Microchip Technology - PIC16HV610-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv610-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F616/16HV616 16-Pin Diagram (QFN)

TABLE 4:	PIC16F616/16HV616	16-PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	ССР	Interrupts	Pull-ups	Basic
RA0	12	AN0	C1IN+	—	—	IOC	Y	ICSPDAT
RA1	11	AN1/VREF	C12IN0-	—	—	IOC	Y	ICSPCLK
RA2	10	AN2	C1OUT	T0CKI	—	INT/IOC	Y	_
RA3 ⁽¹⁾	3		—	_	_	IOC	Y(2)	MCLR/VPP
RA4	2	AN3	—	T1G	_	IOC	Y	OSC2/CLKOUT
RA5	1		—	T1CKI	—	IOC	Y	OSC1/CLKIN
RC0	9	AN4	C2IN+	—	—	—	—	—
RC1	8	AN5	C12IN1-	_	—	—	—	—
RC2	7	AN6	C12IN2-	—	P1D	—	_	—
RC3	6	AN7	C12IN3-	—	P1C	—	—	—
RC4	5	_	C2OUT	_	P1B	—	—	—
RC5	4		—	—	CCP1/P1A	—	—	—
	16	_	—		—		—	VDD
—	13	_			_		_	Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

Name	Function	Input Type	Output Type	Description
RA0/C1IN+/ICSPDAT	RA0	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	C1IN+	AN	_	Comparator C1 non-inverting input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
RA1/C12IN0-/ICSPCLK	RA1	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	C12IN0-	AN	_	Comparators C1 and C2 inverting input
	ICSPCLK	ST	_	Serial Programming Clock
RA2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	TOCKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C1OUT	_	CMOS	Comparator C1 output
RA3/MCLR/Vpp	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	HV		Programming voltage
RA4/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	T1G	ST	_	Timer1 gate (count enable)
	OSC2	—	XTAL	Crystal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	PORTA I/O with prog. pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock input
	OSC1	XTAL	_	Crystal/Resonator
	CLKIN	ST	_	External clock input/RC oscillator connection
RC0/C2IN+	RC0	TTL	CMOS	PORTC I/O
	C2IN+	AN	_	Comparator C2 non-inverting input
RC1/C12IN1-	RC1	TTL	CMOS	PORTC I/O
	C12IN1-	AN	—	Comparators C1 and C2 inverting input
RC2/C12IN2-	RC2	TTL	CMOS	PORTC I/O
	C12IN2-	AN	—	Comparators C1 and C2 inverting input
RC3/C12IN3-	RC3	TTL	CMOS	PORTC I/O
	C12IN3-	AN	—	Comparators C1 and C2 inverting input
RC4/C2OUT	RC4	TTL	CMOS	PORTC I/O
	C2OUT	—	CMOS	Comparator C2 output
RC5	RC5	TTL	CMOS	PORTC I/O
VDD	Vdd	Power	—	Positive supply
Vss	Vss	Power	_	Ground reference

TABLE 1-1:	PIC16F610/16HV610	PINOUT DESCRIPTION

Legend:

 AN = Analog input or output
 CMOS = CMOS compatible input or output
 HV = High Voltage

 ST = Schmitt Trigger input with CMOS levels
 TTL = TTL compatible input
 XTAL = Crystal

FIGURE 2-3: DATA MEMORY MAP OF THE PIC16F610/16HV610

	File Address		File Address
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h		86h
PORTC	07h	TRISC	87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Eh		8Eh
T1CON	10h	OSCTUNE	90h
	11h	ANSEL	91h
	12h		92h
	13h		03h
	146		93011 94h
	15h	WPUA	95h
	166		06h
	176	100/1	9011 07h
	18h		
VRCON	106	SRCONO	00h
CM1CON0	14h	SRCON1	94h
CM2CON0	1Bb	Choon	0Rh
CM2CON1	1Ch		- OCh
0	1Dh		
	1Eb		9DH
	156		OEh
	20h		A0h
	2011		
	3Fh		
	40h		
General			
Purpose			
Registers			
64 Bytes			
-	6Fh		
Accesses 70h-7Fh	70h	Accesses 70h-7Fh	F0h
	7Fh	-	FFh
Bank 0		Bank 1	
l			
Unimplemented da	ita memor	y locations, read as '0	
Note 1: Not a phy	ysical regi	ster.	

FIGURE 2-4:

DATA MEMORY MAP OF THE PIC16F616/16HV616

	File Address		File Addres	
Indirect Addr.(1)	00h	Indirect Addr.(1)	80h	
TMR0	01h	OPTION_REG	81h	
PCL	02h	PCL	82h	
STATUS	03h	STATUS	83h	
FSR	04h	FSR	84h	
PORTA	05h	TRISA	85h	
	06h		86h	
PORTC	07h	TRISC	87h	
	08h		88h	
	001		806	
PCLATH	04h	PCLATH	84h	
DIP1				
FINI	000	F IL I		
TMP1		PCON		
	UEn	PCON	8En	
TMR1H	0Fh	000711015	8Fh	
TICON	10h	OSCIUNE	90h	
TMR2	11h	ANSEL	91h	
T2CON	12h	PR2	92h	
CCPR1L	13h		93h	
CCPR1H	14h		94h	
CCP1CON	15h	WPUA	95h	
PWM1CON	16h	IOCA	96h	
ECCPAS	17h		97h	
	18h		98h	
VRCON	19h	SRCON0	99h	
CM1CON0	1Ah	SRCON1	9Ah	
CM2CON0	1Bh		9Bh	
CM2CON1	1Ch		9Ch	
	1Dh		9Dh	
ADRESH	1Eh	ADRESL	9Eh	
ADCON0	1Fh	ADCON1	9Fh	
	20h	General	A0h	
		Purpose		
Ormanal		32 Bytes	BFh	
Purpose			COF	
Registers				
96 Bytes				
	7Fh	Accesses 70h-7Fh	F0h FFh	
Bank 0 Bank 1				

2.2.2.5 PIR1 Register

The PIR1 register contains the peripheral interrupt flag bits, as shown in Register 2-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	—	TMR2IF ⁽¹⁾	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Interrupt Flag bit ⁽¹⁾
	1 = A/D conversion complete
	0 = A/D conversion has not completed or has not been started
bit 5	CCP1IF: CCP1 Interrupt Flag bit ⁽¹⁾
	<u>Capture mod</u> e: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare mode</u> : 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM mode</u> : Unused in this mode
bit 4	C2IF: Comparator C2 Interrupt Flag bit
	 1 = Comparator C2 output has changed (must be cleared in software) 0 = Comparator C2 output has not changed
bit 3	C1IF: Comparator C1 Interrupt Flag bit
	1 = Comparator C1 output has changed (must be cleared in software)0 = Comparator C1 output has not changed
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IF: Timer2 to PR2 Match Interrupt Flag bit ⁽¹⁾
	1 = Timer2 to PR2 match occurred (must be cleared in software)0 = Timer2 to PR2 match has not occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 register overflowed (must be cleared in software) 0 = Timer1 has not overflowed
Note 1:	PIC16F616/16HV616 only. PIC16F610/16HV610 unimplemented, read as '0'.

8.8 Additional Comparator Features

There are three additional comparator features:

- Timer1 count enable (gate)
- Synchronizing output with Timer1
- Simultaneous read of comparator outputs

8.8.1 COMPARATOR C2 GATING TIMER1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1

The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information.

8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers.

REGISTER 8-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1

R-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	
MC1OUT	MC2OUT	_	T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC	
bit 7							bit (
Legend:								
R = Readable b	oit	W = Writable bi	t	U = Unimplem	ented bit, read as	s 'O'		
-n = Value at PC	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own	
bit 7	MC1OUT: Mirro	or Copy of C1OU	T bit					
bit 6	MC2OUT: Mirro	or Copy of C2OU	T bit					
bit 5	Unimplemente	ed: Read as '0'						
bit 4	T1ACS: Timer1	1 Alternate Clock	Select bit					
	1 = Timer1 cloc	1 = Timer1 clock source is the system clock (Fosc)						
	0 = Timer1 cloc	ck source is the ir	nternal clock Fo	osc/4)				
bit 3	C1HYS: Comp	arator C1 Hyster	esis Enable bit					
1 = Comparator C1 Hysteresis enabled								
	0 = Comparator C1 Hysteresis disabled							
bit 2	C2HYS: Comparator C2 Hysteresis Enable bit							
⊥ = Comparator C2 Hysteresis enabled 0 = Comparator C2 Hysteresis disabled								
bit 1		1 Cata Source Sc	loct bit					
Dit i Figss : filler i Gale Source select bit $1 - \text{Timer1}$ gate source is $\overline{\text{T1G}}$								
	0 = Timer1 gate	e source is SYNC	C2OUT.					
bit 0	C2SYNC: Com	parator C2 Outp	ut Synchronizat	ion bit				
	1 = C2 Output	is synchronous to	falling edge of	Timer1 clock				
	0 = C2 Output	is asynchronous						

8.10 Comparator SR Latch

The SR latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON0 control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

The SR latch also has a variable clock, which is connected to the set input of the latch. The SRCLKEN bit of SRCON0 enables the SR latch set clock. The clock will periodically pulse the set input of the latch. Control over the frequency of the SR latch set clock is provided by the SRCS<1:0> bits of SRCON1 register.

8.10.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON0 register. The latch can be reset by C2OUT or the PULSR bit of the SRCON0 register. The latch is reset-dominant, therefore, if both Set and Reset

inputs are high the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

8.10.2 LATCH OUTPUT

The SR<1:0> bits of the SRCON0 register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch Q
- C2OUT and SR latch Q
- SR latch Q and Q

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

FIGURE 8-8: SR LATCH SIMPLIFIED BLOCK DIAGRAM

9.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding Port section for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

9.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 9-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 15.0** "**Electrical Specifications**" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

ADC Clock	Period (TAD)		Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz			
Fosc/2	000	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs			
Fosc/4	100	200 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs ⁽²⁾	4.0 μs			
Fosc/8	001	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾			
Fosc/16	101	800 ns ⁽²⁾	2.0 μs	4.0 μs	16.0 μs ⁽³⁾			
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾			
Fosc/64	110	3.2 μs	8.0 μs (3)	16.0 μs ⁽³⁾	64.0 μs (3)			
FRC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)			

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V)

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.

2: These values violate the minimum required TAD time.

- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON ⁽¹⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CCPR1L ⁽¹⁾	Capture/Compare/PWM Register 1 Low Byte							XXXX XXXX	uuuu uuuu	
CCPR1H ⁽¹⁾	Capture/Compare/PWM Register 1 High Byte								XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	0000 0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	0000 0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM. Note 1: PIC16F616/16HV616 only.

FIGURE 10-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

				Period	>
(Single Output)	P1A Modulated		.(1)		Ì
	P1A Modulated		5		
(Half-Bridge)	P1B Modulated	_ ' 			
	P1A Active			· · · · · · · · · · · · · · · · · · ·	 :
(Full-Bridge,	P1B Inactive			1 1 1	
Forward)	P1C Inactive	_ i _ <u> </u>		1 1	
	P1D Modulated			1	
	P1A Inactive	_ ;		1 1 1	
(Full-Bridge,	P1B Modulated			ļ	
Reverse)	P1C Active				
	P1D Inactive			1 1 1	<u> </u>
	(Single Output) (Half-Bridge) (Full-Bridge, Forward) (Full-Bridge, Reverse)	(Single Output) P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive Forward) P1C Inactive P1D Modulated (Full-Bridge, P1B Modulated (Full-Bridge, P1B Modulated P1A Active P1D Inactive P1D Inactive P1D Inactive P1D Inactive	(Single Output) P1A Modulated Delay P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive P1D Modulated P1A Inactive P1D Inac	(Single Output) P1A Modulated Delay ⁽¹⁾ P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated P1A Active P1A Active P1B Inactive P1C Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Active P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Inactive	(Single Output) P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive Forward) P1C Inactive P1D Modulated P1A Inactive P1B Modulated P1A Inactive P1D Inac

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 10.4.6 "Programmable Dead-Band Delay mode").

10.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of full-bridge application is shown in Figure 10-10.

In the Forward mode, pin CCP1/P1A is driven to its active state, pin P1D is modulated, while P1B and P1C will be driven to their inactive state as shown in Figure 10-11.

In the Reverse mode, P1C is driven to its active state, pin P1B is modulated, while P1A and P1D will be driven to their inactive state as shown Figure 10-11. P1A, P1B, P1C and P1D outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the P1A, P1B, P1C and P1D pins as outputs.

FIGURE 10-10: EXAMPLE OF FULL-BRIDGE APPLICATION

Mnemonic,		Description			14-Bit	Opcode	Status	Nata	
Оре	erands	Description C		MSb			LSb	Affected	Notes
-		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REGIST			IS			1	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1.2
BSF	f. b	Bit Set f	1	01	01bb	bfff	ffff		1.2
BTFSC	f. b	Bit Test f. Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f. b	Bit Test f. Skip if Set	1 (2)	01	11bb	bfff	ffff		3
	-, -	LITERAL AND CONTROL	OPERAT	IONS					-
ADDI W	k	Add literal and W	1	11	111x	kkkk	kkkk	C. DC. 7	
ANDIW	k	AND literal with W	1	11	1001	kkkk	kkkk	7	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk	-	
CIRWDT	· _	Clear Watchdog Timer	1	00	0000	0110	0100	TO PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk	_	
RETFIE	_	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC. Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 13-2: PIC16F610/616/16HV610/616 INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

FIGURE 15-3: PIC16F610/616 FREQUENCY TOLERANCE GRAPH,

FIGURE 15-4: PIC16HV610/616 FREQUENCY TOLERANCE GRAPH,

15.8 DC Characteristics: PIC16F610/616/16HV610/616- I (Industrial) PIC16F610/616/16HV610/616 - E (Extended)

DC CHA	RACTERI	ISTICS	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	VIL	Input Low Voltage						
		I/O port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{dd} \leq 5.5V$	
D030A			Vss	—	0.15 Vdd	V	$2.0V \leq V\text{DD} \leq 4.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$	
D032		MCLR, OSC1 (RC mode)	Vss	—	0.2 Vdd	V		
D033		OSC1 (XT and LP modes)	Vss	—	0.3	V		
D033A		OSC1 (HS mode)	Vss		0.3 Vdd	V		
	Viн	Input High Voltage						
		I/O ports:		_				
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D040A			0.25 Vdd + 0.8	_	Vdd	V	$2.0V \leq V\text{DD} \leq 4.5V$	
D041		with Schmitt Trigger buffer	0.8 VDD	—	Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$	
D042		MCLR	0.8 VDD	—	Vdd	V		
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd		Vdd	V	(Note 1)	
	lı∟	Input Leakage Current ^(2,3)						
D060		I/O ports	_	± 0.1	± 1	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$	
D061		RA3/MCLR ^(3,4)	—	±0.7	±5	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	—	± 0.1	± 5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	IPUR	PORTA Weak Pull-up Current ⁽⁵⁾	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage	_	_	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage	Vdd - 0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C	
D090		I/O ports ⁽²⁾	Vdd - 0.7	—	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: This specification applies to RA3/MCLR configured as RA3 input with internal pull-up disabled.

5: This specification applies to all weak pull-up pins, including the weak pull-up on RA3/MCLR. When RA3/MCLR is configured as MCLR reset pin, the weak pull-up is always enabled.

TABLE 15-3: CLKOUT AND I/O TIMING PARAMETERS

Standar Operatin	d Operating g Temperatu	Conditions (unless otherwise stated) re -40°C \leq TA \leq +125°C					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
OS11	TosH2cкL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	VDD = 5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	VDD = 5.0V
OS13	TCKL2IOV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	—	_	ns	
OS15	TosH2IoV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 5.0V
OS16	TosH2IOI	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	_	ns	VDD = 5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20			ns	
OS18	TIOR	Port output rise time ⁽²⁾		15 40	72 32	ns	VDD = 2.0V VDD = 5.0V
OS19	TIOF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 5.0V
OS20*	TINP	INT pin input high or low time	25	—	_	ns	
OS21*	Trap	PORTA interrupt-on-change new input level time	Тсү	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

TABLE 15-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym	Character	ristic	Min	Тур†	Max	Units	Conditions			
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20			ns				
			With Prescaler	20			ns				
CC02*	TccH	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	_		ns				
			With Prescaler	20		_	ns				
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N			ns	N = prescale value (1, 4 or 16)			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-12: PIC16F610/616 IPD COMPARATOR (BOTH ON) vs. VDD

