
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f610-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 I/O PORTS

There are as many as eleven general purpose I/O pins and an input pin available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 PORTA and the TRISA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the

REGISTER 4-1: PORTA: PORTA REGISTER

port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL register must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0' and cannot generate an interrupt.

EXAMPLE 4-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;digital I/O
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RPO	;Bank 0

U-0	U-0	R/W-x	R/W-0	R-x	R/W-0	R/W-0	R/W-0
— — RA5		RA4	RA3	RA2	RA1	RA0	
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR '1' =		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
hit 7 C	Unimala	mented Dood op (o)		
bit 7-6	Unimple	mented: Read as '0'		
bit 5-0		: PORTA I/O Pin bit TA pin is > VIH		

1 = PORTA pin is > VIH

0 = PORTA pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
— — TRISA5		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

2: TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

bit 5-0

7.0 **TIMER2 MODULE** (PIC16F616/16HV616 ONLY)

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 7-1 for a block diagram of Timer2.

7.1 **Timer2 Operation**

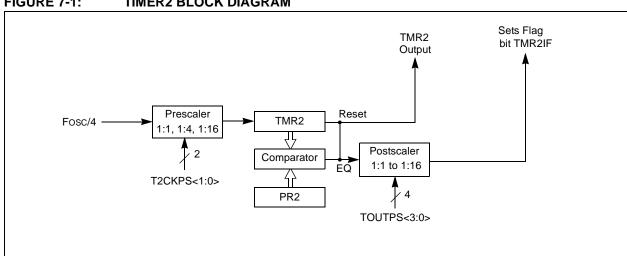
The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 7-1:	TIMER2 BLOCK DIAGRAM


The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by setting the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR) Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

8.2 Comparator Control

Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs.

The CM1CON0 and CM2CON0 registers (see Registers 8-1 and 8-2, respectively) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- Output selection
- Output polarity

8.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator for minimum current consumption.

8.2.2 COMPARATOR INPUT SELECTION

The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input.

Note:	To use CxIN+ and CxIN- pins as analog
	inputs, the appropriate bits must be set in
	the ANSEL register and the corresponding
	TRIS bits must also be set to disable the
	output drivers.

8.2.3 COMPARATOR REFERENCE SELECTION

Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 8.11 "Comparator Voltage Reference"** for more information on the internal voltage reference module.

8.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set.
 - Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

8.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 8-1 shows the output state versus input conditions, including polarity control.

TABLE 8-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVIN - > CxVIN +	0	0
CxVIN- < CxVIN+	0	1
CxVIN - > CxVIN +	1	1
CxVIN- < CxVIN+	1	0

8.3 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 15.0 "Electrical Specifications"** for more details.

8.8 Additional Comparator Features

There are three additional comparator features:

- Timer1 count enable (gate)
- Synchronizing output with Timer1
- Simultaneous read of comparator outputs

8.8.1 COMPARATOR C2 GATING TIMER1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1

The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information.

8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers.

REGISTER 8-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1

R-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0		
MC1OUT	MC2OUT		T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable bit	:	U = Unimpleme	ented bit, read as	; '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkno	own		
bit 7	MC1OUT: Mirr	or Copy of C1OU	T bit						
bit 6	MC2OUT: Mirr	or Copy of C2OU	T bit						
bit 5	Unimplemente	ed: Read as '0'							
bit 4	T1ACS: Timer1 Alternate Clock Select bit 1 = Timer1 clock source is the system clock (Fosc) 0 = Timer1 clock source is the internal clock Fosc/4)								
bit 3	C1HYS: Comparator C1 Hysteresis Enable bit 1 = Comparator C1 Hysteresis enabled 0 = Comparator C1 Hysteresis disabled								
bit 2	 Comparator C1 Hysteresis disabled C2HYS: Comparator C2 Hysteresis Enable bit 1 = Comparator C2 Hysteresis enabled 0 = Comparator C2 Hysteresis disabled 								
bit 1	1 = Timer1 gat	1 Gate Source Se e source is T1G e source is SYNC							
bit 0	C2SYNC: Com 1 = C2 Output	nparator C2 Outpu is synchronous to is asynchronous	ut Synchronizat						

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND **VOLTAGE REFERENCE MODULES**

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽¹⁾	ANS2 ⁽¹⁾	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C1ON	C1OUT	C1OE	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 0000	0000 0000
CM2CON1	MC10UT	MC2OUT	_	T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC	00-0 0010	00-0 0010
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	x0 x000
PORTC	—	-	RC5	RC4	RC3	RC2	RC1	RC0	xx 00xx	uu 00uu
SRCON0	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	_	SRCLKEN	0000 00-0	0000 00-0
SRCON1	SRCS1	SRCS0	_	_	_	_	_	_	00	00
TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC			TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	FVREN	VR3	VR2	VR1	VR0	0000 0000	0000 0000

 Legend:
 x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

 Note
 1:
 PIC16F616/16HV616 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0 ⁽¹⁾	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1 ⁽¹⁾	_	ADCS2	ADCS1	ADCS0	_	_	_	_	-000	-000
ANSEL	ANS	ANS6	ANS5	ANS4	ANS3 ⁽¹⁾	ANS2 ⁽¹⁾	ANS1	ANS0	1111 1111	1111 1111
ADRESH ^(1,2)	A/D Result Register High Byte									uuuu uuuu
ADRESL ^(1,2)	A/D Result	Register Lov	v Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	-	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	u0 u000
PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 00xx	uu 00uu
TRISA	_		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	_		TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module. Legend:

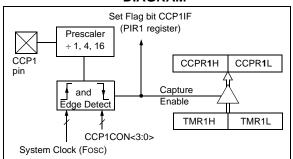
Note 1:

PIC16F616/16HV616 only. 2: Read-only Register.

10.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge


When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 10-1).

10.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCP1 pin is configured as an output,
	a write to the port can cause a capture
	condition.

FIGURE 10-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode.

10.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 10-1).

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

FIGURE 10-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

				Width	Period	
00	(Single Output)	P1A Modulated		Delay ⁽¹⁾	Delay ⁽¹⁾	
		P1A Modulated	_			
10	(Half-Bridge)	P1B Modulated				i
		P1A Active			'	
01	(Full-Bridge, Forward)	P1B Inactive				
	Forward)	P1C Inactive	<u> </u>	1		
		P1D Modulated			<u> </u>	1
		P1A Inactive			1 1 1	
11	(Full-Bridge, Reverse)	P1B Modulated				<u> </u>
		P1C Active -				i
		P1D Inactive			1 1 1	<u> </u>
Relat	ionships:	c * (PR2 + 1) * (TMR2 Pr				

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 10.4.6 "Programmable Dead-Band Delay mode").

10.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPASx bits of the ECCPAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- Comparator C1
- Comparator C2
- · Setting the ECCPASE bit in firmware

A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

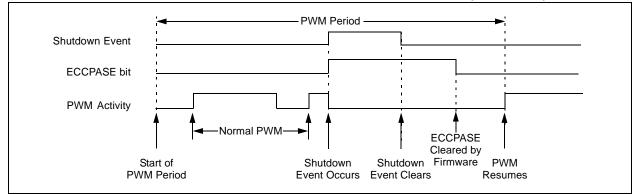
When a shutdown event occurs, two things happen:

The ECCPASE bit is set to '1'. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see Section 10.4.5 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [P1A/P1C] and [P1B/P1D]. The state of each pin pair is determined by the PSSAC and PSSBD bits of the ECCPAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 10-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

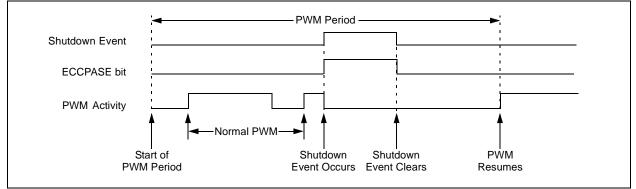

		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bit	E	CCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
	bit 7	7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

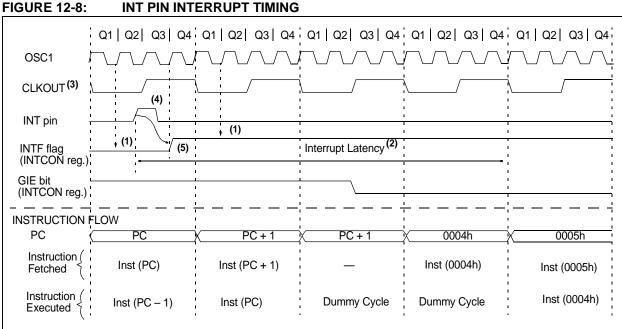
 1 = A shutdown event has occurred; ECCP outputs are in shutd 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1 output high 	
000 = Auto-Shutdown is disabled	iown state
010 = Comparator C2 output high ⁽¹⁾ 011 = Either Comparators output is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1 output high 110 = VIL on INT pin or Comparator C2 output high	
111 = VIL on INT pin or either Comparators output is high	
bit 3-2 PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state	
bit 1-0 PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state	

- Note 1: The auto-shutdown condition is a levelbased signal, not an edge-based signal. As long as the level is present, the autoshutdown will persist.
 - 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.
 - 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

FIGURE 10-14: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)



10.4.5 AUTO-RESTART MODE


The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 10-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

NOTES:

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

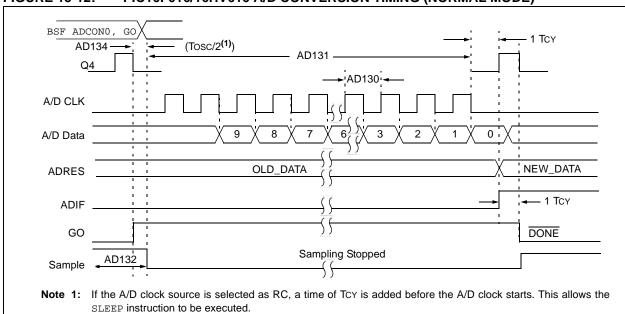
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
IOCA	_	_	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE		TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00

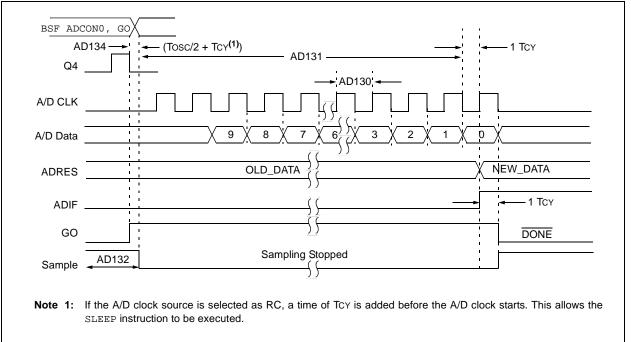
 $\label{eq:legend: Legend: x = unknown, u = unchanged, - = unimplemented read as `0', q = value depends upon condition. Shaded cells are not used by the interrupt module.$

Note 1: PIC16F616/16HV616 only.

15.5 DC Characteristics: PIC16F610/616-E (Extended)


DC CHA	RACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Device Characteristics	Min	Trunt	Max	Unite		Conditions		
No.	Device Characteristics	Min	lin Typ†	Мах	Units	Vdd	Note		
D020E	Power-down Base		0.05	4.0	μA	2.0	WDT, BOR, Comparators, VREF and		
	Current (IPD) ⁽²⁾ PIC16F610/616		0.15	5.0	μΑ	3.0	T1OSC disabled		
	PIC10F010/010		0.35	8.5	μΑ	5.0			
D021E			0.5	5.0	μΑ	2.0	WDT Current ⁽¹⁾		
			2.5	8.0	μΑ	3.0			
			9.5	19	μΑ	5.0			
D022E			5.0	15	μΑ	3.0	BOR Current ⁽¹⁾		
			6.0	19	μΑ	5.0			
D023E			105	130	μΑ	2.0	Comparator Current ⁽¹⁾ , both		
			110	140	μΑ	3.0	comparators enabled		
			116	150	μΑ	5.0			
D024E			50	70	μΑ	2.0	Comparator Current ⁽¹⁾ , single		
			55	75	μΑ	3.0	comparator enabled		
			60	80	μΑ	5.0			
D025E			30	40	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)		
			45	60	μΑ	3.0			
			75	105	μΑ	5.0			
D026E*		_	39	50	μA	2.0	CVREF Current ⁽¹⁾ (low range)		
			59	80	μΑ	3.0			
			98	130	μΑ	5.0			
D027E		—	5.5	16	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
			7.0	18	μΑ	3.0			
			8.5	22	μΑ	5.0			
D028E			0.2	6.5	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in		
		_	0.36	10	μA	5.0	progress		

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

FIGURE 15-12: PIC16F616/16HV616 A/D CONVERSION TIMING (NORMAL MODE)

Param	Device	1 Juniter		T			Condition	
No.	Characteristics	Units	Min	Тур	Max	Vdd	Note	
D020E			_	0.05	12	2.0		
	Power Down IPD	μA	_	0.15	13	3.0	IPD Base	
			_	0.35	14	5.0		
D021E			_	0.5	20	2.0		
		μA	_	2.5	25	3.0	WDT Current	
			_	9.5	36	5.0		
D022E		μA	_	5.0	28	3.0	BOR Current	
		μΑ	_	6.0	36	5.0	BOR Current	
D023E			_	105	195	2.0		
		μA	_	110	210	3.0	 IPD Current (Both Comparators Enabled) 	
			_	116	220	5.0		
		μA	_	50	105	2.0		
		μΛ	_	55	110	3.0	 IPD Current (One Comparator Enabled) 	
			_	60	125	5.0		
D024E			_	30	58	2.0		
		μΑ	_	45	85	3.0	IPD (CVREF, High Range)	
			_	75	142	5.0		
D025E			_	39	76	2.0		
		μA	—	59	114	3.0	IPD (CVREF, Low Range)	
			_	98	190	5.0		
D026E			_	5.5	30	2.0		
		μA	_	7.0	35	3.0	IPD (T1 OSC, 32 kHz)	
				8.5	45	5.0		
D027E		Δ	_	0.2	12	3.0	IPD (A2D on, not converting)	
		μA		0.3	15	5.0		

TABLE 15-15: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F616 - H (High Temp.)

TABLE 15-16: WATCHDOG TIMER SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

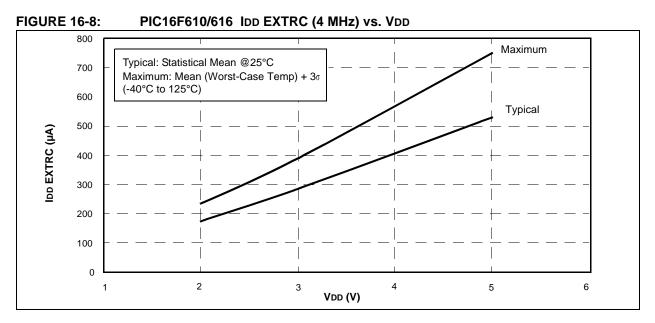
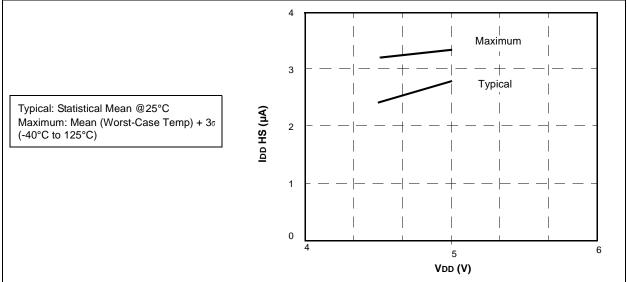
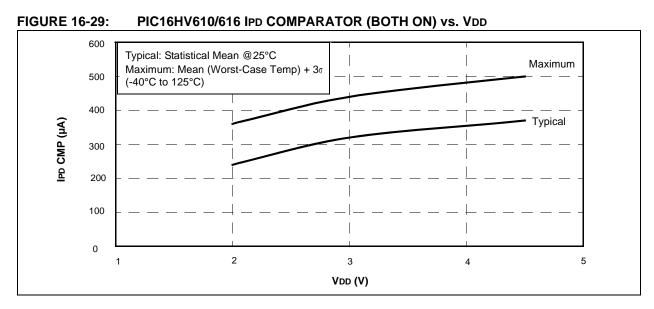
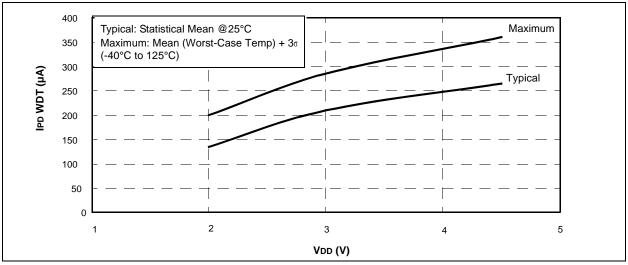

Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
31		Watchdog Timer Time-out Period (No Prescaler)	ms	6	20	70	150°C Temperature

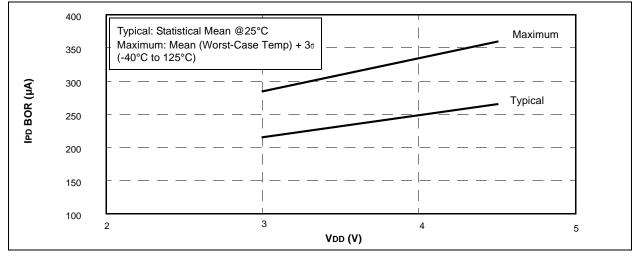
TABLE 15-17: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

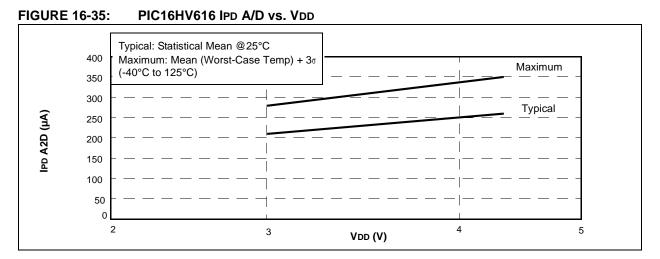

Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
D061	lı∟	Input Leakage Current ⁽¹⁾ (GP3/RA3/MCLR)	μA	—	±0.5	±5.0	$Vss \le Vpin \le Vdd$
D062	lı∟	Input Leakage Current ⁽²⁾ (GP3/RA3/MCLR)	μA	50	250	400	VDD = 5.0V

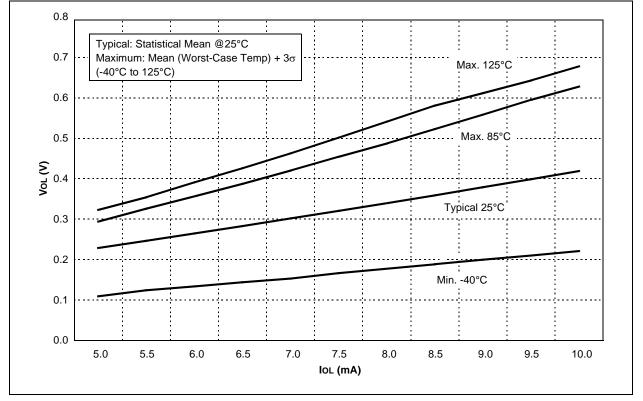

Note 1: This specification applies when GP3/RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the GP3/RA3/MCLR pin is higher than for the standard I/O port pins.

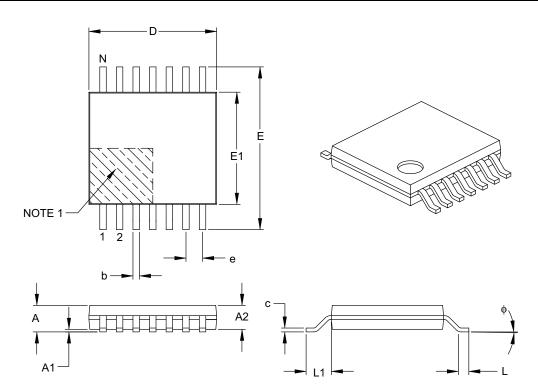
2: This specification applies when GP3/RA3/MCLR is configured as the MCLR Reset pin function with the weak pull-up enabled.











14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	14			
Pitch	е	0.65 BSC			
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	Е	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

Initializing PORTC42
Saving Status and W Registers in RAM121
Code Protection
Comparator
C2OUT as T1 Gate65
Operation57
Operation During Sleep61
Response Time
Synchronizing COUT w/Timer165
Comparator Analog Input Connection Considerations64
Comparator Hysteresis
Comparator Module
Associated registers67
C1 Output State Versus Input Conditions
Comparator Voltage Reference (CVREF)70
Effects of a Reset61
Comparator Voltage Reference (CVREF)
Response Time
Comparator Voltage Reference (CVREF)
Specifications164
Comparators
C2OUT as T1 Gate50
Effects of a Reset61
Specifications164
Compare Module. See Enhanced Capture/Compare/PWM
(ECCP)
CONFIG Register
Configuration Bits109
CPU Features109
Customer Change Notification Service
Customer Notification Service
Customer Support

D

Data Memory	14
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Extended and Industrial	153, 154
Industrial and Extended	
Development Support	
Device Overview	9

Е

ECCP. See Enhanced Capture/Compare/PWM	
ECCPAS Register1	02
Effects of Reset	
PWM mode	92
Electrical Specifications1	
Enhanced Capture/Compare/PWM	.85
Enhanced Capture/Compare/PWM (ECCP)	
Enhanced PWM Mode	.93
Auto-Restart1	03
Auto-shutdown1	02
Direction Change in Full-Bridge Output Mode	99
Full-Bridge Application	.97
Full-Bridge Mode	.97
Half-Bridge Application	96
Half-Bridge Application Examples1	04
Half-Bridge Mode	
Output Relationships (Active-High and Active-Lo	ow)
94	
Output Relationships Diagram	.95
Programmable Dead Band Delay1	
Shoot-through Current	
Start-up Considerations1	

Specifications Timer Resources	
Errata	8
F	
Firmware Instructions Fuses. See Configuration Bits	129
G	
General Purpose Register File	. 14
Н	
High Temperature Operation	168
1	
ID Locations	125
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	126
Indirect Addressing, INDF and FSR registers	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	
ANDLW ANDWF	
ANDWF MOVF	
BCF	
BSF	
BTFSC	
BTFSS	
CALL	132
CLRF	132
CLRW	132
CLRWDT	
COMF	
DECF	
DECFSZ GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	133
MOVLW	134
MOVWF	
NOP	
RETFIE	
RETLW	
RETURN RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	137
SWAPF	137
XORLW	
XORWF	
Summary Table	
INTCON Register	. 20
Internal Oscillator Block INTOSC	
Specifications 158,	159
Internal Sampling Switch (Rss) Impedance	
Internet Address	
Interrupts	
ADC	
Associated Registers	120