

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv610t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The PIC16F610/616/16HV610/616 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-3FF) for the PIC16F610/16HV610 and the first 2K x 14 (0000h-07FFh) for the PIC16F616/16HV616 is physically implemented. Accessing a location above these boundaries will cause a wraparound within the first 1K x 14 space (PIC16F610/16HV610) and 2K x 14 space (PIC16F616/16HV616). The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16F610/16HV610

FIGURE 2-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F616/16HV616

2.2 Data Memory Organization

The data memory (see Figure 2-4) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. PIC16F610/16HV610 Register locations 40h-7Fh in Bank 0 are General Purpose Registers, implemented as static RAM. PIC16F616/16HV616 Register locations 20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are General Purpose Registers, implemented as static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns '0' when read. The RP0 bit of the STATUS register is the bank select bit.

<u>RP0</u>

- $0 \rightarrow \text{Bank 0 is selected}$
- $1 \rightarrow \text{Bank 1 is selected}$

Note:	The IRP and RP1 bits of the STATUS						
register are reserved and should always be							
	maintained as '0's.						

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the PIC16F610/16HV610 and 128×8 in the PIC16F616/16HV616. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

3.2 Clock Source Modes

Clock Source modes can be classified as external or internal.

- External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.
- Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two selectable clock frequencies: 4 MHz and 8 MHz

The system clock can be selected between external or internal clock sources via the FOSC<2:0> bits of the Configuration Word register.

3.3 External Clock Modes

3.3.1 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 3-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

Note 1: Alternate pin functions are listed in the Section 1.0 "Device Overview".

TABLE 3-1:OSCILLATOR DELAY EXAMPLES

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	INTOSC	4 MHz to 8 MHz	Oscillator Warm-Up Delay (Twarm)
Sleep/POR	EC, RC	DC – 20 MHz	2 Instruction Cycles
Sleep/POR	LP, XT, HS	32 kHz to 20 MHz	1024 Clock Cycles (OST)

3.3.2 OSCILLATOR START-UP TIMER (OST)

If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 3-1.

8.7 Comparator Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 8-6. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 8-6: ANALOG INPUT MODEL

8.9 Comparator Hysteresis

Each comparator has built-in hysteresis that is user enabled by setting the C1HYS or C2HYS bits of the CM2CON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 8-9 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).

FIGURE 8-7: COMPARATOR HYSTERESIS

R/W-0	R/W-0	R/W-0	R/W-0	R/S-0	R/S-0	U-0	R/W-0
SR1 ⁽²⁾	SR0 ⁽²⁾	C1SEN	C2REN	PULSS	PULSR		SRCLKEN
bit 7							bit 0
Legend:				S = Bit is set o	nly -		
R = Readable	bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	wn
bit 7	SR1: SR Latch 1 = C2OUT 0 = C2OUT	Configuration bip pin is the latch \overline{C} pin is the C2 cor	t <mark>(2)</mark> output nparator output				
bit 6	SR0: SR Latch 1 = C1OUT 0 = C1OUT	Configuration bi pin is the latch C pin is the C1 Co	ts (2) output mparator output				
bit 5	C1SEN: C1 Se 1 = C1 compa 0 = C1 compa	t Enable bit irator output sets irator output has	SR latch no effect on SR	latch			
bit 4	C2REN: C2 Re 1 = C2 compa 0 = C2 compa	eset Enable bit irator output rese irator output has	ets SR latch no effect on SR	latch			
bit 3	PULSS: Pulse 1 = Triggers p 0 = Does not t	the SET Input of ulse generator to trigger pulse gen	the SR Latch bi set SR latch. B erator	t it is immediately	reset by hardwa	re.	
bit 2	PULSR: Pulse 1 = Triggers p 0 = Does not t	the Reset Input ulse generator to trigger pulse gen	of the SR Latch o reset SR latch. erator	bit Bit is immediate	ly reset by hardw	vare.	
bit 1	Unimplemente	ed: Read as '0'					
bit 0	SRCLKEN: SR	Latch Set Clock	c Enable bit				
	1 = Set input of	of SR latch is pu	sed with SRCLK	(
	0 = Set input of	of SR latch is not	t pulsed with the	SRCLK			
Note 1: Th	e C1OUT and C20	OUT bits in the C	MxCON0 registe	er will always refle	ect the actual com	nparator output (n	ot the level on

REGISTER 8-4: SRCON0: SR LATCH CONTROL 0 REGISTER

the pin), regardless of the SR latch operation.2: To enable an SR Latch output to the pin, the appropriate CxOE, and TRIS bits must be properly configured.

REGISTER 8-5: SRCON1: SR LATCH CONTROL 1 REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
SRCS1	SRCS0	—	—	—	—	—	—	
bit 7 bit 0								

Legend:		S = Bit is set only -		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	SRCS<1:0>: SR Latch Clock Prescale bits
	00 = Fosc/16
	01 = Fosc/32
	10 = Fosc/64

11 = Fosc/128

bit 5-0 Unimplemented: Read as '0'

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable bit	t	U = Unimpleme	ented bit, read a	is '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	wn
b.: 7		nuoraian Daault I		h.:4			
DIT 7	1 = Right justif 0 = Left justifie	ied ied	-ormat Select	DIT			
bit 6	VCFG: Voltage 1 = VREF pin 0 = VDD	e Reference bit					
bit 5-2	CHS<3:0>: Ar 0000 = Chan 0001 = Chan 0010 = Chan 0010 = Chan 0100 = Chan 0101 = Chan 0110 = Chan 0111 = Chan 1000 = Rese 1001 = Rese 1010 = Rese 1011 = Rese 1011 = Rese 1100 = CVRE 1101 = 0.6V 1110 = 1.2V 1111 = Rese	alog Channel Sel nel 00 (AN0) nel 01 (AN1) nel 02 (AN2) nel 03 (AN3) nel 04 (AN4) nel 05 (AN5) nel 06 (AN6) nel 07 (AN7) rved – do not use rved – do not use rved – do not use F Fixed Voltage Ref Fixed Voltage Ref	ect bits erence ⁽¹⁾ erence ⁽¹⁾				
bit 1	GO/DONE: A// 1 = A/D conve This bit is a 0 = A/D conve	D Conversion Sta rsion cycle in prog automatically clea rsion completed/r	tus bit gress. Setting t red by hardwa lot in progress	his bit starts an A re when the A/D c	/D conversion c conversion has (ycle. completed.	
bit 0	ADON: ADC E 1 = ADC is ena 0 = ADC is dis	Enable bit abled abled and consur	nes no operati	ng current			
Note 1:	When the CHS<3:0	> bits change to s	elect the 1.2V	or 0.6V Fixed Volt	tage Reference	the reference out	put voltage will

Note 1: When the CHS<3:0> bits change to select the 1.2V or 0.6V Fixed Voltage Reference, the reference output voltage will have a transient. If the Comparator module uses this VP6 reference voltage, the comparator output may momentarily change state due to the transient.

10.0 ENHANCED CAPTURE/ COMPARE/PWM (WITH AUTO-SHUTDOWN AND DEAD BAND) MODULE (PIC16F616/16HV616 ONLY)

The Enhanced Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external

event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

Table 10-1 shows the timer resources required by the ECCP module.

TABLE 10-1: ECCP MODE – TIMER RESOURCES REQUIRED

ECCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 10-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 7-6	P1M<1:0>: P	WM Output Cor	nfiguration bits				
	If CCP1M<3:2	2 > = 00, 01, 10	<u>):</u>				
	xx = P1A as	signed as Capt	ure/Compare	input; P1B, P10	C, P1D assigne	d as port pins	
	<u>If CCP1M<3:</u>	<u>2> = 11:</u>					
	00 = Single c	output; P1A mo	dulated; P1B,	P1C, P1D assi	gned as port p	ins	
		dge output forw	ard; PID moo	iulated; PIA act	tive; P1B, P1C	Inactive	
	10 = Half-Bfi	dge output; P17	A, PIB MOQUIE	ated with dead-t	tive: P1A P1D	C, PTD assigne	e as port pins
				iaant hita		mactive	
DIL 5-4			le Least Signii	Icant bits			
	Linusod	<u>ə.</u>					
	Compare mor	10·					
	Unused	<u></u>					
	PWM mode:						
	These bits are	e the two LSbs	of the PWM du	uty cycle. The ei	ght MSbs are f	ound in CCPR1	L.
bit 3-0	CCP1M<3:0>:	ECCP Mode Sel	ect bits				
	0000 = Capt	ure/Compare/PW	M off (resets E0	CCP module)			
	0001 = Unus	ed (reserved)					
	0010 = Com	pare mode, toggl	e output on mat	ch (CCP1IF bit is	set)		
	0011 = Unus	ed (reserved)	falling adga				
	0100 = Capt	ure mode, every	rising edge				
	0101 = Capt	ure mode, every	4th rising edge				
	0111 = Capt	ure mode, every	16th rising edge)			
	1000 = Com	pare mode, set o	utput on match	(CCP1IF bit is se	t)		
	1001 = Com	pare mode, clear	output on matc	h (CCP1IF bit is s	set)		
	1010 = Com	pare mode, gene	rate software in	terrupt on match	(CCP1IF bit is se	et, CCP1 pin is u	naffected)
	1011 = Com	pare mode, trigg	er special eve	nt (CCP1IF bit i	is set; CCP1 re	sets IMR1 and	starts an A/D
			active-bight P	uleu) 18 P1D active bi	iah		
	1101 = PWW	1 mode: P1A. P10	Cactive-high, P	1B. P1D active-In	igir)W		
	1110 = PWN	1 mode; P1A, P10	C active-low: P1	B, P1D active-hid	gh		
	1111 = PWN	1 mode; P1A, P10	Cactive-low; P1	B, P1D active-lov	N		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON ⁽¹⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CCPR1L ⁽¹⁾	1L ⁽¹⁾ Capture/Compare/PWM Register 1 Low Byte									uuuu uuuu
CCPR1H ⁽¹⁾	Capture/Cor	mpare/PWM I	Register 1 Hig	gh Byte					XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	0000 0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	0000 0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
TMR1L	Holding Reg	ister for the L	east Significa	ant Byte of th	e 16-bit TMR	1 Register			XXXX XXXX	uuuu uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	uuuu uuuu
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM. Note 1: PIC16F616/16HV616 only.

10.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note: When the microcontroller is released from Reset, all of the I/O pins are in the highimpedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

PIC16F610/616/16HV610/616

NOTES:

PIC16F610/616/16HV610/616

12.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- PWRT time-out is invoked after POR has expired.
- OST is activated after the PWRT time-out has expired.

The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC16F610/616/ 16HV610/616 device operating in parallel.

Table 12-5 shows the Reset conditions for some special registers, while Table 12-4 shows the Reset conditions for all the registers.

12.3.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see **Section 12.3.4** "**Brown-out Reset (BOR)**".

Occillator Configuration	Powe	er-up	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	_	—

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition	
0	х	1	1	Power-on Reset	
u	0	1	1	Brown-out Reset	
u	u	0	u	WDT Reset	
u	u	0	0	WDT Wake-up	
u	u	u	u	MCLR Reset during normal operation	
u	u	1	0	MCLR Reset during Sleep	

Legend: u = unchanged, x = unknown

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
PCON			_	_			POR	BOR	dd	uu
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

12.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Temporary holding registers W_TEMP and STATUS_TEMP should be placed in the last 16 bytes of GPR (see Figure 2-4). These 16 locations are common to all banks and do not require banking. This makes context save and restore operations simpler. The code shown in Example 12-1 can be used to:

- Store the W register
- Store the STATUS register
- Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register

Note:	The PIC16F610/616/16HV610/616 does
	not require saving the PCLATH. However,
	if computed GOTO's are used in both the
	ISR and the main code, the PCLATH must
	be saved and restored in the ISR.

EXAMPLE 12-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
		;Swaps are used because they do not affect the status bits
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		;Insert user code here
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

12.10 In-Circuit Serial Programming™

The PIC16F610/616/16HV610/616 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for:

- clock
- data
- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the *Memory Programming Specification* (DS41284) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in Program/Verify mode.

A typical In-Circuit Serial Programming connection is shown in Figure 12-10.

FIGURE 12-10: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING™ CONNECTION

Note:	To erase t	the device VDD r	nust be above
	the Bulk E	rase VDD minimu	Im given in the
	Memory	Programming	Specification
	(DS41284)	

12.11 In-Circuit Debugger

Since in-circuit debugging requires access to three pins, MPLAB[®] ICD 2 development with an 14-pin device is not practical. A special 28-pin PIC16F610/616/ 16HV610/616 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

A special debugging adapter allows the ICD device to be used in place of a PIC16F610/616/16HV610/616 device. The debugging adapter is the only source of the ICD device.

When the ICD pin on the PIC16F610/616/16HV610/ 616 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger.

IADLE 12-9. DEDUGGER RESOURCE

Resource	Description
I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 700h-7FFh

For more information, see "*MPLAB*[®] *ICD 2 In-Circuit Debugger User's Guide*" (DS51331), available on Microchip's web site (www.microchip.com).

15.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40° to +125°C					
Storage temperature	65°C to +150°C					
Voltage on VDD with respect to Vss	0.3V to +6.5V					
Voltage on MCLR with respect to Vss	0.3V to +13.5V					
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)					
otal power dissipation ⁽¹⁾						
Maximum current out of Vss pin	95 mA					
Maximum current into Vod pin	95 mA					
Input clamp current, Iık (Vı < 0 or Vı > Vɒɒ)	± 20 mA					
Output clamp current, Ioк (Vo < 0 or Vo >VDD)	± 20 mA					
Maximum output current sunk by any I/O pin	25 mA					
Maximum output current sourced by any I/O pin	25 mA					
Maximum current sunk by PORTA and PORTC (combined)	90 mA					
Maximum current sourced PORTA and PORTC (combined)	90 mA					
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VE IOL).	од – Vон) х Iон} + ∑(Vol x					

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
30	TMCL	MCLR Pulse Width (low)	2 5			μs μs	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C	
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	20 20	30 35	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C	
32	Tost	Oscillation Start-up Timer Period ^(1, 2)	_	1024		Tosc	(NOTE 3)	
33*	TPWRT	Power-up Timer Period	40	65	140	ms		
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.0	μs		
35*	VBOR	Brown-out Reset Voltage	2.0	2.15	2.3	V	(NOTE 4)	
36*	VHYST	Brown-out Reset Hysteresis		100	_	mV		
37*	TBOR	Brown-out Reset Minimum Detection Period	100			μS	$VDD \leq VBOR$	

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: By design.
- 3: Period of the slower clock.
- **4:** To ensure these voltage tolerances, VDD and VSS must be capacitivey decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	N	14					
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	1.20			
Molded Package Thickness	A2	0.80	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Overall Width	Е		6.40 BSC				
Molded Package Width	E1	4.30	4.40	4.50			
Molded Package Length	D	4.90	5.00	5.10			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1		1.00 REF				
Foot Angle	¢	0°	-	8°			
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.19	_	0.30			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

PIC16F610/616/16HV610/616

16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν	16		
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	Е		4.00 BSC	
Exposed Pad Width	E2	2.50	2.65	2.80
Overall Length	D		4.00 BSC	
Exposed Pad Length	D2	2.50	2.65	2.80
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-127B

16-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4x0.9mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.30		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2127A

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{0}}$ devices to the <code>PIC16F6XX</code> Family of devices.

B.1 PIC16F676 to PIC16F610/616/16HV610/616

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC16F610/16HV610	PIC16F616/16HV616
Max Operating Speed	20 MHz	20 MHz	20 MHz
Max Program Memory (Words)	1024	1024	2048
SRAM (bytes)	64	64	128
A/D Resolution	10-bit	None	10-bit
Timers (8/16-bit)	1/1	1/1	2/1
Oscillator Modes	8	8	8
Brown-out Reset	Y	Y	Y
Internal Pull-ups	RA0/1/2/4/5	RA0/1/2/4/5, MCLR	RA0/1/2/4/5, MCLR
Interrupt-on-change	RA0/1/2/3/4/5	RA0/1/2/3/4/5	RA0/1/2/3/4/5
Comparator	1	2	2
ECCP	N	Ν	Y
INTOSC Frequencies	4 MHz	4/8 MHz	4/8 MHz
Internal Shunt Regulator	N	Y (PIC16HV610)	Y (PIC16HV616)

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.