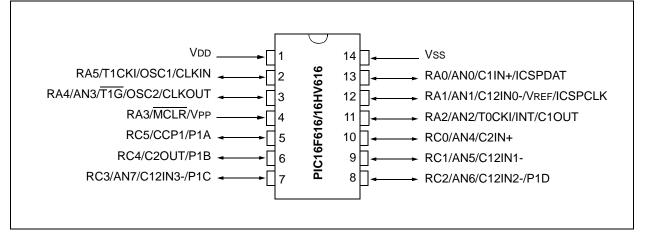


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f616-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F616/16HV616 14-Pin Diagram (PDIP, SOIC, TSSOP)

TABLE 2: PIC16F616/16HV616 14-PIN SUMMARY

I/O	Pin	Analog	Comparators	Timer	ССР	Interrupts	Pull-ups	Basic
RA0	13	AN0	C1IN+		_	IOC	Y	ICSPDAT
RA1	12	AN1/VREF	C12IN0-		_	IOC	Y	ICSPCLK
RA2	11	AN2	C1OUT	T0CKI	—	INT/IOC	Y	—
RA3 ⁽¹⁾	4	_	—	_		IOC	Y(2)	MCLR/Vpp
RA4	3	AN3	—	T1G	_	IOC	Y	OSC2/CLKOUT
RA5	2	—	—	T1CKI	-	IOC	Y	OSC1/CLKIN
RC0	10	AN4	C2IN+	—	—	—	—	—
RC1	9	AN5	C12IN1-	_		—	—	—
RC2	8	AN6	C12IN2-	_	P1D	—	—	—
RC3	7	AN7	C12IN3-	—	P1C	—	—	—
RC4	6	—	C2OUT	_	P1B	—	—	—
RC5	5	_	—	_	CCP1/P1A	_	_	_
	1	_	—		_	_	_	Vdd
_	14	_		_	_	—	—	Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

TABLE 1-2: PIC16F616/16HV616 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/ICSPDAT	RA0	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	AN0	AN	_	A/D Channel 0 input
	C1IN+	AN	_	Comparator C1 non-inverting input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
RA1/AN1/C12IN0-/VREF/ICSPCLK	RA1	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	AN1	AN	_	A/D Channel 1 input
	C12IN0-	AN	_	Comparators C1 and C2 inverting input
	VREF	AN	_	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	TOCKI	ST	—	Timer0 clock input
	INT	ST	—	External Interrupt
	C1OUT	_	CMOS	Comparator C1 output
RA3/MCLR/Vpp	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
(A4/AN3/110/0302/0EK001	AN3	AN		A/D Channel 3 input
	TIG			
		ST —		Timer1 gate (count enable)
	OSC2		XTAL	Crystal/Resonator
	CLKOUT		CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	T1CKI	ST		Timer1 clock input
	OSC1	XTAL	_	Crystal/Resonator
	CLKIN	ST	-	External clock input/RC oscillator connection
RC0/AN4/C2IN+	RC0	TTL	CMOS	PORTC I/O
	AN4	AN	_	A/D Channel 4 input
	C2IN+	AN	—	Comparator C2 non-inverting input
RC1/AN5/C12IN1-	RC1	TTL	CMOS	PORTC I/O
	AN5	AN		A/D Channel 5 input
	C12IN1-	AN	—	Comparators C1 and C2 inverting input
RC2/AN6/C12IN2-/P1D	RC2	TTL	CMOS	PORTC I/O
	AN6	AN	_	A/D Channel 6 input
	C12IN2-	AN	—	Comparators C1 and C2 inverting input
	P1D	—	CMOS	PWM output
RC3/AN7/C12IN3-/P1C	RC3	TTL	CMOS	PORTC I/O
	AN7	AN	—	A/D Channel 7 input
	C12IN3-	AN	—	Comparators C1 and C2 inverting input
	P1C	—	CMOS	PWM output
RC4/C2OUT/P1B	RC4	TTL	CMOS	PORTC I/O
	C2OUT	—	CMOS	Comparator C2 output
	P1B	—	CMOS	PWM output
RC5/CCP1/P1A	RC5	TTL	CMOS	PORTC I/O
	CCP1	ST	CMOS	Capture input/Compare output
	P1A	—	CMOS	PWM output
/dd	Vdd	Power		Positive supply
Vss	Vss	Power	_	Ground reference

AN = Analog input or outputCMOS = CMOS compatible input or outputHV = High VoltageST = Schmitt Trigger input with CMOS levelsTTL = TTL compatible inputXTAL = Crystal

NOTES:

3.4.1.1 OSCTUNE Register

The oscillator is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-1). The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

TUN<4:0>: Frequency Tuning bits	
01111 = Maximum frequency	
01110 =	
•	
•	
•	
00001 =	
00000 = Oscillator module is running at the manufacturer calibrated frequency	
11111 =	
•	
•	
•	
10000 = Minimum frequency	

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
OSCTUNE	—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

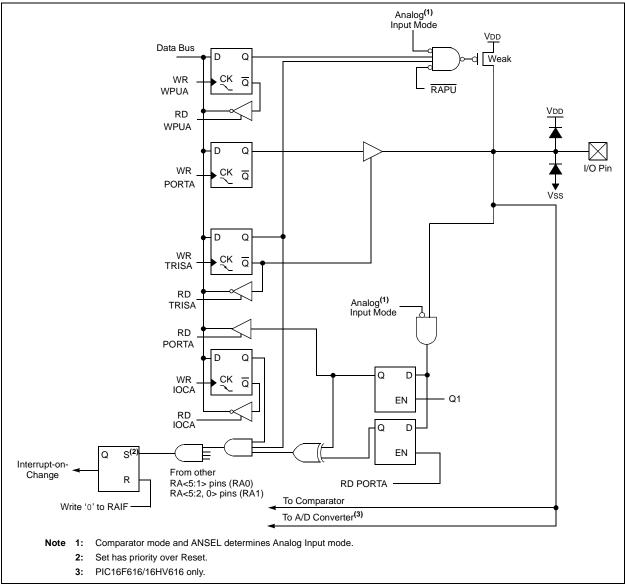
2: See Configuration Word register (Register 12-1) for operation of all register bits.

4.2.4 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the Comparator or the ADC, refer to the appropriate section in this data sheet.

4.2.4.1 RA0/AN0⁽¹⁾/C1IN+/ICSPDAT

Figure 4-1 shows the diagram for this pin. The RA0 pin is configurable to function as one of the following:

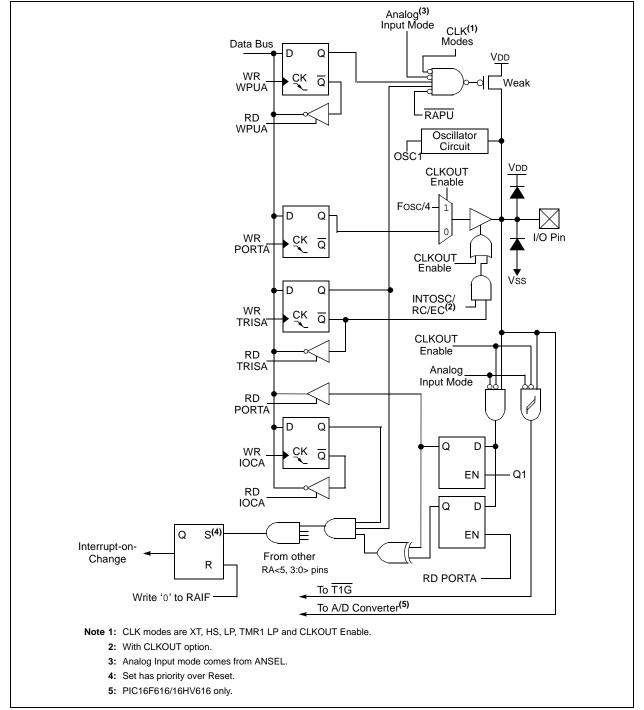

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog non-inverting input to the comparator
- In-Circuit Serial Programming data

4.2.4.2 RA1/AN1⁽¹⁾/C12IN0-/VREF⁽¹⁾/ ICSPCLK

Figure 4-1 shows the diagram for this pin. The RA1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog inverting input to the comparator
- a voltage reference input for the ADC⁽¹⁾
- In-Circuit Serial Programming clock

Note 1: PIC16F616/16HV616 only.


FIGURE 4-1: BLOCK DIAGRAM OF RA<1:0>

4.2.4.5 RA4/AN3⁽¹⁾/T1G/OSC2/CLKOUT

Figure 4-4 shows the diagram for this pin. The RA4 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾

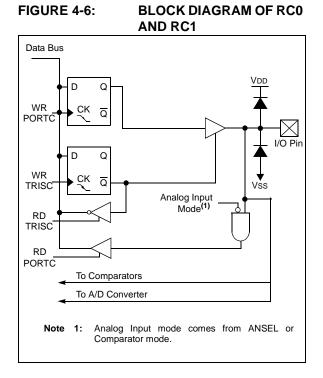
- a Timer1 gate (count enable)
- a crystal/resonator connection
- · a clock output
 - Note 1: PIC16F616/16HV616 only.

FIGURE 4-4: BLOCK DIAGRAM OF RA4

4.3.1 RC0/AN4⁽¹⁾/C2IN+

The RC0 is configurable to function as one of the following: $\label{eq:configurable}$

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog non-inverting input to Comparator C2


4.3.2 RC1/AN5⁽¹⁾/C12IN1-

The RC1 is configurable to function as one of the following:

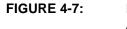
- a general purpose I/O
- an analog input for the ADC⁽¹⁾

an analog inverting input to the comparator

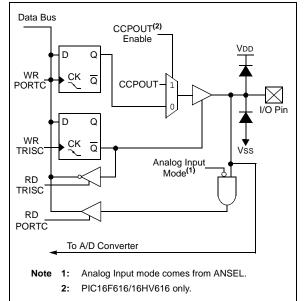
Note 1: PIC16F616/16HV616 only.

4.3.3 RC2/AN6⁽¹⁾/C12IN2-/P1D⁽¹⁾

The RC2 is configurable to function as one of the following:


- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog input to Comparators C1 and C2
- a digital output from the Enhanced CCP⁽¹⁾

4.3.4 RC3/AN7⁽¹⁾/C12IN3-/P1C⁽¹⁾


The RC3 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog inverting input to Comparators C1 and C2
- a digital output from the Enhanced CCP⁽¹⁾

Note 1: PIC16F616/16HV616 only.

7: BLOCK DIAGRAM OF RC2 AND RC3

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the analog-to-digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 9.2.6 "A/D Conversion
	Procedure".

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete analog-to-digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

9.2.4 ADC OPERATION DURING SLEEP

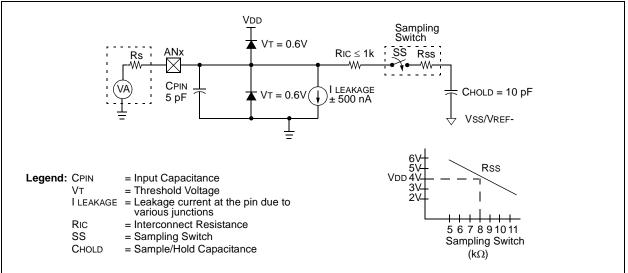
The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

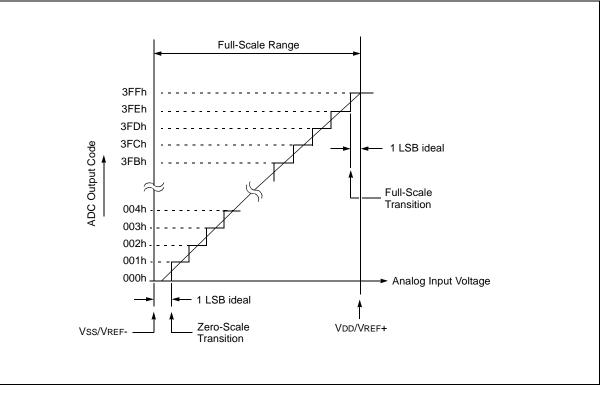
9.2.5 SPECIAL EVENT TRIGGER

The ECCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not ensure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.


See Section 10.0 "Enhanced Capture/Compare/ PWM (With Auto-Shutdown and Dead Band) Module (PIC16F616/16HV616 Only)" for more information.

9.2.6 A/D CONVERSION PROCEDURE


This is an example procedure for using the ADC to perform an analog-to-digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt may be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: See Section 9.3 "A/D Acquisition Requirements".

FIGURE 9-4: ANALOG INPUT MODEL

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0 ⁽¹⁾	ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1 ⁽¹⁾	_	ADCS2	ADCS1	ADCS0	_	_	_	_	-000	-000
ANSEL	ANS	ANS6	ANS5	ANS4	ANS3 ⁽¹⁾	ANS2 ⁽¹⁾	ANS1	ANS0	1111 1111	1111 1111
ADRESH ^(1,2)	A/D Result	A/D Result Register High Byte								uuuu uuuu
ADRESL ^(1,2)	A/D Result	Register Lov	v Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	—	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	-	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	u0 u000
PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 00xx	uu 00uu
TRISA	_		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	_		TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module. Legend:

Note 1:

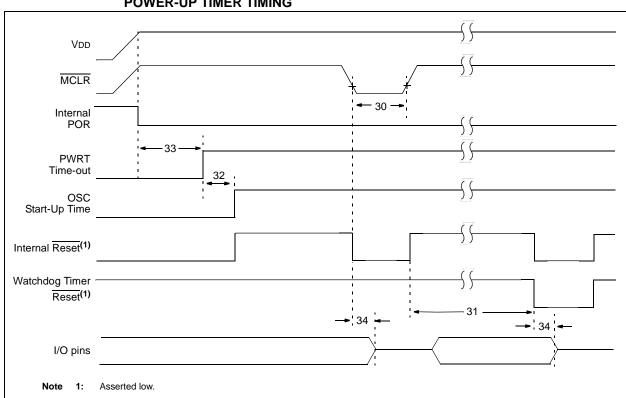
PIC16F616/16HV616 only. 2: Read-only Register.

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
OPTION_REG	RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
CONFIG ⁽¹⁾	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_

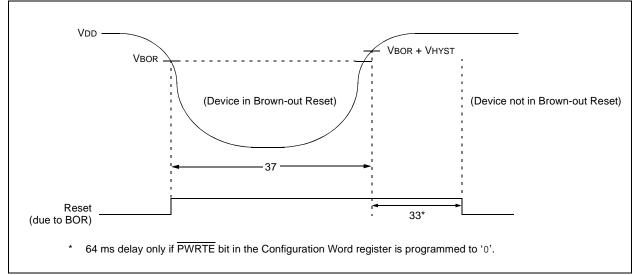
TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: Shaded cells are not used by the Watchdog Timer.


Note 1: See Register 12-1 for operation of all Configuration Word register bits.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION F
	Before Instruction
	OPTION = 0xFF
	W = 0x4F After Instruction
	OPTION = 0x4F
	W = 0x4F


MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

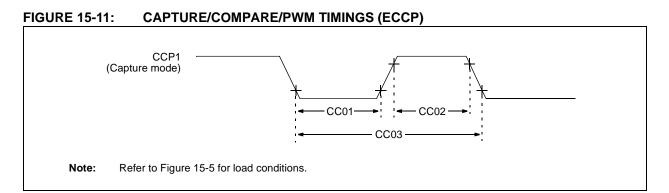

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

FIGURE 15-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Character	istic	Min	Тур†	Max	Units	Conditions
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	20	—	_	ns	
CC02*	ТссН	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	20	—		ns	
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-7: **COMPARATOR SPECIFICATIONS**

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristics		Min	Тур†	Мах	Units	Comments	
CM01	Vos	Input Offset Voltage ⁽²⁾			± 5.0	± 10	mV		
CM02	Vсм	Input Common Mode Voltage		0	—	Vdd - 1.5	V		
CM03*	CMRR	Common Mode Rejection Ratio		+55	—	—	dB		
CM04*	Trt	Response Time ⁽¹⁾	Falling	—	150	600	ns		
			Rising		200	1000	ns		
CM05*	TMC2COV	Comparator Mode Change to Output Valid		—	—	10	μS		
CM06*	VHYS	Input Hysteresis Voltage		_	45	60	mV		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

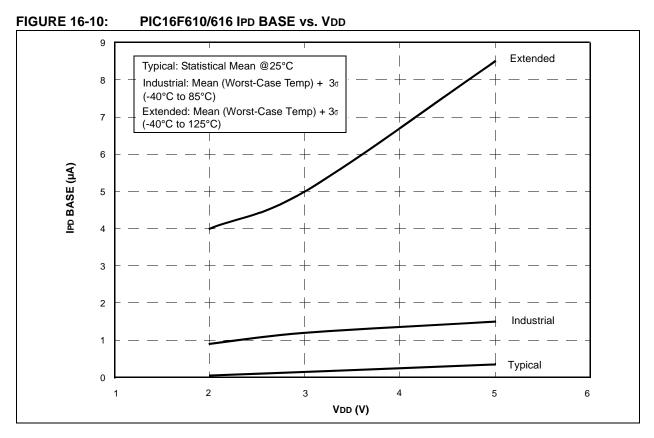
Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. Note 1: The other input is at (VDD -1.5)/2.

2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.

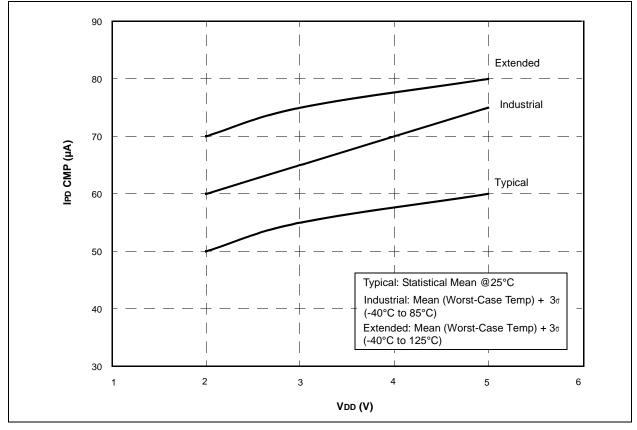
COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS TABLE 15-8:

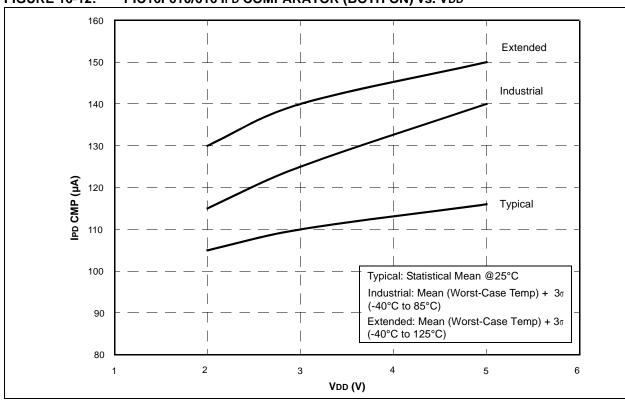
	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments
CV01	Clsb	Step Size ⁽²⁾		Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)
CV02	CACC	Absolute Accuracy ⁽³⁾	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
CV03	CR	Unit Resistor Value (R)	—	2k	_	Ω	
CV04	CST	Settling Time ⁽¹⁾	_	—	10	μS	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

- 2: See Section 8.11 "Comparator Voltage Reference" for more information.
- **3:** Absolute Accuracy when CVREF output is \leq (VDD-1.5).


TABLE 15-9: VOLTAGE REFERENCE SPECIFICATIONS


VR Voltage Reference Specifications		Standard Operating Conditions (unless otherwise stat Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
VR01	VP6out	VP6 voltage output	0.50	0.6	0.7	V	
VR02	V1P2out	V1P2 voltage output	1.05	1.20	1.35	V	
VR03*	TSTABLE	Settling Time		10		μS	

These parameters are characterized but not tested.

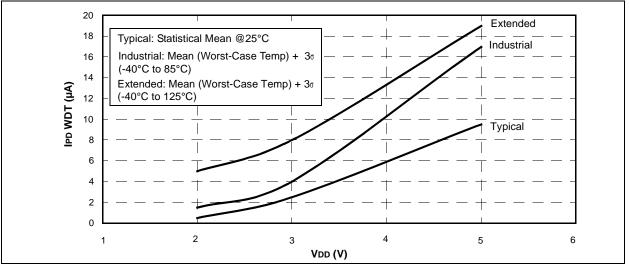


FIGURE 16-12: PIC16F610/616 IPD COMPARATOR (BOTH ON) vs. VDD

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{0}}$ devices to the PIC16F6XX Family of devices.

B.1 PIC16F676 to PIC16F610/616/16HV610/616

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC16F610/16HV610	PIC16F616/16HV616
Max Operating Speed	20 MHz	20 MHz	20 MHz
Max Program Memory (Words)	1024	1024	2048
SRAM (bytes)	64	64	128
A/D Resolution	10-bit	None	10-bit
Timers (8/16-bit)	1/1	1/1	2/1
Oscillator Modes	8	8	8
Brown-out Reset	Y	Y	Y
Internal Pull-ups	RA0/1/2/4/5	RA0/1/2/4/5, MCLR	RA0/1/2/4/5, MCLR
Interrupt-on-change	RA0/1/2/3/4/5	RA0/1/2/3/4/5	RA0/1/2/3/4/5
Comparator	1	2	2
ECCP	Ν	Ν	Y
INTOSC Frequencies	4 MHz	4/8 MHz	4/8 MHz
Internal Shunt Regulator	Ν	Y (PIC16HV610)	Y (PIC16HV616)

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16F610/616/16HV610/616	Literature Number: DS41288F
Que	stions:	
1 \	What are the best features of this do	cument?
1.		
-		
2.	How does this document meet your h	nardware and software development needs?
-		
3. I	Do you find the organization of this d	ocument easy to follow? If not, why?
-		
-		
4.	What additions to the document do y	ou think would enhance the structure and subject?
-		
-		
5.	What deletions from the document co	ould be made without affecting the overall usefulness?
-		
-		
6.	s there any incorrect or misleading in	nformation (what and where)?
-		
-		at2
1.	How would you improve this docume	nt (
-		