

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f616t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9					
2.0	Memory Organization	13					
3.0	Oscillator Module	27					
4.0	I/O Ports	33					
5.0	Timer0 Module	45					
6.0	Timer1 Module with Gate Control	49					
7.0	Timer2 Module (PIC16F616/16HV616 only)	55					
8.0	Comparator Module	57					
9.0	Analog-to-Digital Converter (ADC) Module (PIC16F616/16HV616 only)	73					
10.0	Enhanced Capture/Compare/PWM (With Auto-Shutdown and Dead Band) Module (PIC16F616/16HV616 Only)	85					
11.0	Voltage Regulator	107					
12.0	Special Features of the CPU	109					
13.0	Instruction Set Summary	129					
14.0	Development Support	139					
15.0	Electrical Specifications	143					
16.0	DC and AC Characteristics Graphs and Tables	173					
17.0	Packaging Information	197					
Appe	ndix A:Data Sheet Revision History	205					
Appe	ndix B: Migrating from other PIC [®] Devices	206					
Index	· · · · · · · · · · · · · · · · · · ·	207					
The N	Aicrochip Web Site	211					
Custo	omer Change Notification Service	211					
Custo	ustomer Support						
Read	Reader Response						
Produ	Product Identification System						
World	dwide Sales and Service	214					

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | RAIE | TOIF | INTF | RAIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	RAIE: PORTA Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the PORTA change interrupt 0 = Disables the PORTA change interrupt
bit 2	 TOIF: Timer0 Overflow Interrupt Flag bit⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	RAIF: PORTA Change Interrupt Flag bit 1 = When at least one of the PORTA <5:0> pins changed state (must be cleared in software) 0 = None of the PORTA <5:0> pins have changed state

Note 1: IOCA register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

3.2 Clock Source Modes

Clock Source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.
- Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two selectable clock frequencies: 4 MHz and 8 MHz

The system clock can be selected between external or internal clock sources via the FOSC<2:0> bits of the Configuration Word register.

3.3 External Clock Modes

3.3.1 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 3-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

Note 1: Alternate pin functions are listed in the Section 1.0 "Device Overview".

TABLE 3-1:OSCILLATOR DELAY EXAMPLES

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	INTOSC	4 MHz to 8 MHz	Oscillator Warm-Up Delay (Twarm)
Sleep/POR	EC, RC	DC – 20 MHz	2 Instruction Cycles
Sleep/POR	LP, XT, HS	32 kHz to 20 MHz	1024 Clock Cycles (OST)

3.3.2 OSCILLATOR START-UP TIMER (OST)

If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 3-1.

4.2.4.4 RA3/MCLR/VPP

Figure 4-3 shows the diagram for this pin. The RA3 pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset with weak pull-up
- High Voltage Programming voltage input

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	TOUTPS<3:0	>: Timer2 Outp	out Postscaler	Select bits			
	0000 = 1:1 P	, ostscaler					
	0001 = 1:2 Po	ostscaler					
	0010 = 1:3 Po	ostscaler					
	0011 = 1:4 Po	ostscaler					
	0100 = 1:5 Po	ostscaler					
	0101 = 1:6 Po	ostscaler					
	0110 = 1:7 Po	ostscaler					
	0111 = 1:8 Pc	ostscaler					
	1000 = 1.9 Pc	ostscaler					
	1001 = 1:10F						
	1010 = 1.11 F						
	1011 = 1.12						
	1100 = 1.131 1101 = 1.14 F	Postscaler					
	1110 = 1:15	Postscaler					
	1111 = 1:16 F	Postscaler					
bit 2	TMR2ON: Tin	ner2 On bit					
	1 = Timer2 is	on					
	0 = Timer2 is	off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Sel	lect bits			
	00 = Prescal	er is 1					
	01 = Prescal	er is 4					
	1x = Prescal	er is 16					

REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER

TABLE 7-1: SUMMARY OF ASSOCIATED TIMER2 REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PR2 ⁽¹⁾	Timer2 Module Period Register								1111 1111	1111 1111
TMR2 ⁽¹⁾	Holding Register for the 8-bit TMR2 Register 0000 0000							0000 0000		
T2CON ⁽¹⁾		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

Legend:x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.Note1:PIC16F616/16HV616 only.

8.4 Comparator Interrupt Operation

The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusive-or gate (see Figure 8-2 and Figure 8-3). One latch is updated with the comparator output level when the CMxCON0 register is read. This latch retains the value until the next read of the CMxCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMxCON0 register is read or the comparator output returns to the previous state.

- Note 1: A write operation to the CMxCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle.
 - **2:** Comparator interrupts will operate correctly regardless of the state of CxOE.

The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMxCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator's return to the previous state, otherwise no interrupt will be generated.

Software will need to maintain information about the status of the comparator output, as read from the CMxCON0 register, or CM2CON1 register, to determine the actual change that has occurred.

The CxIF bit of the PIR1 register is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, an interrupt can be generated.

The CxIE bit of the PIE1 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CxIF bit of the PIR1 register will still be set if an interrupt condition occurs.

FIGURE 8-4: COMPARATOR INTERRUPT TIMING W/O CMxCON0 READ

FIGURE 8-5:

COMPARATOR INTERRUPT TIMING WITH CMxCON0 READ

reset by software

- Note 1: If a change in the CMxCON0 register (CxOUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CxIF of the PIR1 register interrupt flag may not get set.
 - When either comparator is first enabled, bias circuitry in the comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

8.10 Comparator SR Latch

The SR latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON0 control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

The SR latch also has a variable clock, which is connected to the set input of the latch. The SRCLKEN bit of SRCON0 enables the SR latch set clock. The clock will periodically pulse the set input of the latch. Control over the frequency of the SR latch set clock is provided by the SRCS<1:0> bits of SRCON1 register.

8.10.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON0 register. The latch can be reset by C2OUT or the PULSR bit of the SRCON0 register. The latch is reset-dominant, therefore, if both Set and Reset

inputs are high the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

8.10.2 LATCH OUTPUT

The SR<1:0> bits of the SRCON0 register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch Q
- C2OUT and SR latch Q
- SR latch Q and Q

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

FIGURE 8-8: SR LATCH SIMPLIFIED BLOCK DIAGRAM

9.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding Port section for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

9.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 9-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 15.0** "**Electrical Specifications**" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

ADC Clock	Period (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	200 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs ⁽²⁾	4.0 μs		
Fosc/8	001	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs (3)		
Fosc/16	101	800 ns ⁽²⁾	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	3.2 μs	8.0 μs (3)	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
FRC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)		

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V)

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.

2: These values violate the minimum required TAD time.

- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable bit	t	U = Unimpleme	ented bit, read a	is '0'			
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	wn		
b.: 7		nuoraian Daault I		h.:4					
DIT 7	1 = Right justif 0 = Left justifie	ied ied	-ormat Select	DIT					
bit 6	VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD								
bit 5-2	it 5-2 CHS<3:0>: Analog Channel Select bits 0 = VDD it 5-2 CHS<3:0>: Analog Channel Select bits 0000 = Channel 00 (AN0) 0001 = Channel 01 (AN1) 0010 = Channel 02 (AN2) 0011 = Channel 03 (AN3) 0100 = Channel 04 (AN4) 0101 = Channel 05 (AN5) 0110 = Channel 06 (AN6) 0111 = Channel 07 (AN7) 1000 = Reserved - do not use 1001 = Reserved - do not use 1010 = Reserved - do not use 1011 = Reserved - do not use 1011 = Reserved - do not use 1011 = Reserved - do not use 1001 = CVREF 1101 = 0.6V Fixed Voltage Reference(1) 1110 = 1.2V Fixed Voltage Reference(1)								
bit 1	 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress 								
bit 0	ADON: ADC E 1 = ADC is ena 0 = ADC is dis	Enable bit abled abled and consur	nes no operati	ng current					
Note 1:	When the CHS<3:0	> bits change to s	elect the 1.2V	or 0.6V Fixed Volt	tage Reference	the reference out	put voltage will		

Note 1: When the CHS<3:0> bits change to select the 1.2V or 0.6V Fixed Voltage Reference, the reference output voltage will have a transient. If the Comparator module uses this VP6 reference voltage, the comparator output may momentarily change state due to the transient.

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 10-1.

EQUATION 10-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPR1L into CCPR1H.

Note:	The Timer2 postscaler (see Section 7.1
	"Timer2 Operation") is not used in the
	determination of the PWM frequency.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and CCP1<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the CCP1<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and CCP1<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only.

Equation 10-2 is used to calculate the PWM pulse width.

Equation 10-3 is used to calculate the PWM duty cycle ratio.

EQUATION 10-2: PULSE WIDTH

 $Pulse Width = (CCPR1L:CCP1CON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 10-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPR1L:CCP1CON < 5:4>)}{4(PR2 + 1)}$$

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 10-3).

10.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 10-4.

EQUATION 10-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 10-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 10-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

© 2009 Microchip Technology Inc.

FIGURE 10-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

		-		Period	>
(Single Output)	P1A Modulated		.(1)		Ì
	P1A Modulated		5		
(Half-Bridge)	P1B Modulated	_ ' 			
	P1A Active			· · · · · · · · · · · · · · · · · · ·	 :
(Full-Bridge,	P1B Inactive			1 1 1	
Forward)	P1C Inactive	_ i _ <u> </u>		1 1	
	P1D Modulated			1	
	P1A Inactive	_ ;		1 1 1	
(Full-Bridge,	P1B Modulated			ļ	
Reverse)	P1C Active				
	P1D Inactive			1 1 1	<u> </u>
	(Single Output) (Half-Bridge) (Full-Bridge, Forward) (Full-Bridge, Reverse)	(Single Output) P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive Forward) P1C Inactive P1D Modulated (Full-Bridge, P1B Modulated (Full-Bridge, P1B Modulated P1A Active P1D Inactive P1D Inactive P1D Inactive P1D Inactive	(Single Output) P1A Modulated Delay P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive P1D Modulated P1A Inactive P1D Inac	(Single Output) P1A Modulated Delay ⁽¹⁾ P1A Modulated P1B Modulated P1A Active P1A Active P1A Active P1B Inactive P1C Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Active P1D Inactive P1D I	(Single Output) P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive Forward) P1C Inactive P1D Modulated P1A Inactive P1B Modulated P1A Inactive P1D Inac

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 10.4.6 "Programmable Dead-Band Delay mode").

NOTES:

FIGURE 12-9:	WAKE-UP FROM S	SLEEP THRO	UGH INTER	RUPT		
, Q1 Q2 OSC1/¯/¯_ CLKOUT ⁽⁴⁾ , INT pin	Q3 Q4 ; Q1 Q2 Q3 Q4 ; Q 		Q1 Q2 Q3 Q4 	(01 02 03 04; /~_~/	Q1 Q2 Q3 Q4;(Q1 Q2 Q3 Q4 \/\/\/\
INTF flag (INTCON reg.)			Interrupt Laten	_{Cy} (3)		
GIE bit (INTCON reg.)	P	rocessor in Sleep				
Instruction Flow PC X F	PC / PC+1 /	PC + 2	X PC + 2	PC+2 X	0004h X	0005h
Instruction { Inst(PC	i) = Sleep Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Inst(PC – 1) Sleep		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
Note 1: XT, HS of 2: Tost = 1 3: GIE = 1	or LP Oscillator mode assumed 1024 Tosc (drawing not to scale ' assumed. In this case after w	d. e). This delay does rake-up, the process	not apply to EC, II sor jumps to 0004	NTOSC and RC Os n. If GIE = '0', exec	scillator modes. ution will continue	in-line.

4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.

12.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $\mathsf{ICSP}^{\mathsf{TM}}$ for verification purposes.

Note:	The entire Flash program memory will be								
	erased when the code protection is turned								
	off. See the Memory	Programming							
	Specification (DS41284)	for more							
	information.								

12.9 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant 7 bits of the ID locations are used.

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

FIGURE 15-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
30	TMCL	MCLR Pulse Width (low)	2 5			μs μs	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C		
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	20 20	30 35	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C		
32	Tost	Oscillation Start-up Timer Period ^(1, 2)	_	1024		Tosc	(NOTE 3)		
33*	TPWRT	Power-up Timer Period	40	65	140	ms			
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.0	μs			
35*	VBOR	Brown-out Reset Voltage	2.0	2.15	2.3	V	(NOTE 4)		
36*	VHYST	Brown-out Reset Hysteresis		100	_	mV			
37*	TBOR	Brown-out Reset Minimum Detection Period	100			μS	$VDD \leq VBOR$		

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: By design.
- 3: Period of the slower clock.
- **4:** To ensure these voltage tolerances, VDD and VSS must be capacitivey decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 15-7: **COMPARATOR SPECIFICATIONS**

Standard Operating Conditions (unless otherwise stated)

Operating Temperature	$-40^{\circ}C \leq TA \leq +125^{\circ}C$

Param No.	Sym	Characteristics		Min	Тур†	Мах	Units	Comments	
CM01	Vos	Input Offset Voltage ⁽²⁾		—	± 5.0	± 10	mV		
CM02	Vсм	Input Common Mode Voltage				Vdd - 1.5	V		
CM03*	CMRR	Common Mode Rejection Ratio		+55	_	—	dB		
CM04*	Trt	Response Time ⁽¹⁾	Falling	_	150	600	ns		
			Rising	_	200	1000	ns		
CM05*	TMC2COV	Comparator Mode Change to Output Valid		_	_	10	μS		
CM06*	VHYS	Input Hysteresis Voltage		_	45	60	mV		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. The other input is at (VDD -1.5)/2.

2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.

COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS TABLE 15-8:

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments		
CV01	CLSB	Step Size ⁽²⁾	—	Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)		
CV02	CACC	Absolute Accuracy ⁽³⁾	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)		
CV03	CR	Unit Resistor Value (R)	—	2k	_	Ω			
CV04	CST	Settling Time ⁽¹⁾	_		10	μS			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

- 2: See Section 8.11 "Comparator Voltage Reference" for more information.
- **3:** Absolute Accuracy when CVREF output is \leq (VDD-1.5).

TABLE 15-9: VOLTAGE REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
VR01	VP6out	VP6 voltage output	0.50	0.6	0.7	V		
VR02	V1P2out	V1P2 voltage output	1.05	1.20	1.35	V		
VR03*	TSTABLE	Settling Time		10	_	μS		

These parameters are characterized but not tested.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.

FIGURE 16-2: PIC16F610/616 IDD EC (1 MHz) vs. VDD

FIGURE 16-16: PIC16F610/616 IPD CVREF (HI RANGE) vs. VDD

FIGURE 16-48: TYPICAL HFINTOSC FREQUENCY CHANGE vs. Vdd (-40°C)

