max. ²⁾		
Active mode	C515C-8R/ C515C-LM	6 MHz 10 MHz	I _{DD}	11.97 18.81	13.74 21.10	mA	3)
	C515C-8E	6 MHz 10 MHz	I _{DD}	11.3 17.66	12.94 20.10	mA	
Idle mode	C515C-8R/ C515C-LM	6 MHz 10 MHz	I _{DD}	6.9 10.46	7.87 11.87	mA	4)
	C515C-8E	6 MHz 10 MHz	I _{DD}	3.95 4.71	4.70 5.50	mA	
Active mode with slow-down enabled	C515C-8R/ C515C-LM	6 MHz 10 MHz	I _{DD}	4.06 4.62	5.03 5.75	mA	5)
	C515C-8E	6 MHz 10 MHz	I _{DD}	4.01 4.65	4.77 5.53	mA	
Idle mode with slow-down enabled	C515C-8R/ C515C-LM	6 MHz 10 MHz	I _{DD}	3.54 3.86	4.46 4.90	mA	6)
	C515C-8E	6 MHz 10 MHz	I _{DD}	3.62 4.14	4.21 4.77	mA	
Power-down mode	C515C-8R/ C515C-LM		I _{PD}	26	42.9	μA	$V_{\text{DD}} = 2 \dots 5.5 \text{ V}$
	C515C-8E		I _{PD}	11.14	30	μA	
At EA/V _{PP} in programming mode	C515C-8E		I _{DDP}	_	30	mA	_

¹⁾ The typical I_{DD} values are periodically measured at T_A = +25 °C and V_{DD} = 5 V but not 100% tested.

- ²⁾ The maximum I_{DD} values are measured under worst case conditions ($T_A = 0$ °C or -40 °C and $V_{DD} = 5.5$ V)
- ³⁾ I_{DD} (active mode) is measured with: XTAL2 driven with t_{CLCH} , $t_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{DD} - 0.5$ V; XTAL1 = N.C.; $\overline{EA} = \overline{PE}/SWD = Port 0 = Port 6 = V_{DD}$; $\overline{HWPD} = V_{DD}$; $\overline{RESET} = V_{SS}$; all other pins are disconnected.
- ⁴⁾ I_{DD} (idle mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL2 driven with t_{CLCH} , $t_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{DD} - 0.5$ V; XTAL1 = N.C.; RESET = V_{DD} ; EA = V_{SS} ; Port0 = V_{DD} ; all other pins are disconnected;
- ⁵⁾ *I*_{DD} (active mode with slow-down mode) is measured with all output pins disconnected and with all peripherals disabled;

XTAL2 driven with t_{CLCH} , $t_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{DD} - 0.5$ V; XTAL1 = N.C.; RESET = V_{DD} ; all other pins are disconnected; the microcontroller is put into slow-down mode by software.

SSC Interface Characteristics

Parameter	eter Symbol Limit Values			Unit	
		min.	max.		
Clock Cycle Time: Master Mode Slave Mode	^t sclk ^t sclk	0.4 1.0		μs μs	
Clock high time	t _{SCH}	360	-	ns	
Clock low time	t _{SCL}	360	-	ns	
Data output delay	t _D	_	100	ns	
Data output hold	t _{HO}	0	—	ns	
Data input setup	t _S	100	—	ns	
Data input hold	t _{HI}	100	—	ns	
TC bit set delay	t _{DTC}	-	8 CLP	ns	

External Clock Drive at XTAL2

Parameter	Symbol	CPU Clock Duty cycle	k = 10 MHz e 0.4 to 0.6	Variable (1/CLP = 2	Unit	
		min.	max.	min.	max.	
Oscillator period	CLP	100	100	100	500	ns
High time	TCL _H	40	_	40	CLP - TCL _L	ns
Low time	TCL	40	-	40	CLP - TCL _H	ns
Rise time	t _R	-	12	_	12	ns
Fall time	t _F	-	12	_	12	ns
Oscillator duty cycle	DC	0.4	0.6	40 / CLP	1 - 40 / CLP	-
Clock cycle	TCL	40	60	$\text{CLP} \times \text{DC}_{\text{min}}$	$\text{CLP} \times \text{DC}_{\text{max}}$	ns

Note: The 10 MHz values in the tables are given as an example for a typical duty cycle variation of the oscillator clock from 0.4 to 0.6.

Figure 35 Programming Code Byte - Write Cycle Timing

Figure 36 Verify Code Byte - Read Cycle Timing