

Welcome to E-XFL.COM

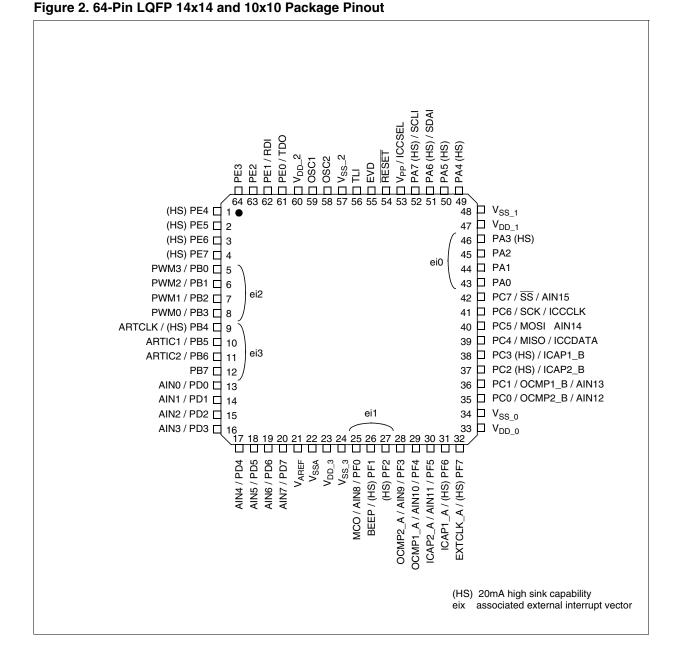
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321br9t3


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

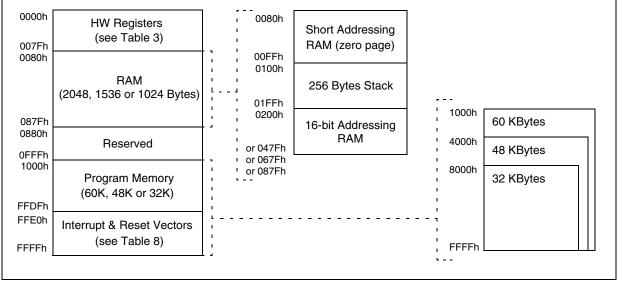
1 DESC	CRIPTION	7
2 PIN D	DESCRIPTION	8
	STER & MEMORY MAP	
4 FLAS		18
4.1		18
4.2	MAIN FEATURES	18
4.3	STRUCTURE	18
	4.3.1 Read-out Protection	18
4.4	ICC INTERFACE	19
4.5	ICP (IN-CIRCUIT PROGRAMMING)	20
4.6	IAP (IN-APPLICATION PROGRAMMING)	20
4.7	RELATED DOCUMENTATION	20
	4.7.1 Register Description	20
5 CEN	TRAL PROČESSING UNIT	
5.1	INTRODUCTION	21
5.2	MAIN FEATURES	21
5.3	CPU REGISTERS	21
6 SUPF	PLY, RESET AND CLOCK MANAGEMENT	24
	PHASE LOCKED LOOP	
6.2	MULTI-OSCILLATOR (MO)	25
	RESET SEQUENCE MANAGER (RSM)	
	6.3.1 Introduction	
	6.3.2 Asynchronous External RESET pin	
	6.3.3 External Power-On RESET	
	6.3.4 Internal Low Voltage Detector (LVD) RESET	27
	6.3.5 Internal Watchdog RESET	
6.4	SYSTEM INTEGRITY MANAGEMENT (SI)	
	6.4.1 Low Voltage Detector (LVD)	
	6.4.2Auxiliary Voltage Detector (AVD)6.4.3Low Power Modes	
	6.4.4 Register Description	
7 INTE	RRUPTS	
7.1		32
7.2	MASKING AND PROCESSING FLOW	32
7.3	INTERRUPTS AND LOW POWER MODES	34
7.4	CONCURRENT & NESTED MANAGEMENT	34
7.5	INTERRUPT REGISTER DESCRIPTION	35
	EXTERNAL INTERRUPTS	
	7.6.1 I/O Port Interrupt Sensitivity	-
7.7	EXTERNAL INTERRUPT CONTROL REGISTER (EICR)	39
	ER SAVING MODES	
	SLOW MODE	
	WAIT MODE	

2 PIN DESCRIPTION

3 REGISTER & MEMORY MAP

As shown in Figure 5, the MCU is capable of addressing 64K bytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register locations, up to 2Kbytes of RAM and up to 60Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.


The highest address bytes contain the user reset and interrupt vectors.

IMPORTANT: Memory locations marked as "Reserved" must never be accessed. Accessing a reseved area can have unpredictable effects on the device.

Related Documentation

AN 985: Executing Code in ST7 RAM

Figure 5. Memory Map

4 FLASH PROGRAM MEMORY

4.1 Introduction

The ST7 dual voltage High Density Flash

(HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external V_{PP} supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming).

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main Features

- Three Flash programming modes:
 - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
 - ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
 - IAP (In-Application Programming) In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running.
- ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM
- Read-out protection
- Register Access Security System (RASS) to prevent accidental programming or erasing

4.3 Structure

The Flash memory is organised in sectors and can be used for both code and data storage.

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 4). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see Figure 6). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

Table 4. Sectors available in Flash devices

Flash Size (bytes)	Available Sectors
4K	Sector 0
8K	Sectors 0,1
> 8K	Sectors 0,1, 2

4.3.1 Read-out Protection

Read-out protection, when selected, provides a protection against Program Memory content extraction and against write access to Flash memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

In flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed.

Read-out protection selection depends on the device type:

- In Flash devices it is enabled and removed through the FMP_R bit in the option byte.
- In ROM devices it is enabled by mask option specified in the Option List.

FLASH MEMORY SIZE 1000h 3EEEh SECTOR 2 16 Kbytes 2 Kbytes 8 Kbytes 24 Kbytes 40 Kbytes 52 Kbytes DFFFh 4 Kbytes SECTOR 1 EFFF 4 Kbytes SECTOR 0 FFFFh


Figure 6. Memory Map and Sector Address

CENTRAL PROCESSING UNIT (Cont'd)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Arithmetic Management Bits

Bit $4 = \mathbf{H}$ Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0: No half carry has occurred. 1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 2 = **N** *Negative*.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result 7th bit.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative

(that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = **Z** Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

- 0: The result of the last operation is different from zero.
- 1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

Interrupt Management Bits

Bit 5,3 = 11, 10 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.

Interrupt Software Priority	11	10
Level 0 (main)	1	0
Level 1	0	1
Level 2	0	0
Level 3 (= interrupt disable)	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

6.4.4 Register Description

SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR)

Read/Write

Reset Value: 000x 000x (00h)

/							0
AVD S	AVD IE	AVD F	LVD RF	0	0	0	WDG RF

Bit 7 = **AVDS** Voltage Detection selection

This bit is set and cleared by software. Voltage Detection is available only if the LVD is enabled by option byte.

0: Voltage detection on V_{DD} supply

1: Voltage detection on EVD pin

Bit 6 = **AVDIE** Voltage Detector interrupt enable

This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled 1: AVD interrupt enabled

Bit 5 = **AVDF** Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 17 and to Section 6.4.2.1 for additional details.

0: V_{DD} or V_{EVD} over $V_{IT+(AVD)}$ threshold 1: V_{DD} or V_{EVD} under $V_{IT-(AVD)}$ threshold

Bit 4 = LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.

Bits 31 = Reserved, must be kept cleared.

Bit 0 = WDGRF Watchdog reset flag

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).

Combined with the LVDRF flag information, the flag description is given by the following table.

RESET Sources	LVDRF	WDGRF
External RESET pin	0	0
Watchdog	0	1
LVD	1	Х

Application notes

The LVDRF flag is not cleared when another RE-SET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.

/

INTERRUPTS (Cont'd)

Table 8. Interrupt Mapping

N°	Source Block	Description	Register Label	Priority Order	Exit from HALT/ ACTIVE HALT	Address Vector
	RESET	Reset	N/A		yes	FFFEh-FFFFh
	TRAP	Software interrupt	IN/A		no	FFFCh-FFFDh
0	TLI	External top level interrupt	EICR		yes	FFFAh-FFFBh
1	MCC/RTC	Main clock controller time base interrupt	MCCSR	Higher	yes	FFF8h-FFF9h
2	ei0	External interrupt port A30		Priority	yes	FFF6h-FFF7h
3	ei1	External interrupt port F20	N/A		yes	FFF4h-FFF5h
4	ei2	External interrupt port B30	IN/A		yes	FFF2h-FFF3h
5	ei3	External interrupt port B74			yes	FFF0h-FFF1h
6		Not used				FFEEh-FFEFh
7	SPI	SPI peripheral interrupts	SPICSR		yes ¹	FFECh-FFEDh
8	TIMER A	TIMER A peripheral interrupts	TASR	•	no	FFEAh-FFEBh
9	TIMER B	TIMER B peripheral interrupts	TBSR		no	FFE8h-FFE9h
10	SCI	SCI Peripheral interrupts SCISR La		Lower	no	FFE6h-FFE7h
11	AVD	Auxiliary Voltage detector interrupt SICSR		Priority	no	FFE4h-FFE5h
12	I2C	I2C Peripheral interrupts	(see periph)		no	FFE2h-FFE3h
13	PWM ART	PWM ART interrupt	ARTCSR		yes ²	FFE0h-FFE1h

Notes:

- 1. Exit from HALT possible when SPI is in slave mode.
- 2. Exit from HALT possible when PWM ART is in external clock mode.

7.6 EXTERNAL INTERRUPTS

7.6.1 I/O Port Interrupt Sensitivity

The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR register (Figure 23). This control allows to have up to 4 fully independent external interrupt source sensitivities.

Each external interrupt source can be generated on four (or five) different events on the pin:

- Falling edge
- Rising edge
- Falling and rising edge

- Falling edge and low level
- Rising edge and high level (only for ei0 and ei2)

To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity.

The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits of the EICR.

7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
IS11	IS10	IPB	IS21	IS20	IPA	TLIS	TLIE

Bit 7:6 = **IS1[1:0]** *ei2* and *ei3* sensitivity The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following external interrupts: - ei2 (port B3..0)

IS11	IS10	External Interrupt Sensitivity				
1311	1310	IPB bit =0	IPB bit =1			
0	0	Falling edge & low level	Rising edge & high level			
0	1	Rising edge only	Falling edge only			
1	0	Falling edge only	Rising edge only			
1	1	Rising and falling edge				

- ei3 (port B7..4)

IS11	IS10	External Interrupt Sensitivity		
0	0	Falling edge & low level		
0	1	Rising edge only		
1	0	Falling edge only		
1	1	Rising and falling edge		

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bit 5 = **IPB** Interrupt polarity for port B

This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3).

- 0: No sensitivity inversion
- 1: Sensitivity inversion

Bit 4:3 = **IS2[1:0]** *ei0* and *ei1* sensitivity

The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following external interrupts:

IS21	IS20	External Interr	upt Sensitivity	
1321	1320	IPA bit =0	IPA bit =1	
0	0	Falling edge & low level	Rising edge & high level	
0	1	Rising edge only	Falling edge only	
1	0	Falling edge only	Rising edge only	
1	1	Rising and falling edge		

- ei1 (port F2..0)

- ei0 (port A3..0)

IS21	IS20	External Interrupt Sensitivity		
0	0	Falling edge & low level		
0	1	Rising edge only		
1	0	Falling edge only		
1	1	Rising and falling edge		

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bit 2 = IPA Interrupt polarity for port A

This bit is used to invert the sensitivity of the port A [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion

1: Sensitivity inversion

Bit 1 = **TLIS** *TLI* sensitivity

This bit allows to toggle the TLI edge sensitivity. It can be set and cleared by software only when TLIE bit is cleared.

- 0: Falling edge
- 1: Rising edge

Bit 0 = **TLIE** *TLI* enable

This bit allows to enable or disable the TLI capability on the dedicated pin. It is set and cleared by software.

0: TLI disabled 1: TLI enabled

I: ILI enabled

Note: a parasitic interrupt can be generated when clearing the TLIE bit.

I/O PORTS (Cont'd)

9.5.1 I/O Port Implementation

The I/O port register configurations are summarised as follows.

Standard Ports

PA5:4, PC7:0, PD7:0, PE7:3, PE1:0, PF7:3,

MODE	DDR	OR
floating input	0	0
pull-up input	0	1
open drain output	1	0
push-pull output	1	1

Interrupt Ports

PA2:0, PB6:5, PB4, PB2:0, PF1:0 (with pull-up)

MODE	DDR	OR
floating input	0	0
pull-up interrupt input	0	1
open drain output	1	0
push-pull output	1	1

MODE	DDR	OR
floating input	0	0
floating interrupt input	0	1
open drain output	1	0
push-pull output	1	1

True Open Drain Ports PA7:6

MODE	DDR
floating input	0
open drain (high sink ports)	1

Pull-Up Input Port PE2

MODE	DDR	OR
pull-up input	0	х
open drain output*	1	0
push-pull output*	1	1

/

Table 12. Port Configuration

Port	Pin name	lı	nput	Out	tput
Port	Fin name	OR = 0	OR = 1	OR = 0	OR = 1
	PA7:6	flo	pating	true ope	en-drain
Port A	PA5:4	floating	pull-up	open drain	push-pull
FOILA	PA3	floating	floating interrupt	open drain	push-pull
	PA2:0	floating	pull-up interrupt	open drain	push-pull
	PB7, PB3	floating	floating interrupt	open drain	push-pull
Port B	PB6:5, PB4, PB2:0	floating	pull-up interrupt	open drain	push-pull
Port C	PC7:0	floating	pull-up	open drain	push-pull
Port D	PD7:0	floating	pull-up	open drain	push-pull
Port E	PE7:3, PE1:0	floating	pull-up	open drain	push-pull
FOILE	PE2	pull-up	input only	open drain*	push-pull*
	PF7:3	floating	pull-up	open drain	push-pull
Port F	PF2	floating	floating interrupt	open drain	push-pull
	PF1:0	floating	pull-up interrupt	open drain	push-pull

*Pull-up always activated on PE2.

WATCHDOG TIMER (Cont'd)

10.1.5 Low Power Modes

Mode	Description		
SLOW	No effect on	Watchdog.	
WAIT	No effect on	Watchdog.	
	OIE bit in MCCSR register	WDGHALT bit in Option Byte	
	0	0	No Watchdog reset is generated. The MCU enters Halt mode. The Watch- dog counter is decremented once and then stops counting and is no longer able to generate a watchdog reset until the MCU receives an external inter- rupt or a reset.
HALT	0	0	If an external interrupt is received, the Watchdog restarts counting after 256 or 4096 CPU clocks. If a reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog is selected by option byte. For application recommendations see Section 0.1.7 below.
	0	1	A reset is generated.
	1	x	No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is not decremented. It stop counting. When the MCU receives an oscillator interrupt or external interrupt, the Watchdog restarts counting immediately. When the MCU receives a reset the Watchdog restarts counting after 256 or 4096 CPU clocks.

10.1.6 Hardware Watchdog Option

If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the WDGCR is not used. Refer to the Option Byte description.

10.1.7 Using Halt Mode with the WDG (WDGHALT option)

The following recommendation applies if Halt mode is used when the watchdog is enabled.

 Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.

10.1.8 Interrupts

None.

10.1.9 Register Description CONTROL REGISTER (WDGCR)

Read/Write

Reset Value: 0111 1111 (7Fh)

7							0
WDGA	Т6	T5	T4	Т3	T2	T1	то

Bit 7 = **WDGA** *Activation bit.*

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled

Note: This bit is not used if the hardware watchdog option is enabled by option byte.

Bit 6:0 = **T[6:0]** 7-bit counter (MSB to LSB). These bits contain the value of the watchdog counter. It is decremented every 16384 f_{OSC2} cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.6.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

Character Transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 1.).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame as first transmission.
- Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.
- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

1. An access to the SCISR register

2. A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

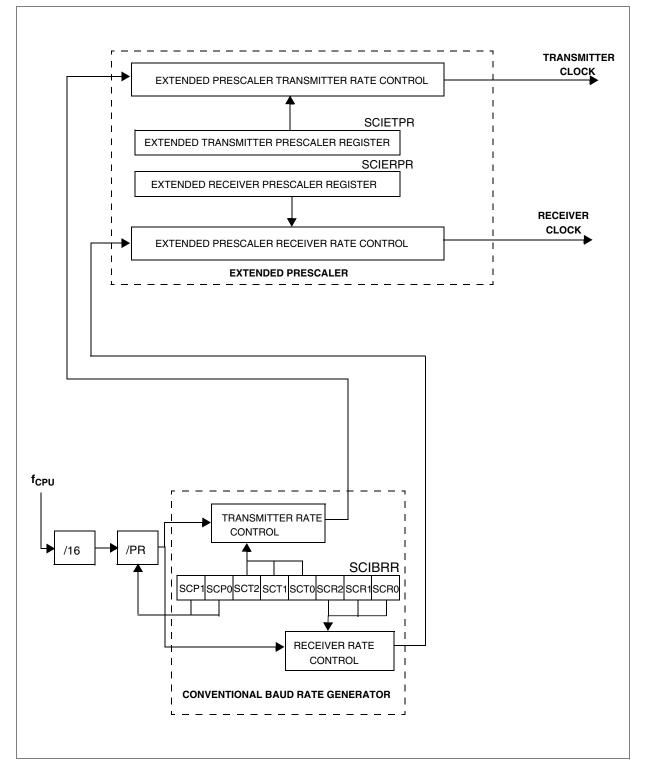
Break Characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 2.).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Idle Characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.


Clearing and then setting the TE bit during a transmission sends an idle frame after the current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte in the SCIDR.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

Figure 63. SCI Baud Rate and Extended Prescaler Block Diagram

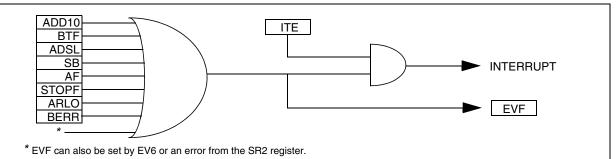
<u>ل</u>حک

SERIAL COMMUNICATION INTERFACE (Cont'd)

Table 23. SCI Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0050h	SCISR	TDRE	TC	RDRF	IDLE	OVR	NF	FE	PE
005011	Reset Value	1	1	0	0	0	0	0	0
0051h	SCIDR	MSB							LSB
005111	Reset Value	х	х	х	х	х	х	х	х
0052h	SCIBRR	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0
005211	Reset Value	0	0	0	0	0	0	0	0
0053h	SCICR1	R8	T8	SCID	М	WAKE	PCE	PS	PIE
005511	Reset Value	х	0	0	0	0	0	0	0
0054h	SCICR2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
005411	Reset Value	0	0	0	0	0	0	0	0
0055h	SCIERPR	MSB							LSB
005511	Reset Value	0	0	0	0	0	0	0	0
0057h	SCIPETPR	MSB							LSB
005711	Reset Value	0	0	0	0	0	0	0	0

I²C BUS INTERFACE (Cont'd)


10.7.5 Low Power Modes

Mode	Description
WAIT	No effect on I ² C interface. I ² C interrupts cause the device to exit from WAIT mode.
HALT	I ² C registers are frozen. In HALT mode, the I ² C interface is inactive and does not acknowledge data on the bus. The I ² C interface resumes operation when the MCU is woken up by an interrupt with "exit from HALT mode" capability.

10.7.6 Interrupts

57

Figure 68. Event Flags and Interrupt Generation

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
10-bit Address Sent Event (Master mode)	ADD10		Yes	No
End of Byte Transfer Event	BTF		Yes	No
Address Matched Event (Slave mode)	ADSEL	ITE	Yes	No
Start Bit Generation Event (Master mode)	SB		Yes	No
Acknowledge Failure Event	AF		Yes	No
Stop Detection Event (Slave mode)	STOPF		Yes	No
Arbitration Lost Event (Multimaster configuration)	ARLO		Yes	No
Bus Error Event	BERR		Yes	No

Note: The I^2C interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the I-bit in the CC register is reset (RIM instruction).

121/187

ST72321BRx, ST72321BARx ST72321BJx, ST72321BKx

10-BIT A/D CONVERTER (ADC) (Cont'd)

10.8.6 Register Description

CONTROL/STATUS REGISTER (ADCCSR)

Read/Write (Except bit 7 read only)

Reset Value: 0000 0000 (00h)

7							0
EOC	SPEED	ADON	0	СНЗ	CH2	CH1	CH0

Bit 7 = **EOC** End of Conversion This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH register or writes to any bit of the ADCCSR register. 0: Conversion is not complete 1: Conversion complete

Bit 6 = **SPEED** ADC clock selection This bit is set and cleared by software. 0: $f_{ADC} = f_{CPU}/4$

1: $f_{ADC} = f_{CPU}/2$

Bit 5 = **ADON** *A/D Converter on* This bit is set and cleared by software. 0: Disable ADC and stop conversion 1: Enable ADC and start conversion

Bit 4 = **Reserved.** Must be kept cleared.

Bit 3:0 = **CH[3:0]** Channel Selection

These bits are set and cleared by software. They select the analog input to convert.

Channel Pin*	CH3	CH2	CH1	CH0
AINO	0	0	0	0
AIN1	0	0	0	1
AIN2	0	0	1	0
AIN3	0	0	1	1
AIN4	0	1	0	0
AIN5	0	1	0	1
AIN6	0	1	1	0
AIN7	0	1	1	1
AIN8	1	0	0	0
AIN9	1	0	0	1
AIN10	1	0	1	0
AIN11	1	0	1	1
AIN12	1	1	0	0
AIN13	1	1	0	1
AIN14	1	1	1	0
AIN15	1	1	1	1

*The number of channels is device dependent. Refer to the device pinout description.

DATA REGISTER (ADCDRH)

Read Only

Reset Value: 0000 0000 (00h)

 7
 0

 D9
 D8
 D7
 D6
 D5
 D4
 D3
 D2

Bit 7:0 = D[9:2] MSB of Converted Analog Value

DATA REGISTER (ADCDRL)

Read Only Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	D1	D0

Bit 7:2 = Reserved. Forced by hardware to 0.

Bit 1:0 = **D**[1:0] *LSB of Converted Analog Value*

12.12 10-BIT ADC CHARACTERISTICS

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{CPU}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC}	ADC clock frequency		0.4		2	MHz
V _{AREF}	Analog reference voltage	$0.7^*V_{DD} \le V_{AREF} \le V_{DD}$	3.8	V _{DD}		V
V _{AIN}	Conversion voltage range 1)		V_{SSA}		V _{AREF}	v
	Positive input leakage current for analog	-40°C≤T _A ≤85°C range			±250	nA
	input	Other T _A ranges			±1	μA
l _{lkg}	Negative input leakage current on ro- bust analog pins ²	V _{IN} <v<sub>SS, I_{IN} < 400µA on adjacent robust ana- log pin</v<sub>		5	6	μΑ
R _{AIN}	External input impedance				see	kΩ
C _{AIN}	External capacitor on analog input			Figure 93 and		pF
f _{AIN}	Variation freq. of analog input signal				Figure 94	Hz
C _{ADC}	Internal sample and hold capacitor			12		pF
t _{ADC}	Conversion time (Sample+Hold) f _{CPU} =8MHz, SPEED=0 f _{ADC} =2MHz			7.5		μs
t _{ADC}	 No of sample capacitor loading cycles No. of Hold conversion cycles 			4 11		1/f _{ADC}

Notes:

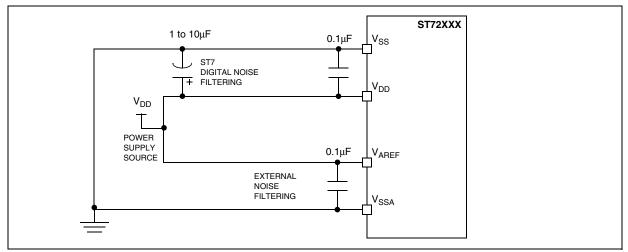
1. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than $10k\Omega$). Data based on characterization results, not tested in production.

ADC CHARACTERISTICS (Cont'd)

12.12.1 Analog Power Supply and Reference Pins

Depending on the MCU pin count, the package may feature separate V_{AREF} and V_{SSA} analog power supply pins. These pins supply power to the A/D converter cell and function as the high and low reference voltages for the conversion.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see Section 12.12.2 General PCB Design Guidelines).


12.12.2 General PCB Design Guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

 Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.

- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1μ F and optionally, if needed 10pF capacitors as close as possible to the ST7 power supply pins and a 1 to 10μ F capacitor close to the power source (see Figure 96).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{AREF} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs on the same I/O port as the A/D input being converted.

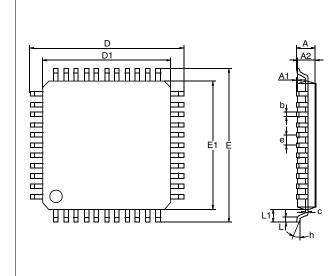
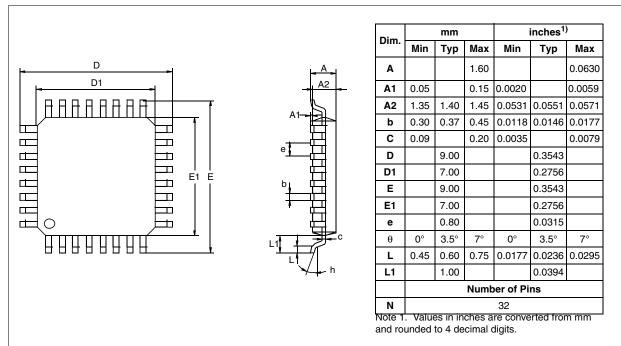

/رکا

Figure 96. Power Supply Filtering

PACKAGE MECHANICAL DATA (Cont'd)


Figure 100. 44-Pin Low Profile Quad Flat Package

D:	mm			inches ¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
Α			1.60			0.0630	
A1	0.05		0.15	0.0020		0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b	0.30	0.37	0.45	0.0118	0.0146	0.0177	
С	0.09		0.20	0.0035		0.0079	
D		12.00			0.4724		
D1		10.00			0.3937		
Е		12.00			0.4724		
E1		10.00			0.3937		
е		0.80			0.0315		
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1		1.00			0.0394		
	Number of Pins						
Ν	44						

and rounded to 4 decimal digits.

Figure 101. 32-Pin Low Profile Quad Flat Package

IDENTIFICATION	DESCRIPTION				
AN1071	HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER				
AN1106	TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7				
AN1179	PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PRO- GRAMMING)				
AN1446	USING THE ST72521 EMULATOR TO DEBUG AN ST72324 TARGET APPLICATION				
AN1477	EMULATED DATA EEPROM WITH XFLASH MEMORY				
AN1527	DEVELOPING A USB SMARTCARD READER WITH ST7SCR				
AN1575	ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS				
AN1576	IN-APPLICATION PROGRAMMING (IAP) DRIVERS FOR ST7 HDFLASH OR XFLASH MCUS				
AN1577	DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION FOR ST7 USB APPLICATIONS				
AN1601	SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL				
AN1603	USING THE ST7 USB DEVICE FIRMWARE UPGRADE DEVELOPMENT KIT (DFU-DK)				
AN1635	ST7 CUSTOMER ROM CODE RELEASE INFORMATION				
AN1754	DATA LOGGING PROGRAM FOR TESTING ST7 APPLICATIONS VIA ICC				
AN1796	FIELD UPDATES FOR FLASH BASED ST7 APPLICATIONS USING A PC COMM PORT				
AN1900	HARDWARE IMPLEMENTATION FOR ST7DALI-EVAL				
AN1904	ST7MC THREE-PHASE AC INDUCTION MOTOR CONTROL SOFTWARE LIBRARY				
AN1905	ST7MC THREE-PHASE BLDC MOTOR CONTROL SOFTWARE LIBRARY				
SYSTEM OPTIMIZATION					
AN1711	SOFTWARE TECHNIQUES FOR COMPENSATING ST7 ADC ERRORS				
AN1827	IMPLEMENTATION OF SIGMA-DELTA ADC WITH ST7FLITE05/09				
AN2009	PWM MANAGEMENT FOR 3-PHASE BLDC MOTOR DRIVES USING THE ST7FMC				
AN2030	BACK EMF DETECTION DURING PWM ON TIME BY ST7MC				

Table 31. ST7 Application Notes

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com