

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f616-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.5 PIR1 Register

The PIR1 register contains the peripheral interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	—	TMR2IF ⁽¹⁾	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Interrupt Flag bit ⁽¹⁾
	1 = A/D conversion complete
	0 = A/D conversion has not completed or has not been started
bit 5	CCP1IF: CCP1 Interrupt Flag bit ⁽¹⁾
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)
	0 = No TMR1 register capture occurred Compare mode:
	1 = A TMR1 register compare match occurred (must be cleared in software)
	0 = No TMR1 register compare match occurred
	<u>PWM mode</u> :
	Unused in this mode
bit 4	C2IF: Comparator C2 Interrupt Flag bit
	1 = Comparator C2 output has changed (must be cleared in software)
	0 = Comparator C2 output has not changed
bit 3	C1IF: Comparator C1 Interrupt Flag bit
	 1 = Comparator C1 output has changed (must be cleared in software) 0 = Comparator C1 output has not changed
h it 0	· · · · ·
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IF: Timer2 to PR2 Match Interrupt Flag bit ⁽¹⁾
	 1 = Timer2 to PR2 match occurred (must be cleared in software) 0 = Timer2 to PR2 match has not occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = Timer1 register overflowed (must be cleared in software)
	0 = Timer1 has not overflowed
Note 1:	PIC16F616/16HV616 only. PIC16F610/16HV610 unimplemented, read as '0'.

3.4.1.1 OSCTUNE Register

The oscillator is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-1). The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

TUN<4:0>: Frequency Tuning bits	
01111 = Maximum frequency	
01110 =	
•	
•	
•	
00001 =	
00000 = Oscillator module is running at the manufacturer calibrated frequency	
11111 =	
•	
•	
•	
10000 = Minimum frequency	

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 12-1) for operation of all register bits.

NOTES:

4.0 I/O PORTS

There are as many as eleven general purpose I/O pins and an input pin available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

4.1 PORTA and the TRISA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 4-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input only and its TRIS bit will always read as '1'. Example 4-1 shows how to initialize PORTA.

Reading the PORTA register (Register 4-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the

REGISTER 4-1: PORTA: PORTA REGISTER

port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL register must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0' and cannot generate an interrupt.

EXAMPLE 4-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0
CLRF	PORTA	;Init PORTA
BSF	STATUS, RPO	;Bank 1
CLRF	ANSEL	;digital I/O
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs
BCF	STATUS, RPO	;Bank 0

U-0	U-0	R/W-x	R/W-0	R-x	R/W-0	R/W-0	R/W-0
—	—	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at	t POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$	
hit 7 C	Unimala	mented Dood op (o)		
bit 7-6	Unimple	mented: Read as '0'		
bit 5-0		: PORTA I/O Pin bit TA pin is > VIH		

1 = PORTA pin is > VIH

0 = PORTA pin is < VIL

REGISTER 4-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

2: TRISA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

bit 5-0

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	
	—	WPUA5	WPUA4	—	WPUA2	WPUA1	WPUA0	
bit 7							bit 0	
Legend:								
R = Readable bit W =		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown		nown			
bit 7-6	Unimplemen	Unimplemented: Read as '0'						
bit 5-4	WPUA<5:4>: Weak Pull-up Control bits							
	1 = Pull-up enabled							
	0 = Pull-up disabled							

REGISTER 4-4: WPUA: WEAK PULL-UP PORTA REGISTER

bit 3Unimplemented: Read as '0'bit 2-0WPUA<2:0>: Weak Pull-up Control bits

- - 1 =Pull-up enabled 0 =Pull-up disabled

Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).
- **3:** The RA3 pull-up is enabled when configured as MCLR and disabled as an input in the Configuration Word.
- 4: WPUA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

REGISTER 4-5: IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IOCA<5:0>: Interrupt-on-change PORTA Control bit

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.

2: IOCA<5:4> always reads '1' in XT, HS and LP Oscillator modes.

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (CONTINUED)

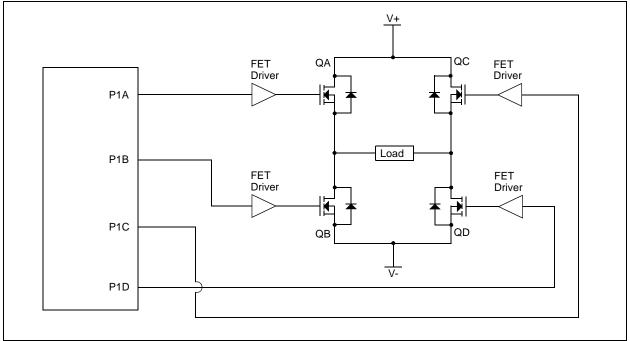
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	<u>TMR1CS = 1:</u>
	1 = Do not synchronize external clock input
	0 = Synchronize external clock input
	<u>TMR1CS = 0:</u>
	This bit is ignored. Timer1 uses the internal clock
bit 1	TMR1CS: Timer1 Clock Source Select bit
	1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock <u>If TMR1ACS = 0:</u> FOSC/4 <u>If TMR1ACS = 1:</u> FOSC
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.
 2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1 register, as a Timer1 gate source.

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C2ON	C2OUT	C2OE	C2POL	—	C2R	C2CH1	C2CH0
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		ʻ0' = Bit is cl	eared	x = Bit is unki	nown
bit 7	C2ON: Com	parator C2 Enal	ble bit				
	1 = Compara	tor C2 is enable tor C2 is disabl	ed				
bit 6	C2OUT: Corr	nparator C2 Ou	tput bit				
	C2OUT = 0 v $C2OUT = 1 v$ $If C2POL = 0$ $C2OUT = 1 v$	<u>(inverted polar</u> when C2VIN+ > when C2VIN+ < (non-inverted) when C2VIN+ > when C2VIN+ <	C2VIN- C2VIN- <u>polarity):</u> C2VIN-				
bit 5	1 = C2OUT is	parator C2 Outp s present on C2 s internal only					
bit 4	1 = C2OUT	nparator C2 Ou ogic is inverted ogic is not inve	. ,	Select bit			
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	C2R: Compa	rator C2 Refere	ence Select bi	ts (non-invertii	ng input)		
		connects to C2					
bit 1-0	C2CH<1:0>:	Comparator C	2 Channel Sel	lect bits			
	01 = C2VIN- 10 = C2VIN-	pin of C2 conne pin of C2 conne pin of C2 conne pin of C2 conne	ects to C12IN1 ects to C12IN2	1- 2-			
Note 1: (Comparator outpu	-			20E = 1, C201	N = 1 and corres	sponding port

REGISTER 8-2: CM2CON0: COMPARATOR 2 CONTROL REGISTER 0

Note 1: Comparator output requires the following three conditions: C2OE = 1, C2ON = 1 and corresponding port TRIS bit = 0.


10.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of full-bridge application is shown in Figure 10-10.

In the Forward mode, pin CCP1/P1A is driven to its active state, pin P1D is modulated, while P1B and P1C will be driven to their inactive state as shown in Figure 10-11.

In the Reverse mode, P1C is driven to its active state, pin P1B is modulated, while P1A and P1D will be driven to their inactive state as shown Figure 10-11. P1A, P1B, P1C and P1D outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the P1A, P1B, P1C and P1D pins as outputs.

FIGURE 10-10: EXAMPLE OF FULL-BRIDGE APPLICATION

12.4 Interrupts

The PIC16F610/616/16HV610/616 has multiple sources of interrupt:

- External Interrupt RA2/INT
- Timer0 Overflow Interrupt
- PORTA Change Interrupts
- 2 Comparator Interrupts
- A/D Interrupt (PIC16F616/16HV616 only)
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt (PIC16F616/16HV616 only)
- Enhanced CCP Interrupt (PIC16F616/16HV616 only)

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset.

When an interrupt is serviced, the following actions occur automatically:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The following interrupt flags are contained in the INT-CON register:

- INT Pin Interrupt
- PORTA Change Interrupt
- Timer0 Overflow Interrupt

The peripheral interrupt flags are contained in the special register, PIR1. The corresponding interrupt enable bit is contained in special register, PIE1.

The following interrupt flags are contained in the PIR1 register:

- A/D Interrupt
- 2 Comparator Interrupts
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt
- Enhanced CCP Interrupt

For external interrupt events, such as the INT pin or PORTA change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 12-8). The latency is the same for one or twocycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

For additional information on Timer1, Timer2, comparators, ADC, Enhanced CCP modules, refer to the respective peripheral section.

12.4.1 RA2/INT INTERRUPT

The external interrupt on the RA2/INT pin is edgetriggered; either on the rising edge if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is clear. When a valid edge appears on the RA2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The RA2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See **Section 12.7** "**Power-Down Mode (Sleep)**" for details on Sleep and Figure 12-9 for timing of wake-up from Sleep through RA2/INT interrupt.

Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0' and cannot generate an interrupt.

13.0 INSTRUCTION SET SUMMARY

The PIC16F610/616/16HV610/616 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

Table 13-2 lists the instructions recognized by the $MPASM^{TM}$ assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

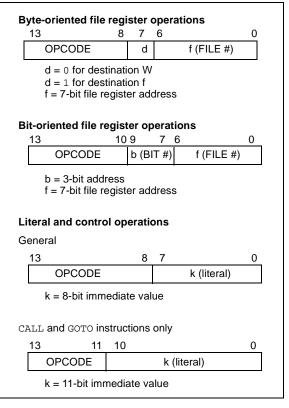
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

13.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W					
Syntax:	[label] ANDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .AND. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.					

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

BTFSC	Bit Test f, Skip if Clear					
Syntax:	[label] BTFSC f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	skip if (f) = 0					
Status Affected:	None					
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.					

13.2 Instruction Descriptions

BTFSS	Bit Test f, Skip if Set					
Syntax:	[label] BTFSS f,b					
Operands:	$0 \le f \le 127$ $0 \le b < 7$					
Operation:	skip if (f) = 1					
Status Affected:	None					
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.					

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$					
Status Affected:	TO, PD					
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.					

CALL	Call Subroutine					
Syntax:	[<i>label</i>] CALL k					
Operands:	$0 \le k \le 2047$					
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>					
Status Affected:	None					
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.					

COMF	Complement f					
Syntax:	[<i>label</i>] COMF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (destination)$					
Status Affected:	Z					
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

Decrement f

[label] DECF f,d

CLRF	Clear f			
Syntax:	[label]CLRF f			
Operands:	$0 \le f \le 127$			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{f}) \\ 1 \rightarrow \text{Z} \end{array}$			
Status Affected:	Z			
Description:	The contents of register 'f' are cleared and the Z bit is set.			

0	perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
0	peration:	(f) - 1 \rightarrow (destination)				
S	tatus Affected:	Z				
D	escription:	Decrement register 'f'. If 'd' is '0 the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

DECF

Syntax:

CLRW	Clear W				
Syntax:	[label] CLRW				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	W register is cleared. Zero bit (Z) is set.				

is '0',

15.6 DC Characteristics: PIC16HV610/616- I (Industrial)

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
Param			. .			Conditions			
No.	Device Characteristics	Min	Тур†	Мах	Units	VDD	Note		
D020	Power-down Base Current(IPD) ^(2,3)	-	135	200	μA	2.0	WDT, BOR, Comparators, VREF and T1OSC disabled		
			210	280	μΑ	3.0			
	PIC16HV610/616		260	350	μA	4.5			
D021			135	200	μA	2.0	WDT Current ⁽¹⁾		
			210	285	μA	3.0			
			265	360	μΑ	4.5			
D022			215	285	μA	3.0	BOR Current ⁽¹⁾		
			265	360	μΑ	4.5			
D023			240	340	μΑ	2.0	Comparator Current ⁽¹⁾ , both		
			320	420	μΑ	3.0	comparators enabled		
			370	500	μΑ	4.5			
D024			185	270	μΑ	2.0	Comparator Current ⁽¹⁾ , single		
			265	350	μΑ	3.0	comparator enabled		
			320	430	μΑ	4.5			
D025		_	165	235	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)		
			255	330	μΑ	3.0			
			330	430	μΑ	4.5			
D026*			175	245	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)		
			275	350	μΑ	3.0			
			355	450	μΑ	4.5			
D027		—	140	205	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
			220	290	μΑ	3.0			
			270	360	μΑ	4.5			
D028		—	210	280	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in		
		_	260	350	μΑ	4.5	progress		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Shunt regulator is always enabled and always draws operating current.

15.9 DC Characteristics: PIC16F610/616/16HV610/616- I (Industrial) PIC16F610/616/16HV610/616 - E (Extended)

DC CHARACTERISTICS					less otherwise stated) TA \leq +85°C for industrial TA \leq +125°C for extended		
Param No.	Sym	Characteristic	Min	Min Typ† M			Conditions
D101*	COSC2	Capacitive Loading Specs on Output Pins OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins	_	_	50	pF	
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	_	E/W	$-40^{\circ}C \leq TA \leq +85^{\circ}C$
D130A	ED	Cell Endurance	1K	10K	_	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$
D131	Vpr	VDD for Read	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for Erase/Write	4.5	_	5.5	V	
D133	TPEW	Erase/Write cycle time	_	2	2.5	ms	
D134	Tretd	Characteristic Retention	40	-	—	Year	Provided no other specifications are violated

* These parameters are characterized but not tested.

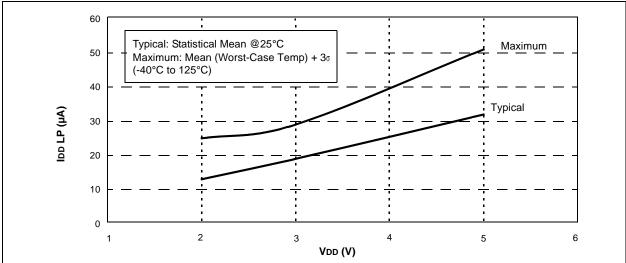
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

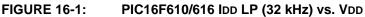
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

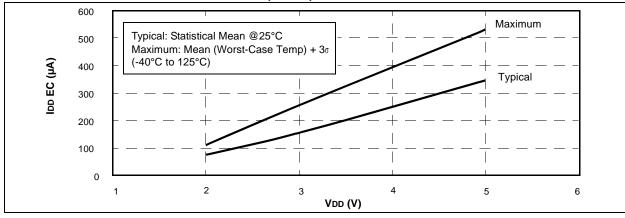
TABLE 15-18. OSCILLATOR FARAMETERS FOR FICTOR 010 - 11 (high temp.)							_	
Param No.	Sym	Characteristic	Frequency Tolerance	Units	Min	Тур	Max	Conditions
OS08	INTosc	Int. Calibrated INTOSC Freq. ⁽¹⁾	±10%	MHz	7.2	8.0		$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5V \\ -40^{\circ}\text{C} \leq T \text{A} \leq 150^{\circ}\text{C} \end{array}$

TABLE 15-18: OSCILLATOR PARAMETERS FOR PIC16F616 - H (High Temp.)

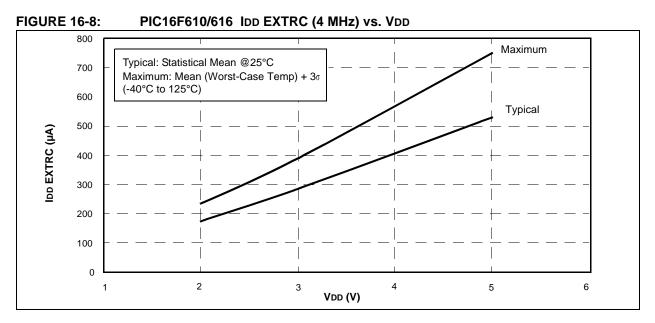
Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

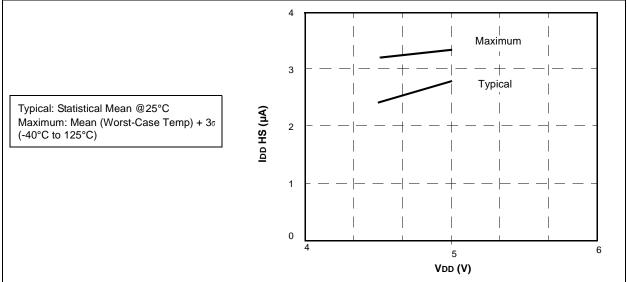

TABLE 15-19: COMPARATOR SPECIFICATIONS FOR PIC16F616 – H (High Temp.)


Param No.	Sym	Characteristic	Units	Min	Тур	Max	Conditions
CM01	Vos	Input Offset Voltage	mV		±5	±20	(VDD - 1.5)/2


16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.



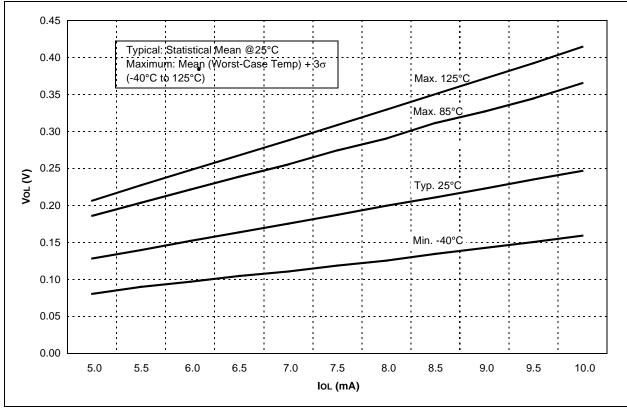
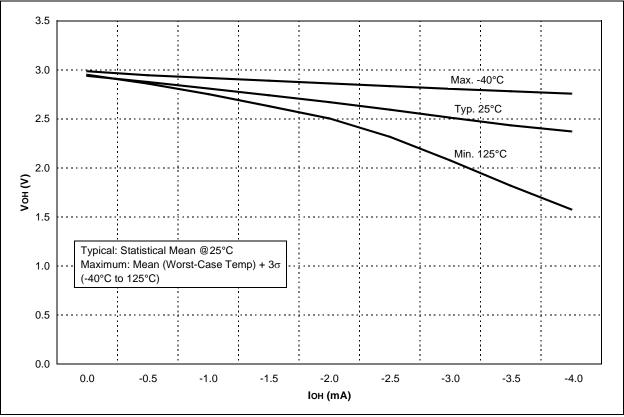
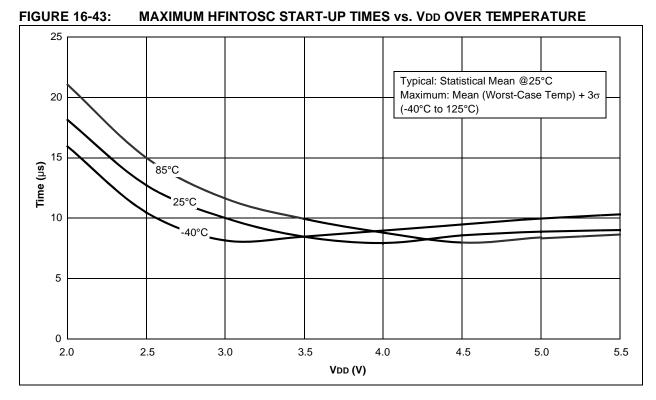
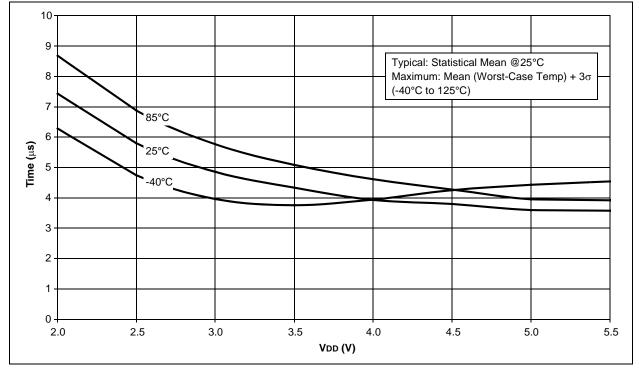


FIGURE 16-2: PIC16F610/616 IDD EC (1 MHz) vs. VDD







Initializing PORTC42
Saving Status and W Registers in RAM121
Code Protection
Comparator
C2OUT as T1 Gate65
Operation57
Operation During Sleep61
Response Time
Synchronizing COUT w/Timer165
Comparator Analog Input Connection Considerations64
Comparator Hysteresis
Comparator Module
Associated registers67
C1 Output State Versus Input Conditions
Comparator Voltage Reference (CVREF)70
Effects of a Reset61
Comparator Voltage Reference (CVREF)
Response Time
Comparator Voltage Reference (CVREF)
Specifications164
Comparators
C2OUT as T1 Gate50
Effects of a Reset61
Specifications164
Compare Module. See Enhanced Capture/Compare/PWM
(ECCP)
CONFIG Register
Configuration Bits109
CPU Features
Customer Change Notification Service
Customer Notification Service
Customer Support

D

Data Memory	14
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	
Extended and Industrial	153, 154
Industrial and Extended	
Development Support	
Device Overview	9

Е

ECCP. See Enhanced Capture/Compare/PWM	
ECCPAS Register	. 102
Effects of Reset	
PWM mode	92
Electrical Specifications	
Enhanced Capture/Compare/PWM	85
Enhanced Capture/Compare/PWM (ECCP)	
Enhanced PWM Mode	93
Auto-Restart	. 103
Auto-shutdown	. 102
Direction Change in Full-Bridge Output Mode	99
Full-Bridge Application	97
Full-Bridge Mode	97
Half-Bridge Application	96
Half-Bridge Application Examples	. 104
Half-Bridge Mode	
Output Relationships (Active-High and Active-	Low)
94	
Output Relationships Diagram	95
Programmable Dead Band Delay	. 104
Shoot-through Current	
Start-up Considerations	
	-

Specifications Timer Resources	
Errata	8
F	
Firmware Instructions Fuses. See Configuration Bits	129
G	
General Purpose Register File	. 14
Н	
High Temperature Operation	168
1	
ID Locations	125
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	126
Indirect Addressing, INDF and FSR registers	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	
ANDLW ANDWF	
ANDWF MOVF	
BCF	
BSF	
BTFSC	
BTFSS	
CALL	132
CLRF	132
CLRW	132
CLRWDT	
COMF	
DECF	
DECFSZ GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	133
MOVLW	134
MOVWF	
NOP	
RETFIE	
RETLW	
RETURN RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	137
SWAPF	137
XORLW	
XORWF	
Summary Table	
INTCON Register	. 20
Internal Oscillator Block INTOSC	
Specifications 158,	159
Internal Sampling Switch (Rss) Impedance	
Internet Address	
Interrupts	
ADC	
Associated Registers	120