

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f610-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F610/16HV610 16-Pin Diagram (QFN)

TABLE 3:	PIC16F610/16HV610	16-PIN SUMMARY

I/O	Pin	Comparators	Timers	Interrupts	Pull-ups	Basic
RA0	12	C1IN+	-	IOC	Y	ICSPDAT
RA1	11	C12IN0-		IOC	Y	ICSPCLK
RA2	10	C1OUT	TOCKI	INT/IOC	Y	—
RA3 ⁽¹⁾	3	—	_	IOC	Y(2)	MCLR/VPP
RA4	2	—	T1G	IOC	Y	OSC2/CLKOUT
RA5	1	—	T1CKI	IOC	Y	OSC1/CLKIN
RC0	9	C2IN+	—	—	—	—
RC1	8	C12IN1-		—		—
RC2	7	C12IN2-	—	—	_	—
RC3	6	C12IN3-		—	—	_
RC4	5	C2OUT	_	—	—	—
RC5	4	—		—	_	_
—	16	—	_	—	_	Vdd
—	13					Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | RAIE | TOIF | INTF | RAIF |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	RAIE: PORTA Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the PORTA change interrupt 0 = Disables the PORTA change interrupt
bit 2	 TOIF: Timer0 Overflow Interrupt Flag bit⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	RAIF: PORTA Change Interrupt Flag bit 1 = When at least one of the PORTA <5:0> pins changed state (must be cleared in software) 0 = None of the PORTA <5:0> pins have changed state

Note 1: IOCA register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

4.0 I/O PORTS

There are as many as eleven general purpose I/O pins and an input pin available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 PORTA and the TRISA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the

REGISTER 4-1: PORTA: PORTA REGISTER

port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL register must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0' and cannot generate an interrupt.

EXAMPLE 4-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0			
CLRF	PORTA	;Init PORTA			
BSF	STATUS, RPO	;Bank 1			
CLRF	ANSEL	;digital I/O			
MOVLW	0Ch	;Set RA<3:2> as inputs			
MOVWF	TRISA	;and set RA<5:4,1:0>			
		;as outputs			
BCF	STATUS, RPO	;Bank 0			

U-0	U-0	R/W-x	R/W-0	R-x	R/W-0	R/W-0	R/W-0
—	—	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0

Legend:				
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
1 1 7 0				
bit 7-6	Unimple	mented: Read as '0'		
bit 5-0	RA<5:0>	: PORTA I/O Pin bit		

1 = PORTA pin is > VIH

0 = PORTA pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

2: TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

bit 5-0

4.2.4.3 RA2/AN2⁽¹⁾/T0CKI/INT/C1OUT

Figure 4-2 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- the clock input for TMR0
- an external edge triggered interrupt
- a digital output from Comparator C1

FIGURE 4-2: BLOCK DIAGRAM OF RA2

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/S-0	R/S-0	U-0	R/W-0
SR1 ⁽²⁾	SR0 ⁽²⁾	C1SEN	C2REN	PULSS	PULSR		SRCLKEN
bit 7							bit 0
Legend:				S = Bit is set o	nly -		
R = Readable	bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	wn
bit 7	SR1: SR Latch 1 = C2OUT 0 = C2OUT	Configuration bip pin is the latch \overline{C} pin is the C2 cor	t <mark>(2)</mark> output nparator output				
bit 6	SR0: SR Latch 1 = C1OUT 0 = C1OUT	 iR0: SR Latch Configuration bits⁽²⁾ C1OUT pin is the latch Q output C1OUT pin is the C1 Comparator output 					
bit 5	C1SEN: C1 Set Enable bit 1 = C1 comparator output sets SR latch 0 = C1 comparator output has no effect on SR latch						
bit 4	C2REN: C2 Reset Enable bit 1 = C2 comparator output resets SR latch 0 = C2 comparator output has no effect on SR latch						
bit 3	bit 3 PULSS: Pulse the SET Input of the SR Latch bit 1 = Triggers pulse generator to set SR latch. Bit is immediately reset by hardware. 0 = Does not trigger pulse generator						
bit 2	bit 2 PULSR: Pulse the Reset Input of the SR Latch bit 1 = Triggers pulse generator to reset SR latch. Bit is immediately reset by hardware. 0 = Does not trigger pulse generator						
bit 1	Unimplemente	ed: Read as '0'					
bit 0	SRCLKEN: SR	Latch Set Clock	c Enable bit				
	1 = Set input of	of SR latch is pu	sed with SRCLK	(
	0 = Set input of	of SR latch is not	t pulsed with the	SRCLK			
Note 1: Th	e C1OUT and C20	OUT bits in the C	MxCON0 registe	er will always refle	ect the actual com	nparator output (n	ot the level on

REGISTER 8-4: SRCON0: SR LATCH CONTROL 0 REGISTER

the pin), regardless of the SR latch operation.2: To enable an SR Latch output to the pin, the appropriate CxOE, and TRIS bits must be properly configured.

REGISTER 8-5: SRCON1: SR LATCH CONTROL 1 REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
SRCS1	SRCS0	—	—	—	—	—	—
bit 7 bit 0							

Legend:		S = Bit is set only -	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SRCS<1:0>: SR Latch Clock Prescale bits
	00 = Fosc/16
	01 = Fosc/32
	10 = Fosc/64

11 = Fosc/128

bit 5-0 Unimplemented: Read as '0'

FIGURE 9	-2:	ANA	LOG-T	O-DIG	ITAL	CON	VERSI	ON T/		CLES				
	T <u>CY to </u>	TAD TAD1 Convei ding Capa	b9 rsion St	TAD3 b8 arts Discoi	TAD4 b7 nnecte	b6 b6	_TAD6 b5 Analog	b4 b4	b3 (typica	b2 b2	b1 b1	b0		
	l Set G	60/DONE	bit					ADRE GO bi ADIF Holdir	SH an it is cle bit is s ng capa	nd ADR ared, et, acitor is	ESL re	egisters a	」 are loade analog in	d, put

9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an analog-to-digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the interrupt service routine.

Please see **Section 9.1.5** "Interrupts" for more information.

FIGURE 9-3: 10-BIT A/D CONVERSION RESULT FORMAT

9.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format.

Figure 9-4 shows the two output formats.

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the analog-to-digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 9.2.6 "A/D Conversion
	Procedure".

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete analog-to-digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

9.2.5 SPECIAL EVENT TRIGGER

The ECCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not ensure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Section 10.0 "Enhanced Capture/Compare/ PWM (With Auto-Shutdown and Dead Band) Module (PIC16F616/16HV616 Only)" for more information.

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an analog-to-digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt may be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: See Section 9.3 "A/D Acquisition Requirements".

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
_	ADCS2	ADCS1	ADCS0	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bi	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	s 'O'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			own	
bit 7	Unimplemente	ed: Read as '0'						
bit 6-4	ADCS<2:0>: A	/D Conversion C	lock Select bits					
	000 = Fosc/2							
	001 = Fosc/8							
	010 = Fosc/32							
	x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max)							
	100 = Fosc/4							
	101 = Fosc/16							
	110 = Fosc/64							
bit 3-0	Unimplemented: Read as '0'							

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 10-1.

EQUATION 10-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPR1L into CCPR1H.

Note:	The Timer2 postscaler (see Section 7.1
	"Timer2 Operation") is not used in the
	determination of the PWM frequency.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and CCP1<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the CCP1<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and CCP1<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only.

Equation 10-2 is used to calculate the PWM pulse width.

Equation 10-3 is used to calculate the PWM duty cycle ratio.

EQUATION 10-2: PULSE WIDTH

 $Pulse Width = (CCPR1L:CCP1CON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 10-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPR1L:CCP1CON < 5:4>)}{4(PR2 + 1)}$$

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 10-3).

10.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 10-4.

EQUATION 10-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 10-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 10-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

© 2009 Microchip Technology Inc.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION F
	Before Instruction OPTION = 0xFF
	W = 0x4F
	After Instruction OPTION = 0x4F W = 0x4F

MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

15.3 DC Characteristics: PIC16HV610/616-I (Industrial) PIC16HV610/616-E (Extended)

DC CH	ARACTERISTICS	Standa Operat	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Device Characteristics	Min	Treat				Conditions			
No.	Device Characteristics	win	турт	Max	Units	VDD	Note			
D010	Supply Current (IDD) ^(1, 2)		160	230	μΑ	2.0	Fosc = 32 kHz			
	PIC16HV610/616	—	240	310	μΑ	3.0	LP Oscillator mode			
		_	280	400	μΑ	4.5				
D011*		_	270	380	μΑ	2.0	Fosc = 1 MHz			
		_	400	560	μA	3.0	XT Oscillator mode			
		_	520	780	μA	4.5				
D012		—	380	540	μΑ	2.0	Fosc = 4 MHz			
		_	575	810	μΑ	3.0	XT Oscillator mode			
		—	0.875	1.3	mA	4.5				
D013*		_	215	310	μΑ	2.0	Fosc = 1 MHz			
		—	375	565	μΑ	3.0	EC Oscillator mode			
		—	570	870	μΑ	4.5				
D014		-	330	475	μΑ	2.0	Fosc = 4 MHz			
		—	550	800	μΑ	3.0	EC Oscillator mode			
		—	0.85	1.2	mA	4.5				
D016*		-	310	435	μΑ	2.0	Fosc = 4 MHz			
		_	500	700	μΑ	3.0	INTOSC mode			
		—	0.74	1.1	mA	4.5				
D017			460	650	μΑ	2.0	Fosc = 8 MHz			
			0.75	1.1	mA	3.0	INTOSC mode			
		—	1.2	1.6	mA	4.5				
D018			320	465	μΑ	2.0	FOSC = 4 MHz			
		_	510	750	μΑ	3.0	EXTRC mode ^(*)			
		—	0.770	1.0	mA	4.5				
D019		-	2.5	3.4	mA	4.5	Fosc = 20 MHz HS Oscillator mode			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 15-7: **COMPARATOR SPECIFICATIONS**

Standard Operating Conditions (unless otherwise stated)

Operating Temperature	$-40^{\circ}C \leq TA \leq +125^{\circ}C$

Operation										
Param No.	Sym	Characteristics		Min	Тур†	Мах	Units	Comments		
CM01	Vos	Input Offset Voltage ⁽²⁾			± 5.0	± 10	mV			
CM02	Vсм	Input Common Mode Voltage				Vdd - 1.5	V			
CM03*	CMRR	Common Mode Rejection Ratio			_	-	dB			
CM04*	Trt	Response Time ⁽¹⁾	Falling	_	150	600	ns			
			Rising	_	200	1000	ns			
CM05*	TMC2COV	Comparator Mode Change to Out	put Valid	_	_	10	μS			
CM06*	VHYS	Input Hysteresis Voltage		_	45	60	mV			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. The other input is at (VDD -1.5)/2.

2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.

COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS TABLE 15-8:

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments					
CV01	CLSB	Step Size ⁽²⁾	—	Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)					
CV02	CACC	Absolute Accuracy ⁽³⁾	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)					
CV03	CR	Unit Resistor Value (R)	—	2k	_	Ω						
CV04	CST	Settling Time ⁽¹⁾	_	_	10	μS						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

- 2: See Section 8.11 "Comparator Voltage Reference" for more information.
- **3:** Absolute Accuracy when CVREF output is \leq (VDD-1.5).

TABLE 15-9: VOLTAGE REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications			Standar Operatin	d Operati g tempera	n g Condi iture -	tions (unle 40°C ≤ TA∶	ess otherwise stated) ≤ +125°C
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
VR01	VP6out	VP6 voltage output	0.50	0.6	0.7	V	
VR02	V1P2out	V1P2 voltage output	1.05	1.20	1.35	V	
VR03*	TSTABLE	Settling Time		10		μS	

These parameters are characterized but not tested.

Param	Device	Unite	Min	Trees	Max		Condition
No.	Characteristics	Units	IVIIN	тур	Max	Vdd	Note
D010			—	13	58	2.0	
	Supply Current (IDD)	μA	_	19	67	3.0	IDD LP OSC (32 kHz)
			_	32	92	5.0	
D011			—	135	316	2.0	
		μA	_	185	400	3.0	IDD XT OSC (1 MHz)
			_	300	537	5.0	
D012			_	240	495	2.0	
		μΑ		360	680	3.0	IDD XT OSC (4 MHz)
		mA		0.660	1.20	5.0	-
D013			_	75	158	2.0	
		μΑ	_	155	338	3.0	IDD EC OSC (1 MHz)
			_	345	792	5.0	
D014			—	185	357	2.0	
		μΛ	_	325	625	3.0	IDD EC OSC (4 MHz)
		mA	—	0.665	1.30	5.0	
D016			—	245	476	2.0	
		μΑ		360	672	3.0	IDD INTOSC (4 MHz)
				620	1.10	5.0	
D017		μΑ	_	395	757	2.0	
		mΔ		0.620	1.20	3.0	IDD INTOSC (8 MHz)
		110 (1.20	2.20	5.0	
D018			—	175	332	2.0	
		μΑ	—	285	518	3.0	IDD EXTRC (4 MHz)
			—	530	972	5.0	
D019		mA	_	2.20	4.10	4.5	
		ma		2.80	4.80	5.0	

TABLE 15-14: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

Param	Device	Unito	Min	Turn	Max		Condition
No.	Characteristics	Units	WIIN	тур	Max	Vdd	Note
D020E			_	0.05	12	2.0	
	Power Down IPD	μΑ	_	0.15	13	3.0	IPD Base
			_	0.35	14	5.0	
D021E			—	0.5	20	2.0	
		μΑ	_	2.5	25	3.0	WDT Current
			_	9.5	36	5.0	
D022E			_	5.0	28	3.0	ROP Current
		μΑ	_	6.0	36	5.0	BOR Current
D023E			_	105	195	2.0	
		μΑ	_	110	210	3.0	IPD Current (Both
			_	116	220	5.0	
		ıιΔ	_	50	105	2.0	
		μ	_	55	110	3.0	Finabled
			_	60	125	5.0	
D024E			_	30	58	2.0	
		μΑ	—	45	85	3.0	IPD (CVREF, High Range)
			_	75	142	5.0	
D025E			_	39	76	2.0	
		μA	_	59	114	3.0	IPD (CVREF, Low Range)
			_	98	190	5.0	
D026E			_	5.5	30	2.0	
		μA	—	7.0	35	3.0	IPD (T1 OSC, 32 kHz)
			_	8.5	45	5.0	
D027E		ıιΔ	_	0.2	12	3.0	IPD (A2D on not converting)
		μА	_	0.3	15	5.0	

TABLE 15-15: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F616 - H (High Temp.)

TABLE 15-16: WATCHDOG TIMER SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	ms	6	20	70	150°C Temperature

TABLE 15-17: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
D061	lıL	Input Leakage Current ⁽¹⁾ (GP3/RA3/MCLR)	μA		±0.5	±5.0	$Vss \leq Vpin \leq Vdd$
D062	lı∟	Input Leakage Current ⁽²⁾ (GP3/RA3/MCLR)	μA	50	250	400	VDD = 5.0V

Note 1: This specification applies when GP3/RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the GP3/RA3/MCLR pin is higher than for the standard I/O port pins.

2: This specification applies when GP3/RA3/MCLR is configured as the MCLR Reset pin function with the weak pull-up enabled.

IADEE	15-10.	o. Obole a tok i akamere korok i loki i oto i ti (i igi remp.)						
Param No.	Sym	Characteristic	Frequency Tolerance	Units	Min	Тур	Max	Conditions
OS08	INTosc	Int. Calibrated INTOSC Freq. ⁽¹⁾	±10%	MHz	7.2	8.0	8.8	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5 \text{V} \\ \text{-40}^{\circ}\text{C} \leq \text{TA} \leq 150^{\circ}\text{C} \end{array}$

TABLE 15-18: OSCILLATOR PARAMETERS FOR PIC16F616 - H (High Temp.)

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

TABLE 15-19: COMPARATOR SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
CM01	Vos	Input Offset Voltage	mV		±5	±20	(Vdd - 1.5)/2

NOTES:

Context Saving	121
Interrupt-on-Change	
PORTA Interrupt-on-Change	
RA2/INT	118
Timer0	119
TMR1	51
INTOSC Specifications	158, 159
IOCA Register	

L

Load Conditions1	56
------------------	----

Μ

MCLR	
Internal	112
Memory Organization	13
Data	14
Program	13
Microchip Internet Web Site	
Migrating from other PIC Devices	206
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB Integrated Development Environment Software	vare 139
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	141
MPLINK Object Linker/MPLIB Object Librarian	

0

OPCODE Field Descriptions 129
Operational Amplifier (OPA) Module
AC Specifications165
OPTION Register 19, 47
Oscillator
Associated registers
Oscillator Module
EC27
HS27
INTOSC
INTOSCIO27
LP27
RC27
RCIO27
XT
Oscillator Parameters158
Oscillator Specifications157
Oscillator Start-up Timer (OST)
Specifications161
OSCTUNE Register

Ρ

P1A/P1B/P1C/P1D See Enhanced	Capture/Compare/PW/M
(FCCP)	Oaptarc/Oomparc/1 Will
Packaging	107
Marking	107
PCL and PCLATH	24
Stack	24
PCON Register	
PIE1 Register	
Pin Diagram	
PDIP, SOIC, TSSOP	
QFN	
Pinout Descriptions	
PIC16F610/16HV610	
PIC16F616/16HV616	
PIR1 Register	22
PORTA	

Additional Pin Functions 34
Augel Pagistor 24
ANGEL Register
Mook Dull Line
Weak Pull-Ops
Associated registers 41
Pin Descriptions and Diagrams
RA0
RA1
RA2
RA3
RA4
RA5 40
Specifications 159
PORTA Register
PORTC
Associated registers 44
P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/
PWM (ECCP) 42
Specifications
PORTC Register
Power-Down Mode (Sleep)
Power-on Reset (POR)
Power-up Timer (PWRT)
Specifications 161
Precision Internal Oscillator Parameters 159
Prescaler
Shared WDT/Timer0 46
Switching Prescaler Assignment 46
Program Memory 13
Man and Stack (PIC16E610/16H\/610) 13
Map and Stack (PIC16E616/16HV616)
Programming Dovice Instructions
Pillin Made See Enhanced Centure (Compare DIV/M
PWWW Wode. See Ennanced Capture/Compare/PWM
PVVIVITUON REGISTER

R

Reader Response	212
Read-Modify-Write Operations	129
Registers	
ADCON0 (ADC Control 0)	78
ADCON1 (ADC Control 1)	79
ADRESH (ADC Result High) with ADFM = 0)	80
ADRESH (ADC Result High) with ADFM = 1)	80
ADRESL (ADC Result Low) with ADFM = 0)	80
ADRESL (ADC Result Low) with ADFM = 1)	80
ANSEL (Analog Select)	34
CCP1CON (Enhanced CCP1 Control)	85
CM1CON0 (C1 Control)	62
CM2CON0 (C2 Control)	63
CM2CON1 (C2 Control)	65
CONFIG (Configuration Word)	110
Data Memory Map (PIC16F610/16HV610)	15
Data Memory Map (PIC16F616/16HV616)	15
ECCPAS (Enhanced CCP Auto-shutdown Contro	ol). 102
INTCON (Interrupt Control)	20
IOCA (Interrupt-on-Change PORTA)	35
OPTION_REG (OPTION)	. 19, 47
OSCTUNE (Oscillator Tuning)	31
PCON (Power Control Register)	23
PCON (Power Control)	114
PIE1 (Peripheral Interrupt Enable 1)	21
PIR1 (Peripheral Interrupt Register 1)	22
PORTA	33
PORTC	42
PWM1CON (Enhanced PWM Control)	105
Reset Values	116