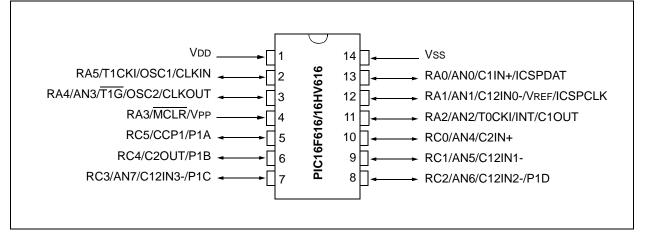
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f610-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

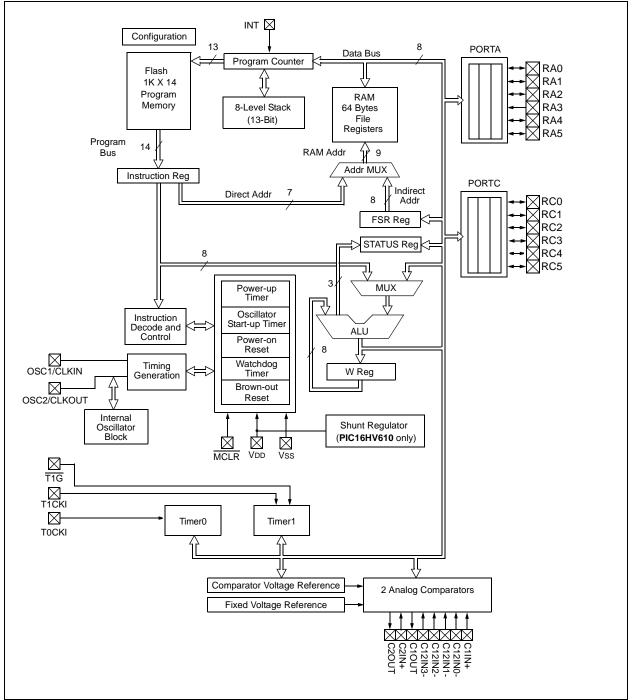
PIC16F616/16HV616 14-Pin Diagram (PDIP, SOIC, TSSOP)

TABLE 2: PIC16F616/16HV616 14-PIN SUMMARY

I/O	Pin	Analog	Comparators	Timer	ССР	Interrupts	Pull-ups	Basic
RA0	13	AN0	C1IN+		_	IOC	Y	ICSPDAT
RA1	12	AN1/VREF	C12IN0-		—	IOC	Y	ICSPCLK
RA2	11	AN2	C1OUT	T0CKI	—	INT/IOC	Y	—
RA3 ⁽¹⁾	4	_	—	_		IOC	Y(2)	MCLR/Vpp
RA4	3	AN3	—	T1G	_	IOC	Y	OSC2/CLKOUT
RA5	2	—	—	T1CKI	-	IOC	Y	OSC1/CLKIN
RC0	10	AN4	C2IN+	—	—	—	—	—
RC1	9	AN5	C12IN1-	_		—	—	—
RC2	8	AN6	C12IN2-	_	P1D	—	—	—
RC3	7	AN7	C12IN3-	—	P1C	—	—	—
RC4	6	—	C2OUT	_	P1B	—	—	—
RC5	5	_	—	_	CCP1/P1A	_	_	_
	1	_	—		_	_	_	Vdd
_	14	_		_	_	—	—	Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.


1.0 DEVICE OVERVIEW

The PIC16F610/616/16HV610/616 is covered by this data sheet. It is available in 14-pin PDIP, SOIC, TSSOP and 16-pin QFN packages.

Block Diagrams and pinout descriptions of the devices are as follows:

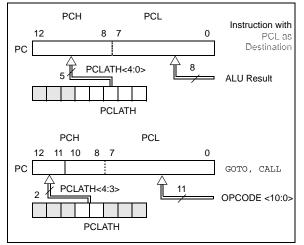
- PIC16F610/16HV610 (Figure 1-1, Table 1-1)
- PIC16F616/16HV616 (Figure 1-2, Table 1-2)

FIGURE 1-1: PIC16F610/16HV610 BLOCK DIAGRAM

FIGURE 2-3: DATA MEMORY MAP OF THE PIC16F610/16HV610

	File Address		File Address
Indirect Addr.(1)	00h	Indirect Addr. ⁽¹⁾	80h
TMR0	01h	OPTION REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	03h 04h	FSR	84h
PORTA	05h	TRISA	85h
1 OKIN	06h	INIOA	86h
PORTC	07h	TRISC	87h
Tokto	08h	11100	88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON		INTCON	
PIR1	0Bh	PIE1	8Bh
FIRI	0Ch	FIEI	8Ch
TMD4	0Dh	DOON	8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh	000711115	8Fh
T1CON	10h	OSCTUNE	90h
	11h	ANSEL	91h
	12h		92h
	13h		93h
	14h		94h
	15h	WPUA	95h
	16h	IOCA	96h
	17h		97h
	18h		98h
VRCON	19h	SRCON0	99h
CM1CON0	1Ah	SRCON1	9Ah
CM2CON0	1Bh		9Bh
CM2CON1	1Ch		9Ch
	1Dh		9Dh
	1Eh		9Eh
	1Fh		9Fh
	20h		A0h
	3Fh		
	40h		
General Purpose Registers			
64 Bytes	6Fh		
Accesses 70h-7Fh	70h 7Fh	Accesses 70h-7Fh	F0h FFh
Bank 0		Bank 1	
	ata memor ysical regi	y locations, read as '0 ster.	

FIGURE 2-4:


DATA MEMORY MAP OF THE PIC16F616/16HV616

		PIC10F010/10F	
	File Address	A	File ddres
Indirect Addr. ⁽¹⁾	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h		86h
PORTC	07h	TRISC	87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
TMR2	11h	ANSEL	91h
T2CON	12h	PR2	92h
CCPR1L	13h		93h
CCPR1H	14h		94h
CCP1CON	15h	WPUA	95h
PWM1CON	16h	IOCA	96h
ECCPAS	17h	100/1	97h
2001710	18h		98h
VRCON	19h	SRCON0	99h
CM1CON0	1911 1Ah	SRCON1	99n 9Ah
CM2CON0	1Bh	ORCONT	9Bh
CM2CON1	1Ch		9Dh
011200111			
ADRESH	1Dh	ADRESL	9Dh
	1Eh	ADCON1	9Eh
ADCON0	1Fh	General	9Fh A0h
	20h	Purpose	7.01
		Registers	
General		32 Bytes	BFł
Purpose			CO
Registers			
96 Bytes			
	7Fh	Accesses 70h-7Fh	F0h FFh
Bank 0	J / F(1	Bank 1	<u> </u>
	ata memor iysical regi	y locations, read as '0'. ster.	

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in Figure 2-5 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-5 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

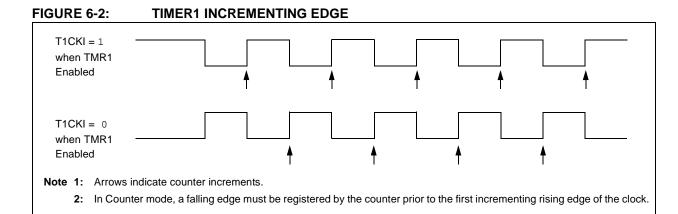
For more information refer to Application Note AN556, "Implementing a Table Read" (DS00556).

2.3.2 STACK

The PIC16F610/616/16HV610/616 Family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.


2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-7.

A simple program to clear RAM location 40h-4Fh using indirect addressing is shown in Example 2-1.

	MOVLW	0x40	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR, F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTI	NUE		;yes continue
1			

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1GINV ⁽¹⁾	TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	T1GINV: Timer1 Gate Invert bit ⁽¹⁾ 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 6	TMR1GE: Timer1 Gate Enable bit ⁽²⁾ If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 counting is controlled by the Timer1 Gate function 0 = Timer1 is always counting
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value 00 = 1:1 Prescale Value
bit 3	T1OSCEN: LP Oscillator Enable Control bit <u>If INTOSC without CLKOUT oscillator is active:</u> 1 = LP oscillator is enabled for Timer1 clock 0 = LP oscillator is off <u>Else:</u> This bit is ignored

8.10 Comparator SR Latch

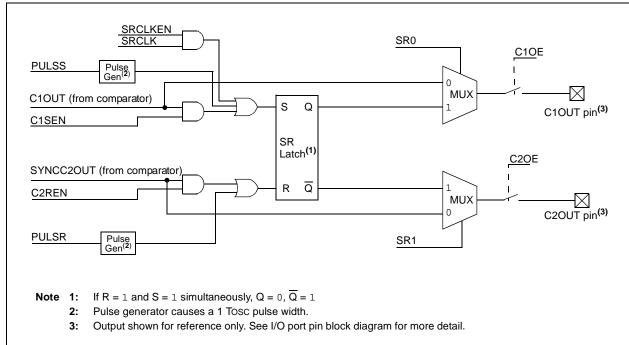
The SR latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON0 control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

The SR latch also has a variable clock, which is connected to the set input of the latch. The SRCLKEN bit of SRCON0 enables the SR latch set clock. The clock will periodically pulse the set input of the latch. Control over the frequency of the SR latch set clock is provided by the SRCS<1:0> bits of SRCON1 register.

8.10.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON0 register. The latch can be reset by C2OUT or the PULSR bit of the SRCON0 register. The latch is reset-dominant, therefore, if both Set and Reset

inputs are high the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.


8.10.2 LATCH OUTPUT

The SR<1:0> bits of the SRCON0 register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch Q
- C2OUT and SR latch Q
- SR latch Q and Q

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

FIGURE 8-8: SR LATCH SIMPLIFIED BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/S-0	R/S-0	U-0	R/W-0
SR1 ⁽²⁾	SR0 ⁽²⁾	C1SEN	C2REN	PULSS	PULSR	—	SRCLKEN
bit 7							bit 0
Legend:				S = Bit is set o	nly -		
R = Readable b	t	W = Writable bi	+		ented bit, read a	s 'O'	
-n = Value at P		(1) = Bit is set	·	'0' = Bit is clea	-	x = Bit is unkr	
	JK	I = DILIS SEL			ieu		IOWIT
bit 7	1 = C2OUT	h Configuration bing pin is the latch \overline{Q} pin is the C2 con	output				
bit 6	1 = C1OUT	n Configuration bi pin is the latch Q pin is the C1 Cor	output				
bit 5		et Enable bit arator output sets arator output has		latch			
bit 4	1 = C2 comparation	eset Enable bit arator output rese arator output has		latch			
bit 3	1 = Triggers	the SET Input of pulse generator to trigger pulse gen	set SR latch. E		reset by hardwa	are.	
bit 2	1 = Triggers	e the Reset Input o pulse generator to trigger pulse gen	reset SR latch		ely reset by hard	ware.	
bit 1	Unimplement	ed: Read as '0'					
bit 0		R Latch Set Clock of SR latch is pul- of SR latch is not	sed with SRCL				

REGISTER 8-4: SRCON0: SR LATCH CONTROL 0 REGISTER

the pin), regardless of the SR latch operation.2: To enable an SR Latch output to the pin, the appropriate CxOE, and TRIS bits must be properly configured.

REGISTER 8-5: SRCON1: SR LATCH CONTROL 1 REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
SRCS1	SRCS0	—	—	—	—	—	—
bit 7							bit 0

Legend:		S = Bit is set only -	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SRCS<1:0>: SR Latch Clock Prescale bits
	00 = Fosc/16
	01 = Fosc/32
	10 = Fosc/64

11 = Fosc/128

bit 5-0 Unimplemented: Read as '0'

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit
Legend: R = Readabl	o hit	W = Writable bi	÷		ented bit, read a	ος (Ω'	
			it.	•			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	reu	x = Bit is unkno	wn
bit 7	ADFM: A/D C 1 = Right justi 0 = Left justifie		Format Select I	bit			
bit 6	VCFG: Voltag 1 = VREF pin 0 = VDD	e Reference bit					
bit 5-2	0000 = Char 0001 = Char 0010 = Char 0011 = Char 0100 = Char 0101 = Char 0110 = Char 0111 = Char 1000 = Rese 1001 = Rese 1010 = Rese 1011 = Rese 1100 = CVRE 1101 = 0.6V 1110 = 1.2V	nel 01 (AN1) nel 02 (AN2) nel 03 (AN3) nel 04 (AN4) nel 05 (AN5) nel 06 (AN6) nel 07 (AN7) rved – do not use rved – do not use rved – do not use	ference ⁽¹⁾				
bit 1	1 = A/D conve This bit is	D Conversion Sta rsion cycle in pro- automatically clea rsion completed/r	gress. Setting t ared by hardwar				
bit 0	ADON: ADC I 1 = ADC is en	Enable bit		ng current			

Note 1: When the CHS<3:0> bits change to select the 1.2V or 0.6V Fixed Voltage Reference, the reference output voltage will have a transient. If the Comparator module uses this VP6 reference voltage, the comparator output may momentarily change state due to the transient.

10.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

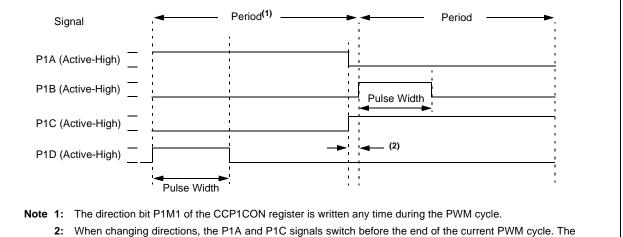
A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs four Timer2 cycles prior to the end of the current PWM period:

- The modulated outputs (P1B and P1D) are placed in their inactive state.
- The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 10-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.


Figure 10-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 10-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 10-12: EXAMPLE OF PWM DIRECTION CHANGE

When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle.
 modulated P1B and P1D signals are inactive at this time. The length of this time is four Timer2 counts.

FIGURE 12-9:	WAKE-UP FROM S	SLEEP THRO	UGH INTER	RUPT		
; Q1 Q2 OSC1/¯ CLKOUT ⁽⁴⁾ ; INT pin	: Q3 Q4 ; Q1 Q2 Q3 Q4 ; Q ////////////////////////////////////		Q1 Q2 Q3 Q4 	(Q1 Q2 Q3 Q4; /~_~/	Q1 Q2 Q3 Q4;(Q1 Q2 Q3 Q4 \/\/\/\
INTF flag (INTCON reg.)			Interrupt Laten	_{Cy} (3)		
GIE bit (INTCON reg.)		rocessor in Sleep				
Instruction Flow PC X F	PC { PC+1 }	PC + 2	X PC + 2	PC+2 X	0004h X	0005h
	c) = Sleep Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Inst(PC – 1) Sleep		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
2: Tost = 1	or LP Oscillator mode assumed 1024 Tosc (drawing not to scale ' assumed. In this case after w	e). This delay does				in-line.

4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

12.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $\mathsf{ICSP}^{\mathsf{TM}}$ for verification purposes.

Note:	The entire Flash program memory will be
	erased when the code protection is turned
	off. See the Memory Programming
	Specification (DS41284) for more
	information.

12.9 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant 7 bits of the ID locations are used.

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description: Bit 'b' in register 'f' is cleared.	

ADDWF	Add W and f				
Syntax:	[<i>label</i>] ADDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W				
Syntax:	[label] ANDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.				

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.

13.2 Instruction Descriptions

14.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

14.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

14.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

14.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

14.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

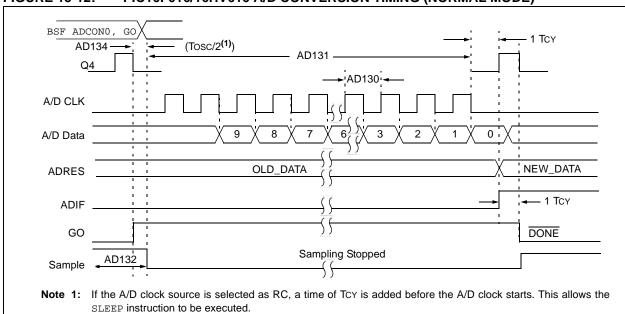
- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

15.8 DC Characteristics: PIC16F610/616/16HV610/616- I (Industrial) PIC16F610/616/16HV610/616 - E (Extended)

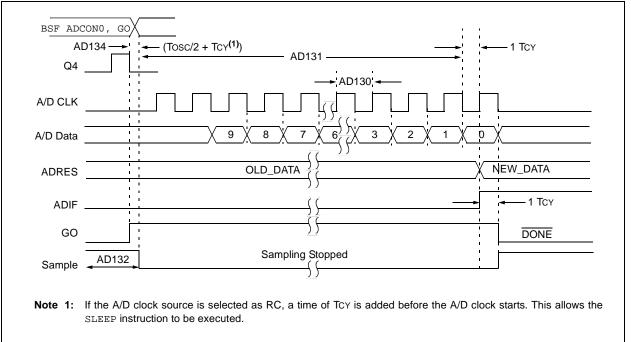
DC CHARACTERISTICS					TA \leq +85°C for industrial TA \leq +125°C for extended		
Param No.	Sym	Characteristic	Min Typ†		Мах	Units	Conditions
	VIL	Input Low Voltage					
		I/O port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 VDD	V	$2.0V \leq V\text{DD} \leq 4.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$
D032		MCLR, OSC1 (RC mode)	Vss	—	0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss	_	0.3	V	
D033A		OSC1 (HS mode)	Vss	—	0.3 Vdd	V	
	Vih	Input High Voltage I/O ports:		_			
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 Vdd + 0.8		Vdd	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$
D041		with Schmitt Trigger buffer	0.8 Vdd		Vdd	V	$2.0V \leq V \text{DD} \leq 5.5 \text{V}$
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	_	Vdd	V	(Note 1)
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	—	± 0.1	± 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance} \end{split}$
D061		RA3/MCLR ^(3,4)	—	±0.7	± 5	μΑ	$VSS \leq VPIN \leq VDD$
D063		OSC1	_	± 0.1	± 5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070*	Ipur	PORTA Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage	_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
	Vон	Output High Voltage	Vdd - 0.7	_	_	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D090		I/O ports ⁽²⁾	Vdd - 0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

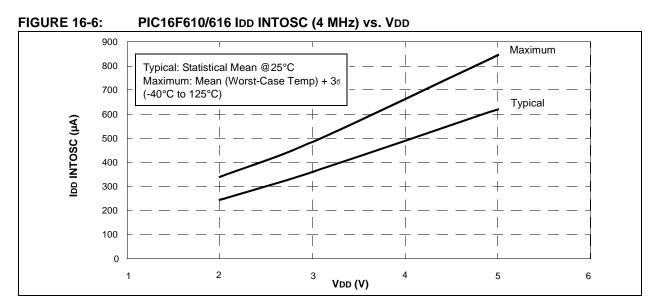

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

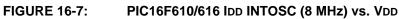
2: Negative current is defined as current sourced by the pin.

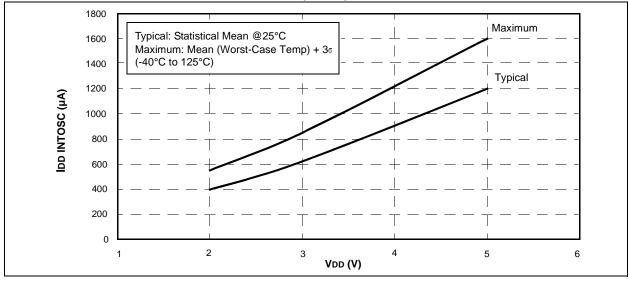

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: This specification applies to RA3/MCLR configured as RA3 input with internal pull-up disabled.

5: This specification applies to all weak pull-up pins, including the weak pull-up on RA3/MCLR. When RA3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.






FIGURE 15-12: PIC16F616/16HV616 A/D CONVERSION TIMING (NORMAL MODE)

Param	Device Characteristics	Units	Min	Тур	Max -	Condition		
No.						Vdd	Note	
D010	Supply Current (IDD)	μΑ	_	13	58	2.0		
			_	19	67	3.0	IDD LP OSC (32 kHz)	
			_	32	92	5.0		
D011		μА		135	316	2.0		
			_	185	400	3.0	IDD XT OSC (1 MHz)	
			_	300	537	5.0		
D012			_	240	495	2.0		
		μA	_	360	680	3.0	IDD XT OSC (4 MHz)	
		mA	_	0.660	1.20	5.0		
D013		μΑ		75	158	2.0		
			_	155	338	3.0	IDD EC OSC (1 MHz)	
			_	345	792	5.0		
D014		μA		185	357	2.0		
			_	325	625	3.0	IDD EC OSC (4 MHz)	
		mA	_	0.665	1.30	5.0		
D016				245	476	2.0		
		μA	_	360	672	3.0	IDD INTOSC (4 MHz)	
			_	620	1.10	5.0		
D017		μΑ		395	757	2.0		
		mA	_	0.620	1.20	3.0	IDD INTOSC (8 MHz)	
		mA	_	1.20	2.20	5.0		
D018			175	332	2.0			
		μA		285	518	3.0	IDD EXTRC (4 MHz)	
				530	972	5.0		
D019		mA		2.20	4.10	4.5	IDD HS OSC (20 MHz)	
				2.80	4.80	5.0		

TABLE 15-14: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

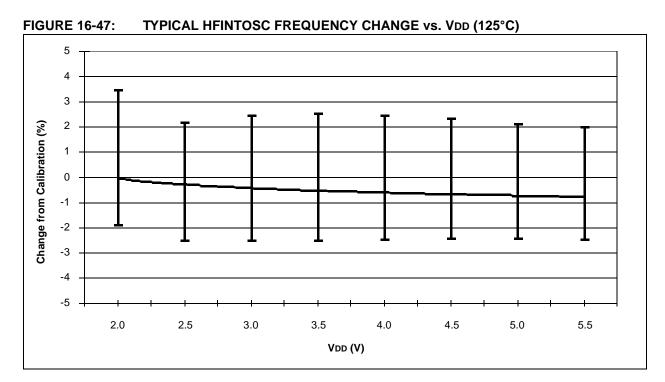
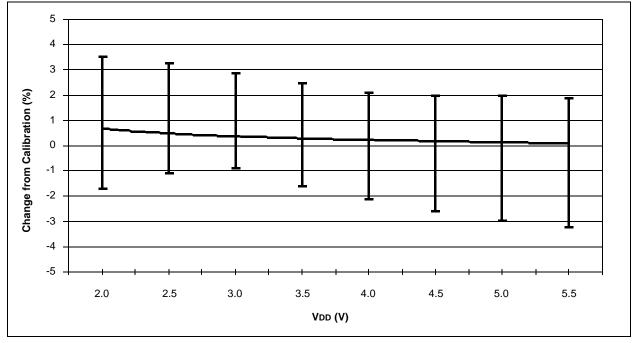
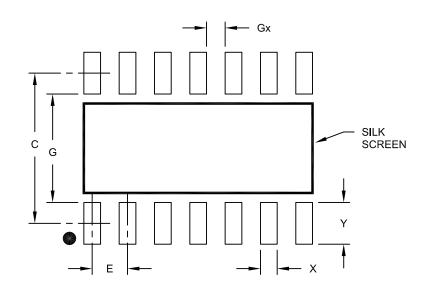




FIGURE 16-48: TYPICAL HFINTOSC FREQUENCY CHANGE vs. Vdd (-40°C)

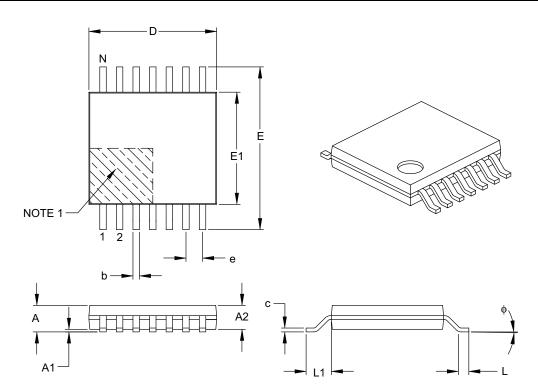
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	Е		6.40 BSC	
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

Context Saving	121
Interrupt-on-Change	
PORTA Interrupt-on-Change	
RA2/INT	118
Timer0	119
TMR1	51
INTOSC Specifications	158, 159
IOCA Register	

L

Load Conditions1	56
------------------	----

Μ

MCLR	
Internal	112
Memory Organization	13
Data	14
Program	13
Microchip Internet Web Site	
Migrating from other PIC Devices	206
MPLAB ASM30 Assembler, Linker, Librarian	140
MPLAB Integrated Development Environment Softw	vare 139
MPLAB PM3 Device Programmer	142
MPLAB REAL ICE In-Circuit Emulator System	141
MPLINK Object Linker/MPLIB Object Librarian	

0

OPCODE Field Descriptions	129
Operational Amplifier (OPA) Module	
AC Specifications	165
OPTION Register	
Oscillator	,
Associated registers	31, 54
Oscillator Module	27
EC	27
HS	27
INTOSC	27
INTOSCIO	27
LP	27
RC	27
RCIO	27
XT	27
Oscillator Parameters	
Oscillator Specifications	
Oscillator Start-up Timer (OST)	-
Specifications	
OSCTUNE Register	

Ρ

P1A/P1B/P1C/P1D.See Enhanced	Capture/Compare/PWM
(ECCP)	
Packaging	
Marking	
PDIP Details	
PCL and PCLATH	
Stack	
PCON Register	
PIE1 Register	
Pin Diagram	
PDIP, SOIC, TSSOP	
QFN	
Pinout Descriptions	
PIC16F610/16HV610	
PIC16F616/16HV616	
PIR1 Register	
PORTA	

Additional Pin Functions
ANSEL Register
5
Interrupt-on-Change
Weak Pull-Ups
Associated registers
Pin Descriptions and Diagrams
RA0
RA1
RA2
RA3
RA4
RA5 40
Specifications 159
PORTA Register
PORTC
Associated registers 44
P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/
PWM (ECCP) 42
Specifications
PORTC Register
Power-Down Mode (Sleep)
Power-on Reset (POR) 112
Power-up Timer (PWRT) 112
Specifications
Precision Internal Oscillator Parameters
Prescaler
Shared WDT/Timer0
Switching Prescaler Assignment
Program Memory
Map and Stack (PIC16F610/16HV610)
Map and Stack (PIC16F616/16HV616)
Programming, Device Instructions
PWM Mode. See Enhanced Capture/Compare/PWM
PWM1CON Register 105

R

Reader Response	212
Read-Modify-Write Operations	
Registers	
ADCON0 (ADC Control 0)	78
ADCON1 (ADC Control 1)	
ADRESH (ADC Result High) with ADFM = 0)	80
ADRESH (ADC Result High) with ADFM = 1)	
ADRESL (ADC Result Low) with ADFM = 0)	80
ADRESL (ADC Result Low) with ADFM = 1)	80
ANSEL (Analog Select)	34
CCP1CON (Enhanced CCP1 Control)	85
CM1CON0 (C1 Control)	62
CM2CON0 (C2 Control)	63
CM2CON1 (C2 Control)	65
CONFIG (Configuration Word)	110
Data Memory Map (PIC16F610/16HV610)	15
Data Memory Map (PIC16F616/16HV616)	15
ECCPAS (Enhanced CCP Auto-shutdown Contr	ol). 102
INTCON (Interrupt Control)	20
IOCA (Interrupt-on-Change PORTA)	35
OPTION_REG (OPTION)	
OSCTUNE (Oscillator Tuning)	31
PCON (Power Control Register)	23
PCON (Power Control)	
PIE1 (Peripheral Interrupt Enable 1)	21
PIR1 (Peripheral Interrupt Register 1)	22
PORTA	33
PORTC	42
PWM1CON (Enhanced PWM Control)	105
Reset Values	