

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv610-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/C1IN+/ICSPDAT	RA0	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	C1IN+	AN	_	Comparator C1 non-inverting input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
RA1/C12IN0-/ICSPCLK	RA1	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	C12IN0-	AN	_	Comparators C1 and C2 inverting input
	ICSPCLK	ST	_	Serial Programming Clock
RA2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	TOCKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C1OUT	_	CMOS	Comparator C1 output
RA3/MCLR/Vpp	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	HV		Programming voltage
RA4/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	T1G	ST	_	Timer1 gate (count enable)
	OSC2	—	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock input
	OSC1	XTAL	_	Crystal/Resonator
	CLKIN	ST	_	External clock input/RC oscillator connection
RC0/C2IN+	RC0	TTL	CMOS	PORTC I/O
	C2IN+	AN	_	Comparator C2 non-inverting input
RC1/C12IN1-	RC1	TTL	CMOS	PORTC I/O
	C12IN1-	AN	—	Comparators C1 and C2 inverting input
RC2/C12IN2-	RC2	TTL	CMOS	PORTC I/O
	C12IN2-	AN	—	Comparators C1 and C2 inverting input
RC3/C12IN3-	RC3	TTL	CMOS	PORTC I/O
	C12IN3-	AN	—	Comparators C1 and C2 inverting input
RC4/C2OUT	RC4	TTL	CMOS	PORTC I/O
	C2OUT	—	CMOS	Comparator C2 output
RC5	RC5	TTL	CMOS	PORTC I/O
VDD	Vdd	Power	—	Positive supply
Vss	Vss	Power	_	Ground reference

TABLE 1-1:	PIC16F610/16HV610	PINOUT DESCRIPTION

Legend:

 AN = Analog input or output
 CMOS = CMOS compatible input or output
 HV = High Voltage

 ST = Schmitt Trigger input with CMOS levels
 TTL = TTL compatible input
 XTAL = Crystal

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RA2/INT interrupt
- Timer0
- Weak pull-ups on PORTA

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to '1' of the OPTION register. See Section 5.1.3 "Software Programmable Prescaler".

REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RAPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RAPU: PORTA Pull-up Enable bit 1 = PORTA pull-ups are disabled 0 = PORTA pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit
	1 = Interrupt on rising edge of RA2/INT pin0 = Interrupt on falling edge of RA2/INT pin
bit 5	TOCS: Timer0 Clock Source Select bit
	1 = Transition on RA2/T0CKI pin 0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit
	1 = Increment on high-to-low transition on RA2/T0CKI pin0 = Increment on low-to-high transition on RA2/T0CKI pin
bit 3	PSA: Prescaler Assignment bit
	1 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	BIT VALUE TIMER0 RATE WDT RATE

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1 : 256	1 : 128

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in Figure 2-5 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-5 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, "Implementing a Table Read" (DS00556).

2.3.2 STACK

The PIC16F610/616/16HV610/616 Family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-7.

A simple program to clear RAM location 40h-4Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT ADDRESSING

	MOVLW	0x40	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR, F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINU	JE		;yes continue

NOTES:

4.3.1 RC0/AN4⁽¹⁾/C2IN+

The RC0 is configurable to function as one of the following: $\label{eq:configurable}$

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog non-inverting input to Comparator C2

4.3.2 RC1/AN5⁽¹⁾/C12IN1-

The RC1 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾

an analog inverting input to the comparator

Note 1: PIC16F616/16HV616 only.

4.3.3 RC2/AN6⁽¹⁾/C12IN2-/P1D⁽¹⁾

The RC2 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog input to Comparators C1 and C2
- a digital output from the Enhanced CCP⁽¹⁾

4.3.4 RC3/AN7⁽¹⁾/C12IN3-/P1C⁽¹⁾

The RC3 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- an analog inverting input to Comparators C1 and C2
- a digital output from the Enhanced CCP⁽¹⁾

Note 1: PIC16F616/16HV616 only.

7: BLOCK DIAGRAM OF RC2 AND RC3

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	TOUTPS<3:0	>: Timer2 Outp	out Postscaler	Select bits			
	0000 = 1:1 P	, ostscaler					
	0001 = 1:2 Po	ostscaler					
	0010 = 1:3 Po	ostscaler					
	0011 = 1:4 Po	ostscaler					
	0100 = 1:5 Po	ostscaler					
	0101 = 1:6 Po	ostscaler					
	0110 = 1:7 Po	ostscaler					
	0111 = 1:8 Pc	ostscaler					
	1000 = 1.9 Pc	ostscaler					
	1001 = 1:10F						
	1010 = 1.11 F						
	1011 = 1.12						
	1100 = 1.131 1101 = 1.14 F	Postscaler					
	1110 = 1:15	Postscaler					
	1111 = 1:16 F	Postscaler					
bit 2	TMR2ON: Tin	ner2 On bit					
	1 = Timer2 is	on					
	0 = Timer2 is	off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Sel	lect bits			
	00 = Prescal	er is 1					
	01 = Prescal	er is 4					
	1x = Prescal	er is 16					

REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER

TABLE 7-1: SUMMARY OF ASSOCIATED TIMER2 REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PR2 ⁽¹⁾	Timer2 Module Period Register								1111 1111	1111 1111
TMR2 ⁽¹⁾	Holding	Holding Register for the 8-bit TMR2 Register							0000 0000	0000 0000
T2CON ⁽¹⁾		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

Legend:x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.Note1:PIC16F616/16HV616 only.

EXAMPLE 9-1: A/D CONVERSION

;This code ;for poll ;and ANO ; ; ;Conversi ; are inc.	e block confi ing, Vdd refe input. on start & po luded.	gures the ADC rence, Frc clock lling for completion
BANKSEL	ADCON1	;
MOVIW	B'01110000'	, ADC Fre clock
MOVWE	ADCON1	;
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RAO to input
BANKSEL	ANSEL	;
BSF	ANSEL,0	;Set RAO to analog
BANKSEL	ADCON0	;
MOVLW	B'10000001'	;Right justify,
MOVWF	ADCON0	;Vdd Vref, AN0, On
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRESH	;
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	;store in GPR space
BANKSEL	ADRESL	;
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	;Store in GPR space

10.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPASx bits of the ECCPAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- Comparator C1
- Comparator C2
- · Setting the ECCPASE bit in firmware

A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:

The ECCPASE bit is set to '1'. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see Section 10.4.5 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [P1A/P1C] and [P1B/P1D]. The state of each pin pair is determined by the PSSAC and PSSBD bits of the ECCPAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 10-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

1 = A shutdown event has occurred; ECCP outputs are in shutd 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1 output high	
bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1 output high	iown state
000 = Auto-Shutdown is disabled	
010 = Comparator C2 output high ⁽¹⁾ 011 = Either Comparators output is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1 output high 110 = VIL on INT pin or Comparator C2 output high	
111 = VIL on INT pin or either Comparators output is high	
bit 3-2 PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state	
bit 1-0 PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state	

TABLE 12-4:	INITIALIZATION CONDITION FOR REGISTERS
-------------	--

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	_	xxxx xxxx	սսսս սսսս	սսսս սսսս
INDF	00h/80h	xxxx xxxx	XXXX XXXX	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	05h	x0 x000	u0 u000	uu uuuu
PORTC	07h	xx xx00	uu 00uu	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 0000	uuuu uuuu ⁽²⁾
PIR1	0Ch	-000 0-00	-000 0-00	-uuu u-uu (2)
TMR1L	0Eh	xxxx xxxx	uuuu uuuu	սսսս սսսս
TMR1H	0Fh	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	10h	0000 0000	uuuu uuuu	-uuu uuuu
TMR2 ⁽⁶⁾	11h	0000 0000	0000 0000	սսսս սսսս
T2CON ⁽⁶⁾	12h	-000 0000	-000 0000	-uuu uuuu
CCPR1L ⁽⁶⁾	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H ⁽⁶⁾	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON ⁽⁶⁾	15h	0000 0000	0000 0000	uuuu uuuu
PWM1CON ⁽⁶⁾	16h	0000 0000	0000 0000	uuuu uuuu
ECCPAS ⁽⁶⁾	17h	0000 0000	0000 0000	uuuu uuuu
VRCON	19h	0000 0000	0000 0000	uuuu uuuu
CM1CON0	1Ah	0000 -000	0000 -000	uuuu -uuu
CM2CON0	1Bh	0000 -000	0000 -000	uuuu -uuu
CM2CON1	1Ch	00-0 0000	00-0 0000	uu-u uuuu
ADRESH ⁽⁶⁾	1Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0 ⁽⁶⁾	1Fh	0000 0000	0000 0000	սսսս սսսս
OPTION_REG	81h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	11 1111	11 1111	uu uuuu
TRISC	87h	11 1111	11 1111	uu uuuu
PIE1	8Ch	-000 0-00	-000 0-00	-uuu u-uu
PCON	8Eh	0x	(1, 5)	

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

- 4: See Table 12-5 for Reset value for specific condition.
- **5:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.
- 6: PIC16F616/16HV616 only.
- **7:** ANSEL <3:2> For PIC16F616/HV616 only.

12.7 Power-Down Mode (Sleep)

The Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit in the STATUS register is cleared.
- TO bit is set.
- Oscillator driver is turned off.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are highimpedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pullups on PORTA should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level.

Note:	It should be noted that a Reset generated
	by a WDT time-out does not drive MCLR
	pin low.

12.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from RA2/INT pin, PORTA change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

- 1. Timer1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. ECCP Capture mode interrupt.
- 3. A/D conversion (when A/D clock source is RC).
- 4. Comparator output changes state.
- 5. Interrupt-on-change.
- 6. External Interrupt from INT pin.

Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	If the global interrupts are disabled (GIE is
	cleared) and any interrupt source has both
	its interrupt enable bit and the correspond-
	ing interrupt flag bits set, the device will
	immediately wake-up from Sleep.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

12.7.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will Immediately wake-up from Sleep. The SLEEP instruction is executed. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. See Figure 12-9 for more details.

NOTES:

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

Decrement f

[label] DECF f,d

CLRF	Clear f
Syntax:	[label]CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

	Operands:	$0 \le f \le 127$ $d \in [0,1]$
	Operation:	(f) - 1 \rightarrow (destination)
	Status Affected:	Z
_	Description:	Decrement register 'f'. If 'd' is '0 the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

DECF

Syntax:

CLRW	Clear W					
Syntax:	[label] CLRW					
Operands:	None					
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$					
Status Affected:	Z					
Description:	W register is cleared. Zero bit (Z) is set.					

is '0',

15.2 DC Characteristics: PIC16F610/616-I (Industrial) PIC16F610/616-E (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Device Observatoriation	Min	Тур†	Max	l les lte	Conditions			
No.	Device Characteristics				Units	Vdd	Note		
D010	Supply Current (IDD) ^(1, 2)		13	25	μΑ	2.0	Fosc = 32 kHz		
	PIC16F610/616	—	19	29	μΑ	3.0	LP Oscillator mode		
		_	32	51	μΑ	5.0			
D011*		_	135	225	μΑ	2.0	Fosc = 1 MHz		
		_	185	285	μA	3.0	XT Oscillator mode		
		_	300	405	μA	5.0	1		
D012		_	240	360	μΑ	2.0	Fosc = 4 MHz		
		_	360	505	μA	3.0	XT Oscillator mode		
		_	0.66	1.0	mA	5.0]		
D013*		—	75	110	μΑ	2.0	Fosc = 1 MHz		
		_	155	255	μΑ	3.0	EC Oscillator mode		
		_	345	530	μΑ	5.0			
D014		—	185	255	μΑ	2.0	Fosc = 4 MHz		
		—	325	475	μΑ	3.0	EC Oscillator mode		
		—	0.665	1.0	mA	5.0			
D016*			245	340	μΑ	2.0	Fosc = 4 MHz		
		_	360	485	μΑ	3.0	INTOSC mode		
		—	0.620	0.845	mA	5.0			
D017			395	550	μΑ	2.0	Fosc = 8 MHz		
		_	0.620	0.850	mA	3.0	INTOSC mode		
		—	1.2	1.6	mA	5.0			
D018		_	175	235	μΑ	2.0	FOSC = 4 MHz		
			285	390	μΑ	3.0	EXTRC mode ^(*)		
			530	750	μΑ	5.0			
D019			2.2	3.1	mA	4.5	Fosc = 20 MHz		
		_ T	2.8	3.35	mA	5.0	HS Oscillator mode		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

15.7 DC Characteristics: PIC16HV610/616-E (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless Operating temperature $-40^{\circ}C \le TA \le +1$					s otherwise stated) 125°C for extended	
Param	Davias Characteristics	Min	Tunt		11	Conditions		
No.	Device Characteristics	wiin	турт	wax	Units	VDD	Note	
D020E	Power-down Base		135	200	μΑ	2.0	WDT, BOR, Comparators, VREF and	
		—	210	280	μΑ	3.0	T1OSC disabled	
		—	260	350	μΑ	4.5		
D021E		—	135	200	μΑ	2.0	WDT Current ⁽¹⁾	
		_	210	285	μΑ	3.0		
		_	265	360	μΑ	4.5		
D022E		—	215	285	μΑ	3.0	BOR Current ⁽¹⁾	
		_	265	360	μΑ	4.5		
D023E		_	240	360	μΑ	2.0	Comparator Current ⁽¹⁾ , both	
		—	320	440	μA	3.0	comparators enabled	
		_	370	500	μΑ	4.5		
D024E		_	185	280	μA	2.0	Comparator Current ⁽¹⁾ , single	
		—	265	360	μA	3.0	comparator enabled	
		_	320	430	μΑ	4.5		
D025E		_	165	235	μA	2.0	CVREF Current ⁽¹⁾ (high range)	
		—	255	330	μA	3.0		
		_	330	430	μΑ	4.5		
D026E*		—	175	245	μA	2.0	CVREF Current ⁽¹⁾ (low range)	
		—	275	350	μΑ	3.0		
		—	355	450	μΑ	4.5		
D027E		—	140	205	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz	
		—	220	290	μA	3.0		
		—	270	360	μA	4.5		
D028E		_	210	280	μA	3.0	A/D Current ⁽¹⁾ , no conversion in	
		—	260	350	μA	4.5	progress	

These parameters are characterized but not tested.

† Data in "Typ" column is at 4.5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Shunt regulator is always enabled and always draws operating current.

FIGURE 15-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Operatir	ng Temperating (conditions (u re -40°C	Inless otherwis $\leq TA \leq +125^{\circ}C$	se stated)					
Param No.	Sym		Characterist	Min	Тур†	Max	Units	Conditions	
40*	T⊤0H	T0CKI High Pulse Width No Prescaler With Prescaler		0.5 TCY + 20	—	—	ns		
				With Prescaler	10	_	_	ns	
41* TT0L		T0CKI Low Pulse Width No Prescaler		0.5 TCY + 20	_	_	ns		
		With Prescaler		10	_	_	ns		
42*	TT0P	T0CKI Period	3	Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)	
45*	T⊤1H	T1CKI High Time	Synchronous,	No Prescaler	0.5 TCY + 20	_		ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30	—	_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	—	—	ns	
47*	* TT1P T1CKI Input Synchronous Period			Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	—		ns	
48	FT1	Timer1 Oscill (oscillator en	ner1 Oscillator Input Frequency Range cillator enabled by setting bit T1OSCEN)			32.768	_	kHz	
49*	TCKEZTMR1	Delay from E Increment	ay from External Clock Edge to Timer rement			_	7 Tosc	_	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-32: PIC16HV610/616 IPD CVREF (LOW RANGE) vs. VDD

Example

17.0 PACKAGING INFORMATION

17.1 Package Marking Information

14-Lead PDIP

* Standard PIC[®] device marking consists of Microchip part number, year code, week code, and traceability code. For PIC[®] device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.