E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f610t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-3: DATA MEMORY MAP OF THE PIC16F610/16HV610

	File Address		File Address
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h		86h
PORTC	07h	TRISC	87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Eh		8Eh
T1CON	10h	OSCTUNE	90h
	11h	ANSEL	91h
	12h		92h
	13h		03h
	146		93011 94h
	15h	WPUA	95h
	166		06h
	176	100/1	9011 07h
	18h		
VRCON	106	SRCONO	00h
CM1CON0	14h	SRCON1	94h
CM2CON0	1Bb	Choon	0Rh
CM2CON1	1Ch		- OCh
0	1Dh		
	1Eb		9DH
	156		OEh
	20h		A0h
	2011		
	3Fh		
	40h		
General			
Purpose			
Registers			
64 Bytes			
-	6Fh		
Accesses 70h-7Fh	70h	Accesses 70h-7Fh	F0h
	7Fh	-	FFh
Bank 0		Bank 1	
Unimplemented da	ita memor	y locations, read as '0	
Note 1: Not a phy	ysical regi	ster.	

FIGURE 2-4:

DATA MEMORY MAP OF THE PIC16F616/16HV616

	File Address		File Addres
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h		86h
PORTC	07h	TRISC	87h
	08h		88h
	001		806
PCLATH	04h	PCLATH	84h
DIP1			
FINI	000	F IL I	
TMP1		PCON	
	UEn	PCON	8En
TMR1H	0Fh	000711015	8Fh
TICON	10h	OSCIUNE	90h
TMR2	11h	ANSEL	91h
T2CON	12h	PR2	92h
CCPR1L	13h		93h
CCPR1H	14h		94h
CCP1CON	15h	WPUA	95h
PWM1CON	16h	IOCA	96h
ECCPAS	17h		97h
	18h		98h
VRCON	19h	SRCON0	99h
CM1CON0	1Ah	SRCON1	9Ah
CM2CON0	1Bh		9Bh
CM2CON1	1Ch		9Ch
	1Dh		9Dh
ADRESH	1Eh	ADRESL	9Eh
ADCON0	1Fh	ADCON1	9Fh
	20h	General	A0h
		Purpose	
Quanta		32 Bytes	BFh
Purpose			COF
Registers			
96 Bytes			
	7Fh	Accesses 70h-7Fh	F0h FFh
Bank 0		Bank 1	

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressing	this location	uses conten	ts of FSR to a	address data	memory (no	t a physical r	egister)	xxxx xxxx	24, 116
01h	TMR0	Timer0 Mod	dule's Registe	er						xxxx xxxx	45, 116
02h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	24, 116
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
04h	FSR	Indirect Dat	a Memory A	ddress Pointe	er					xxxx xxxx	24, 116
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	33, 116
06h	-	Unimpleme	nted							—	_
07h	PORTC	—	—	RC5	RC4	RC3	RC2	RC1	RC0	xx 00xx	42, 116
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							—	—
0Ah	PCLATH	—	—	_	Write	Buffer for up	oper 5 bits of	Program Co	unter	0 0000	24, 116
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	20, 116
0Ch	PIR1	—	ADIF ⁽²⁾	CCP1IF ⁽²⁾	C2IF	C1IF		TMR2IF ⁽²⁾	TMR1IF	-000 0-00	22, 116
0Dh	-	Unimpleme	nted							—	_
0Eh	TMR1L	Holding Re	gister for the	Least Signifi	cant Byte of	the 16-bit TM	R1 Register			xxxx xxxx	49, 116
0Fh	TMR1H	Holding Re	gister for the	Most Signific	ant Byte of t	he 16-bit TMI	R1 Register			xxxx xxxx	49, 116
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	52, 116
11h	TMR2 ⁽²⁾	Timer2 Mod	dule Register							0000 0000	55, 116
12h	T2CON ⁽²⁾	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	56, 116
13h	CCPR1L ⁽²⁾	Capture/Co	mpare/PWM	Register 1 L	ow Byte					xxxx xxxx	86, 116
14h	CCPR1H ⁽²⁾	Capture/Co	mpare/PWM	Register 1 H	ligh Byte					xxxx xxxx	86, 116
15h	CCP1CON ⁽²⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	85, 116
16h	PWM1CON ⁽²⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	85, 116
17h	ECCPAS ⁽²⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	102, 116
18h	—	Unimpleme	nted							—	—
19h	VRCON	C1VREN	C2VREN	VRR	FVREN	VR3	VR2	VR1	VR0	0000 0000	72, 116
1Ah	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1R	C1CH1	C1CH0	0000 -000	62, 116
1Bh	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2R	C2CH1	C2CH0	0000 -000	63, 116
1Ch	CM2CON1	MC1OUT	MC2OUT	_	T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC	00-0 0010	65, 116
1Dh	_	Unimpleme	nted							—	_
1Eh	ADRESH ^(2,3)	Most Signifi	icant 8 bits of	the left shift	ed A/D result	or 2 bits of r	ight shifted re	esult		XXXX XXXX	80, 116
1Fh	ADCON0 ⁽²⁾	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	78, 116

TABLE 2-1: PIC16F610/616/16HV610/616 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear. Legend:

Note 1:

2: PIC16F616/16HV616 only.

3: Read-only register.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank 1												
80h	INDF	Addressing	this location	uses content	s of FSR to	address data	a memory (no	ot a physical	register)	XXXX XXXX	24, 116	
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116	
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	24, 116	
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116	
84h	FSR	Indirect Dat	a Memory Ad	ddress Pointe	er					xxxx xxxx	24, 116	
85h	TRISA	-	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	33, 116	
86h	_	Unimpleme	nted							_	—	
87h	TRISC	—	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	42, 116	
88h	_	Unimpleme	nted							_	—	
89h	_	Unimpleme	nted							_	—	
8Ah	PCLATH	_	_	_	Write	e Buffer for u	pper 5 bits of	f Program Co	ounter	0 0000	24, 116	
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	20, 116	
8Ch	PIE1	—	ADIE ⁽³⁾	CCP1IE ⁽³⁾	C2IE	C1IE	—	TMR2IE ⁽³⁾	TMR1IE	-000 0-00	21, 116	
8Dh	_	Unimpleme	nted							_	—	
8Eh	PCON	—	—	—	—	—	—	POR	BOR	dd	23, 116	
8Fh	_	Unimpleme	nted							_	—	
90h	OSCTUNE	—	_	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	31, 117	
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽³⁾	ANS2 ⁽³⁾	ANS1	ANS0	1111 1111	34, 117	
92h	PR2 ⁽³⁾	Timer2 Mod	lule Period R	egister						1111 1111	55, 117	
93h	_	Unimpleme	nted							_	—	
94h	_	Unimpleme	nted							_	—	
95h	WPUA	_	_	WPUA5	WPUA4	—	WPUA2	WPUA1	WPUA0	11 -111	35, 117	
96h	IOCA	—	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	35, 117	
97h	_	Unimpleme	nted							_	—	
98h	—	Unimpleme	nted							_	—	
99h	SRCON0	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	SRCLKEN	0000 00-0	69, 117	
9Ah	SRCON1	SRCS1	SRCS0	—	—	—	—	—	—	00	69, 117	
9Bh	—	Unimpleme	nted							_	—	
9Ch	—	Unimpleme	nted							_	_	
9Dh	—	Unimpleme	nted							_	_	
9Eh	ADRESL ^(3,4)	Least Signif	icant 2 bits o	f the left shift	ed result or	8 bits of the	right shifted i	result		XXXX XXXX	80, 117	
9Fh	ADCON1 ⁽³⁾	_	ADCS2	ADCS1	ADCS0	—	_	—	—	-000	79, 117	

TABLE 2-2: PIC16F610/616/16HV610/616 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

 – = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear.
 RA3 pull-up is enabled when MCLRE is '1' in the Configuration Word register. Legend:

Note 1:

2:

PIC16F616/16HV616 only. 3:

4: Read-only Register.

3.3.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 3-5 shows the external RC mode connections.

FIGURE 3-5: EXTERNAL RC MODES

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

3.4 Internal Clock Modes

The Oscillator module provides a selectable system clock source of either 4 MHz or 8 MHz. The selectable frequency is configured through the IOSCFS bit of the Configuration Word.

The frequency of the internal oscillator can be can be user-adjusted via software using the OSCTUNE register.

3.4.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word register (CONFIG). See Section 12.0 "Special Features of the CPU" for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In **INTOSCIO** mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O.

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1		
	—	WPUA5	WPUA4	—	WPUA2	WPUA1	WPUA0		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 7-6	Unimplemen	ted: Read as 'o)'						
bit 5-4	WPUA<5:4>: Weak Pull-up Control bits								
	1 = Pull-up er 0 = Pull-up dis	nabled sabled							

REGISTER 4-4: WPUA: WEAK PULL-UP PORTA REGISTER

bit 3Unimplemented: Read as '0'bit 2-0WPUA<2:0>: Weak Pull-up Control bits

- - 1 =Pull-up enabled 0 =Pull-up disabled

Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).
- **3:** The RA3 pull-up is enabled when configured as MCLR and disabled as an input in the Configuration Word.
- 4: WPUA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

REGISTER 4-5: IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOCA<5:0>: Interrupt-on-change PORTA Control bit

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

2: IOCA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

6.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of TCY as determined by the Timer1 prescaler.

6.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge.

6.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

6.4 Timer1 Oscillator

A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when the oscillator is in the LP Oscillator mode. The user must provide a software time delay to ensure proper oscillator start-up.

TRISA5 and TRISA4 bits are set when the Timer1 oscillator is enabled. RA5 and RA4 bits read as '0' and TRISA5 and TRISA4 bits read as '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

6.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 6.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

- Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.
- Note: In asynchronous counter mode or when using the internal oscillator and T1ACS=1, Timer1 can not be used as a time base for the capture or compare modes of the ECCP module (for PIC16F616/HV616 only).

6.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

6.6 Timer1 Gate

Timer1 gate source is software configurable to be the T1G pin or the output of Comparator C2. This allows the device to directly time external events using T1G or analog events using Comparator C2. See the CM2CON1 register (Register 8-3) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many

7.0 **TIMER2 MODULE** (PIC16F616/16HV616 ONLY)

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 7-1 for a block diagram of Timer2.

7.1 **Timer2 Operation**

The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 7-1:	TIMER2 BLOCK DIAGRAM

The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by setting the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR) Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C10N	C1OUT	C10E	C1POL	_	C1R	C1CH1	C1CH0
bit 7							bit 0
l egend:							
R = Reada	able bit	W = Writable	bit	U = Unimple	emented bit. rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 7	C1ON: Comp	parator C1 Ena	ble bit				
	1 = Compara 0 = Compara	ator C1 is enabl ator C1 is disab	ed led				
bit 6	C1OUT: Com	nparator C1 Ou	tput bit				
	$\frac{ \mathbf{f} (C \mathbf{POL} = 1) }{C10UT = 0}$ $C10UT = 1$ $\frac{ \mathbf{f} (C \mathbf{POL} = 0) }{C10UT = 1}$ $C10UT = 0$	<u>_ (Inverted pola</u> when C1VIN+ > when C1VIN+ < (non-inverted when C1VIN+ > when C1VIN+ <	r <u>nty):</u> C1VIN- C1VIN- polarity): C1VIN- C1VIN-				
bit 5	C1OE: Comp	parator C1 Outp	out Enable bit				
	1 = C1OUT is 0 = C1OUT is	s present on th s internal only	e C1OUT pin ^{(*}	1)			
bit 4	C1POL: Con	nparator C1 Ou	tput Polarity S	elect bit			
	1 = C1OUT 0 = C1OUT	ogic is inverted	rted				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	C1R: Compa	arator C1 Refer	ence Select bit	t (non-inverting	g input)		
	1 = C1VIN+ c 0 = C1VIN+ c	connects to C1 connects to C1	/REF output N+ pin				
bit 1-0	C1CH<1:0>:	Comparator C	1 Channel Sel	ect bit			
	00 = C12IN0 01 = C12IN1 10 = C12IN2 11 = C12IN3	- pin of C1 con - pin of C1 con - pin of C1 con - pin of C1 con	nects to C1VIN nects to C1VIN nects to C1VIN nects to C1VIN	√- √- √-			
Note 1:	Comparator outpu	ut requires the f	ollowing three	conditions: C	10E = 1, C10I	N = 1 and corres	sponding port

REGISTER 8-1: CM1CON0: COMPARATOR 1 CONTROL REGISTER 0

Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1 and corresponding port TRIS bit = 0.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
C1VREN	C2VREN	VRR	FVREN	VR3	VR2	VR1	VR0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 7	C1VREN: Co	mparator 1 Vol	tage Referenc	e Enable bit				
	1 = CVREF cir	cuit powered o	n and routed	to C1VREF inpu	ut of Comparate	or C1		
	0 = 0.6 Volt c	onstant referer	ice routed to C	1VREF input of	f Comparator C	:1		
bit 6	C2VREN: Co	mparator 2 Vol	tage Referenc	e Enable bit				
	1 = CVREF cir	cuit powered o	n and routed	to C2VREF inpu	ut of Comparato	or C2		
	0 = 0.6 Volt c	onstant referer	ice routed to C	2VREF input of	f Comparator C	2		
bit 5	VRR: CVREF	Range Selection	on bit					
	1 = Low range	e						
	0 = High rang	le						
bit 4	FVREN: Fixe	d Voltage Refe	rence (0.6V) E	Enable bit				
	1 = Enabled							
	0 = Disabled							
bit 3-0 VR<3:0>: Comparator Voltage Reference CVREF Value Selection bits ($0 \le VR < 3:0 > \le 15$)								
	<u>When VRR =</u>	<u>1</u> : CVREF = (V	R<3:0>/24) * \	VDD				
	<u>When VRR = 0</u> : CVREF = VDD/4 + (VR<3:0>/32) * VDD							

REGISTER 8-6: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE (PIC16F616/16HV616 ONLY)

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 9-1 shows the block diagram of the ADC.

FIGURE 9-1: ADC BLOCK DIAGRAM

Note: The ADRESL and ADRESH registers are read-only.

9.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding Port section for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

9.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 9-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 15.0** "**Electrical Specifications**" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

ADC Clock	Period (TAD)	Device Frequency (Fosc)				
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	100	200 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs ⁽²⁾	4.0 μs	
Fosc/8	001	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs (3)	
Fosc/16	101	800 ns ⁽²⁾	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾	
Fosc/64	110	3.2 μs	8.0 μs (3)	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾	
FRC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V)

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.

2: These values violate the minimum required TAD time.

- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 9	-2:	ANA	LOG-T	O-DIG	ITAL	CON	VERSI	ON T/		CLES				
	T <u>CY to </u>	TAD TAD1 Convei ding Capa	b9 rsion St	TAD3 b8 arts Discol	TAD4 b7 nnecte	b6 b6	_TAD6 b5 Analog	b4 b4	b3 (typica	b2 b2	_TAD10 b1 (ns)	b0		
	l Set G	60/DONE	bit					ADRE GO bi ADIF Holdir	SH an it is cle bit is s ng capa	nd ADR ared, et, acitor is	ESL re	egisters a	」 are loade analog in	d, put

9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an analog-to-digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the interrupt service routine.

Please see **Section 9.1.5** "Interrupts" for more information.

FIGURE 9-3: 10-BIT A/D CONVERSION RESULT FORMAT

9.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format.

Figure 9-4 shows the two output formats.

FIGURE 10-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

			-	Period	
00	(Single Output)	P1A Modulated			Ì
		P1A Modulated			
10	(Half-Bridge)	P1B Modulated	_ ! !		
		P1A Active	- !		 :
(Full-Bridge, ⁰¹ Forward)	P1B Inactive	- ;			
	Forward)	P1C Inactive	_ ; 		
		P1D Modulated		i	
		P1A Inactive	- :		
11	(Full-Bridge,	P1B Modulated			
	Reverse)	P1C Active			
		P1D Inactive —	_ ' _ '	1	<u> </u>

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 10.4.6 "Programmable Dead-Band Delay mode").

REGISTER 12-1: CONFIG: CONFIGURATION WORD REGISTER

_		_	_	_		BOREN1 ⁽¹⁾	BOREN0 ⁽¹⁾
bit 15							bit 8
IOSCFS	CP ⁽²⁾	MCLRE ⁽³⁾	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit 7	-	•					bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	P = Program	mable'	U = Unimplem	nented bit,
-n – Value ('1' – Bit is sot		'0' – Bit is cle	ared	x = Bit is unkr	
		1 - Dit 13 36t			aleu	X – Dit 15 uliki	IOWIT
bit 15-10	Unimplemen	ted: Read as ':	L'				
bit 9-8	BOREN<1:0>	Brown-out R	eset Selectior	n bits ⁽¹⁾			
	11 = BOR ena	abled					
	10 = BOR ena	abled during op	peration and d	lisabled in Slee	ep		
hit 7		rnal Oscillator	Frequency Se	lect hit			
	1 = 8 MHz		riequency de				
	0 = 4 MHz						
bit 6	CP: Code Pro	otection bit ⁽²⁾					
	1 = Program	memory code p	protection is d	isabled			
	0 = Program	memory code p	protection is e	nabled			
bit 5	$1 = \overline{MCLRE}$: MCL	$_{\rm R}$ Pin Function					
	0 = MCLR pin	function is dig	ital input, MC	LR internally ti	ed to VDD		
bit 4	PWRTE: Pow	er-up Timer Er	nable bit	-			
	1 = PWRT dis	sabled					
1.11.0	0 = PWRT en	abled					
Dit 3	WDIE: Watch	ndog Timer Ena blod	adie dit				
	0 = WDT disa	ibled					
bit 2-0	FOSC<2:0>:	Oscillator Sele	ction bits				
	111 = RC os	cillator: CLKO	UT function or	n RA4/OSC2/C	LKOUT pin, RO	on RA5/OSC	1/CLKIN
	110 = RCIO 101 = INTOS	oscillator: I/O f	KOLIT function	A4/OSC2/CLK	OUT pin, RC on	RA5/OSC1/CL	_KIN
	RA5/0	DSC1/CLKIN					
	100 = INTOS	SCIO oscillator	: I/O function	on RA4/OSC2	/CLKOUT pin, l	O function on	
	011 = EC: I/	O function on F	RA4/OSC2/CL	KOUT pin, CL	KIN on RA5/OS	C1/CLKIN	
	010 = HS os	cillator: High-s	peed crystal/r	esonator on R	A4/OSC2/CLKC	OUT and RA5/C	SC1/CLKIN
	001 = XT os	cillator: Crystal	/resonator on	RA4/OSC2/Cl	LKOUT and RA	5/OSC1/CLKIN	l N
							•
Note 1: 1 2: ⁻	Enabling Brown-oι The en <u>tire pr</u> ogram	ut Reset does r n memory will b	not automatica be erased whe	ally enable Pov en the code pro	ver-up Timer. Dtection is turne	d off.	

3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.

12.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- PWRT time-out is invoked after POR has expired.
- OST is activated after the PWRT time-out has expired.

The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC16F610/616/ 16HV610/616 device operating in parallel.

Table 12-5 shows the Reset conditions for some special registers, while Table 12-4 shows the Reset conditions for all the registers.

12.3.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see **Section 12.3.4** "**Brown-out Reset (BOR)**".

Occillator Configuration	Powe	er-up	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	_	—

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	х	1	1	Power-on Reset
u	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
PCON			_	_			POR	BOR	dd	uu
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out (Continued)
OSCTUNE	90h	0 0000	u uuuu	u uuuu
ANSEL ⁽⁷⁾	91h	1111 1111	1111 1111	uuuu uuuu
PR2 ⁽⁶⁾	92h	1111 1111	1111 1111	1111 1111
WPUA	95h	11 -111	11 -111	uu -uuu
IOCA	96h	00 0000	00 0000	uu uuuu
SRCON0	99h	0000 00-0	0000 00-0	uuuu uu-u
SRCON1	9Ah	00	00	uu
ADRESL ⁽⁶⁾	9Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1 ⁽⁶⁾	9Fh	-000	-000	-uuu

TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

- Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.
 - 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).
 - **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
 - 4: See Table 12-5 for Reset value for specific condition.
 - **5:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.
 - 6: PIC16F616/16HV616 only.
 - 7: ANSEL <3:2> For PIC16F616/HV616 only.

TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during Sleep	000h	0001 Ouuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Brown-out Reset	000h	0001 luuu	10
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

12.7 Power-Down Mode (Sleep)

The Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit in the STATUS register is cleared.
- TO bit is set.
- Oscillator driver is turned off.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are highimpedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pullups on PORTA should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level.

Note:	It should be noted that a Reset generated
	by a WDT time-out does not drive MCLR
	pin low.

12.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from RA2/INT pin, PORTA change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

- 1. Timer1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. ECCP Capture mode interrupt.
- 3. A/D conversion (when A/D clock source is RC).
- 4. Comparator output changes state.
- 5. Interrupt-on-change.
- 6. External Interrupt from INT pin.

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	If the global interrupts are disabled (GIE is
	cleared) and any interrupt source has both
	its interrupt enable bit and the correspond-
	ing interrupt flag bits set, the device will
	immediately wake-up from Sleep.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

12.7.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will Immediately wake-up from Sleep. The SLEEP instruction is executed. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. See Figure 12-9 for more details.

15.11 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

<u> </u>		1		
Т				
F	Frequency	Т	Time	
Lowerc	ase letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	SC	SCK	
do	SDO	SS	SS	
dt	Data in	t0	TOCKI	
io	I/O Port	t1	T1CKI	
mc	MCLR	wr	WR	
Uppercase letters and their meanings:				
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 15-5: LOAD CONDITIONS

FIGURE 16-20: PIC16HV610/616 IDD EC (1 MHz) vs. VDD

INDEX

Α	
A/D	
Specifications1	65. 166
Absolute Maximum Ratings	143
AC Characteristics	
Industrial and Extended	157
Load Conditions	156
ADC	
Acquisition Requirements	
Associated registers	
Block Diagram	
Calculating Acquisition Time	
Channel Selection	
Configuration	74
Configuring Interrupt	
Conversion Clock	74
Conversion Procedure	
Internal Sampling Switch (Rss) Impedance	81
Interrupts	
Operation	
Operation During Sleep	
Port Configuration	74
Reference Voltage (VREF)	74
Result Formatting	75
Source Impedance	81
Special Event Trigger	
Starting an A/D Conversion	75
ADCON0 Register	
ADCON1 Register	
ADRESH Register (ADFM = 0)	80
ADRESH Register (ADFM = 1)	80
ADRESL Register (ADFM = 0)	80
ADRESL Register (ADFM = 1)	80
Analog-to-Digital Converter. See ADC	
ANSEL Register	
Assembler	
MPASM Assembler	140

В

Block Diagrams	
(CCP) Capture Mode Operation	86
ADC	73
ADC Transfer Function	82
Analog Input Model6	4, 82
CCP PWM	90
Clock Source	27
Comparator C1	58
Comparator C2	58
Compare Mode Operation	88
Crystal Operation	29
External RC Mode	30
In-Circuit Serial Programming Connections	. 126
Interrupt Logic	. 119
MCLR Circuit	. 112
On-Chip Reset Circuit	. 111
PIC16F610/16HV610	9
PIC16F616/16HV616	10
PWM (Enhanced)	93
RA0 and RA1 Pins	36
RA2 Pins	37
RA3 Pin	38
RA4 Pin	39
RA5 Pin	40
RC0 and RC1 Pins	43

RC2 and RC3 Pins	43
RC4 Pin	44
RC5 Pin	44
Resonator Operation	29
Timer1	49
Timer2	55
TMR0/WDT Prescaler	45
Watchdog Timer	122
Brown-out Reset (BOR)	113
Associated Registers	114
Specifications	161
Timing and Characteristics	160

С	
C Compilers	
MPLAB C18 14	40
Calibration Bits 11	11
Capture Module. See Enhanced Capture/Compare/PW (ECCP)	M
Capture/Compare/PWM (CCP)	
Associated registers w/ Capture/Compare/PWM 87,88 105	9,
Capture Mode	36
CCP1 Pin Configuration 8	36
Compare Mode 8	38
CCP1 Pin Configuration	38
Software Interrupt Mode 86, 8	38
Special Event Trigger 8	38
Timer1 Mode Selection	38
Prescaler	36
PWM Mode) 0
Duty Cycle	<u>}1</u>
Effects of Reset	92 22
Example PWM Frequencies and Resolutions, 2	20
MHZ	<u>۱</u>
Example PWW Frequencies and Resolutions,	ŏ ⊿≀
MHZ	11 22
Sotup for Operation	2נ 22
System Clock Frequency Changes	າ∠ າว
DW/M Deriod	<u>י</u> בי 1
Setup for PWM Operation	יי 22
CCP1CON (Enhanced) Register	25
Clock Sources	
External Modes	28
EC	28
HS	29
LP	29
OST	28
RC	30
XT	29
Internal Modes	30
INTOSC	30
INTOSCIO	30
CM1CON0 Register6	32
CM2CON0 Register	33
CM2CON1 Register6	35
Code Examples	
A/D Conversion7	77
Assigning Prescaler to Timer0	1 6
Assigning Prescaler to WDT	16
Changing Between Capture Prescalers	36
Indirect Addressing	<u>24</u>
initializing PORTA	აპ