Microchip Technology - PIC16HV616-I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv616-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-3: DATA MEMORY MAP OF THE PIC16F610/16HV610

	File Address		File Address	
Indirect Addr.(1)	00h	Indirect Addr. ⁽¹⁾	80h	
TMR0	01h	OPTION REG	81h	
PCL	02h	PCL	82h	
STATUS	03h	STATUS	83h	
FSR	03h 04h	FSR	84h	
PORTA	05h	TRISA	85h	
1 OKIN	06h	INIOA	86h	
PORTC	07h	TRISC	87h	
Tokto	08h	11100	88h	
	09h		89h	
PCLATH	0Ah	PCLATH	8Ah	
INTCON		INTCON		
PIR1	0Bh	PIE1	8Bh	
FIRI	0Ch	FIEI	8Ch	
TMD4	0Dh	DOON	8Dh	
TMR1L	0Eh	PCON	8Eh	
TMR1H	0Fh	000711115	8Fh	
T1CON	10h	OSCTUNE	90h	
	11h	ANSEL	91h	
	12h		92h	
	13h		93h	
	14h		94h	
	15h	WPUA	95h	
	16h	IOCA	96h	
	17h		97h	
	18h		98h	
VRCON	19h	SRCON0	99h	
CM1CON0	1Ah	SRCON1	9Ah	
CM2CON0	1Bh		9Bh	
CM2CON1	1Ch		9Ch	
	1Dh		9Dh	
	1Eh		9Eh	
	1Fh		9Fh	
	20h		A0h	
	3Fh			
	40h			
General Purpose Registers				
64 Bytes	6Fh			
Accesses 70h-7Fh	70h 7Fh	Accesses 70h-7Fh	F0h FFh	
Bank 0	Bank 1			
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.				

FIGURE 2-4:

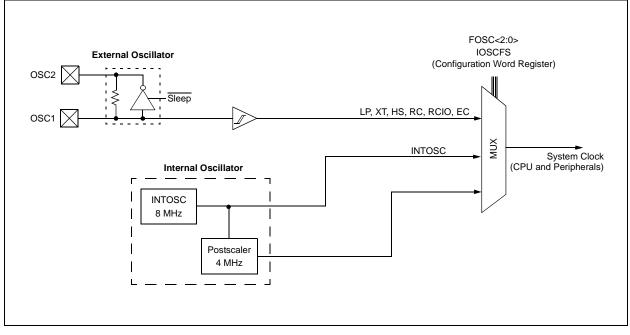
DATA MEMORY MAP OF THE PIC16F616/16HV616

		PIC10F010/10F	
	File Address	A	File ddres
Indirect Addr. ⁽¹⁾	00h	Indirect Addr.(1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
PORTA	05h	TRISA	85h
	06h		86h
PORTC	07h	TRISC	87h
	08h		88h
	09h		89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
	0Dh		8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh		8Fh
T1CON	10h	OSCTUNE	90h
TMR2	11h	ANSEL	91h
T2CON	12h	PR2	92h
CCPR1L	13h		93h
CCPR1H	14h		94h
CCP1CON	15h	WPUA	95h
PWM1CON	16h	IOCA	96h
ECCPAS	17h	100/1	97h
2001710	18h		98h
VRCON	19h	SRCON0	99h
CM1CON0	1Ah	SRCON1	99n 9Ah
CM2CON0	1Bh	ORCONT	9Bh
CM2CON1	1Ch		9Dh
011200111			
ADRESH	1Dh	ADRESL	9Dh
	1Eh	ADCON1	9Eh
ADCON0	1Fh	General	9Fh A0h
	20h	Purpose	7.01
		Registers	
General		32 Bytes	BFł
Purpose			CO
Registers			
96 Bytes			
	7Fh	Accesses 70h-7Fh	F0h FFh
Bank 0	J / F(1	Bank 1	<u> </u>
	ata memor iysical regi	y locations, read as '0'. ster.	

3.0 OSCILLATOR MODULE

3.1 Overview

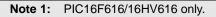
The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module.


Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured with a choice of two selectable speeds: internal or external system clock source.

The Oscillator module can be configured in one of eight clock modes.

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The Internal Oscillator module provides a selectable system clock mode of either 4 MHz (Postscaler) or 8 MHz (INTOSC).



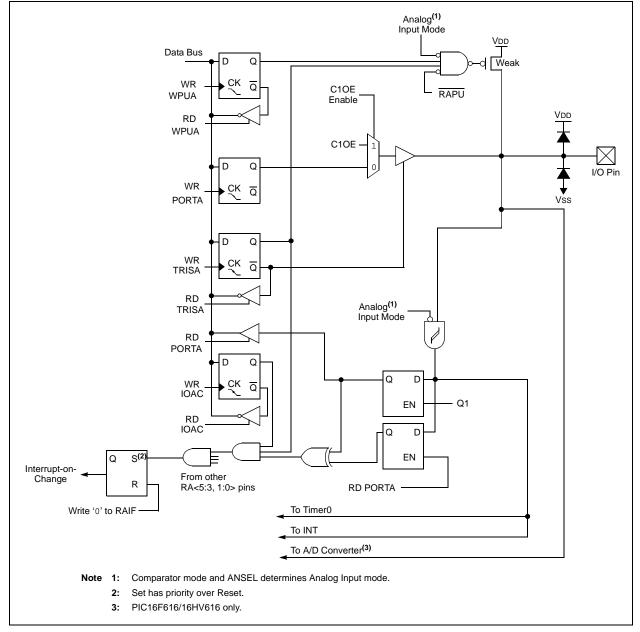
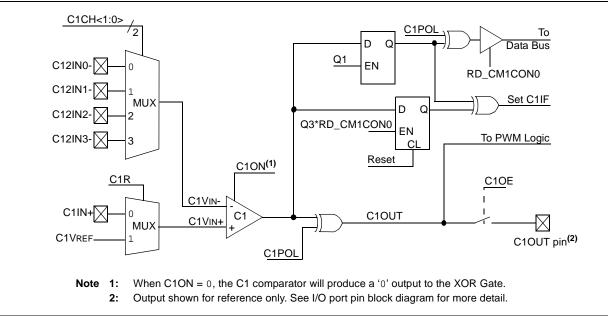
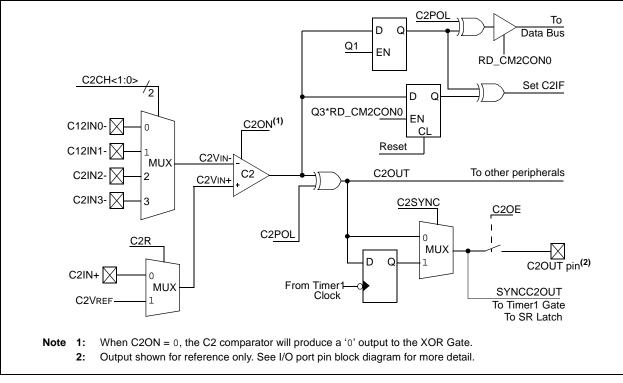

4.2.4.3 RA2/AN2⁽¹⁾/T0CKI/INT/C1OUT

Figure 4-2 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- the clock input for TMR0
- an external edge triggered interrupt
- a digital output from Comparator C1


FIGURE 4-2: BLOCK DIAGRAM OF RA2

8.10 Comparator SR Latch

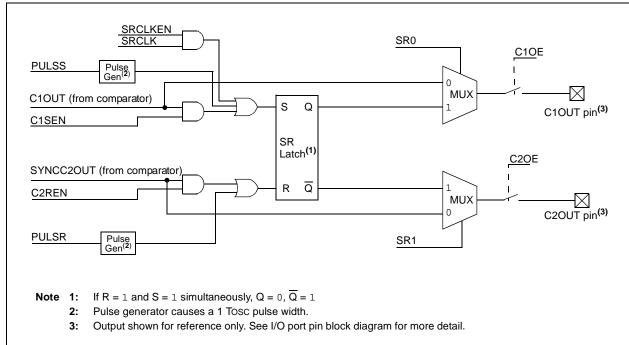
The SR latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON0 control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

The SR latch also has a variable clock, which is connected to the set input of the latch. The SRCLKEN bit of SRCON0 enables the SR latch set clock. The clock will periodically pulse the set input of the latch. Control over the frequency of the SR latch set clock is provided by the SRCS<1:0> bits of SRCON1 register.

8.10.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON0 register. The latch can be reset by C2OUT or the PULSR bit of the SRCON0 register. The latch is reset-dominant, therefore, if both Set and Reset

inputs are high the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.


8.10.2 LATCH OUTPUT

The SR<1:0> bits of the SRCON0 register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch Q
- C2OUT and SR latch Q
- SR latch Q and Q

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

FIGURE 8-8: SR LATCH SIMPLIFIED BLOCK DIAGRAM

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the analog-to-digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 9.2.6 "A/D Conversion
	Procedure".

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete analog-to-digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

9.2.5 SPECIAL EVENT TRIGGER

The ECCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not ensure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Section 10.0 "Enhanced Capture/Compare/ PWM (With Auto-Shutdown and Dead Band) Module (PIC16F616/16HV616 Only)" for more information.

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an analog-to-digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt may be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: See Section 9.3 "A/D Acquisition Requirements".

10.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

10.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 3.0** "**Oscillator Module**" for additional details.

10.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

10.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Configure the PWM pin (CCP1) as an input by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPR1L register and CCP1 bits of the CCP1CON register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCP1 pin output by clearing the associated TRIS bit.

10.4 PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to 10-bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately.

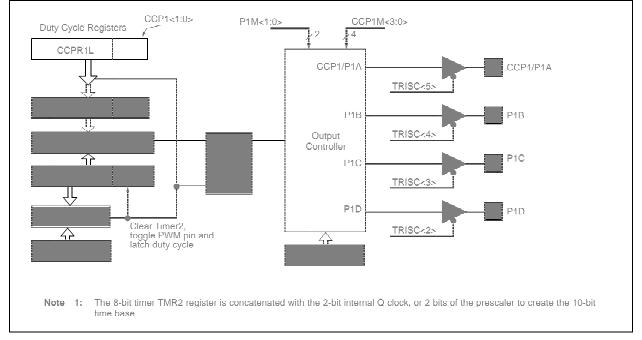

The PWM outputs are multiplexed with I/O pins and are designated P1A, P1B, P1C and P1D. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately.

Table 10-6 shows the pin assignments for each Enhanced PWM mode.

Figure 10-5 shows an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

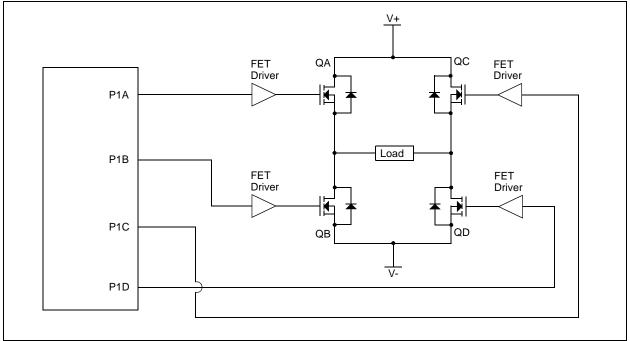
FIGURE 10-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

Note 1: The TRIS register value for each PWM output must be configured appropriately.

- 2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.
- 3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions

TABLE 10-6: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

ECCP Mode	P1M	CCP1/P1A	P1B	P1C	P1D
Single	00	Yes	No	No	No
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes


10.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of full-bridge application is shown in Figure 10-10.

In the Forward mode, pin CCP1/P1A is driven to its active state, pin P1D is modulated, while P1B and P1C will be driven to their inactive state as shown in Figure 10-11.

In the Reverse mode, P1C is driven to its active state, pin P1B is modulated, while P1A and P1D will be driven to their inactive state as shown Figure 10-11. P1A, P1B, P1C and P1D outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the P1A, P1B, P1C and P1D pins as outputs.

FIGURE 10-10: EXAMPLE OF FULL-BRIDGE APPLICATION

10.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPASx bits of the ECCPAS register. A shutdown event may be generated by:

- A logic '0' on the INT pin
- Comparator C1
- Comparator C2
- · Setting the ECCPASE bit in firmware

A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

When a shutdown event occurs, two things happen:

The ECCPASE bit is set to '1'. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see Section 10.4.5 "Auto-Restart Mode").

The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [P1A/P1C] and [P1B/P1D]. The state of each pin pair is determined by the PSSAC and PSSBD bits of the ECCPAS register. Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 10-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

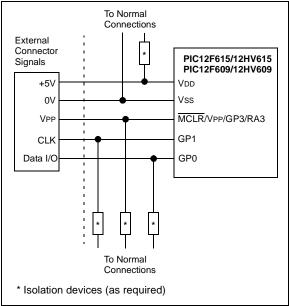
		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bit	E	CCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
	bit 7	7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 1 = A shutdown event has occurred; ECCP outputs are in shutd 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1 output high 	
000 = Auto-Shutdown is disabled	iown state
010 = Comparator C2 output high ⁽¹⁾ 011 = Either Comparators output is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1 output high 110 = VIL on INT pin or Comparator C2 output high	
111 = VIL on INT pin or either Comparators output is high	
bit 3-2 PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state	
bit 1-0 PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state	

12.10 In-Circuit Serial Programming™

The PIC16F610/616/16HV610/616 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for:


- clock
- data
- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RA0 and RA1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the *Memory Programming Specification* (DS41284) for more information. RA0 becomes the programming data and RA1 becomes the programming clock. Both RA0 and RA1 are Schmitt Trigger inputs in Program/Verify mode.

A typical In-Circuit Serial Programming connection is shown in Figure 12-10.

FIGURE 12-10: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING™ CONNECTION

Note:	To erase t	he device VDD r	must be above
	the Bulk E	rase VDD minimu	um given in the
	Memory	Programming	Specification
	(DS41284))	

12.11 In-Circuit Debugger

Since in-circuit debugging requires access to three pins, MPLAB[®] ICD 2 development with an 14-pin device is not practical. A special 28-pin PIC16F610/616/ 16HV610/616 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user.

A special debugging adapter allows the ICD device to be used in place of a PIC16F610/616/16HV610/616 device. The debugging adapter is the only source of the ICD device.

When the ICD pin on the PIC16F610/616/16HV610/ 616 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger.

TABLE 12-9: DEBUGGER RESOURCES

Resource	Description
I/O pins	ICDCLK, ICDDATA
Stack	1 level
Program Memory	Address 0h must be NOP 700h-7FFh

For more information, see "*MPLAB*[®] *ICD 2 In-Circuit Debugger User's Guide*" (DS51331), available on Microchip's web site (www.microchip.com).

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

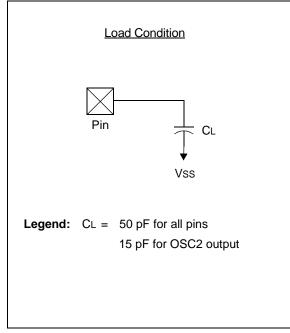
- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

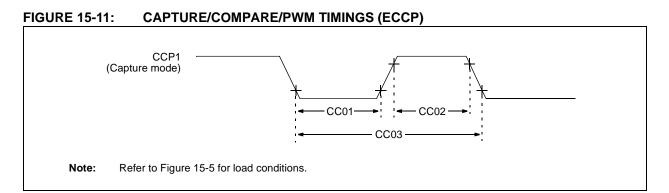
The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

15.11 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:


1. TppS2ppS

2. TppS

<u>z. rpp3</u>			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O Port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 15-5: LOAD CONDITIONS

TABLE 15-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Character	Min	Тур†	Max	Units	Conditions	
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	20	—	_	ns	
CC02*	ТссН	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	20	—		ns	
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

SHUNT	REGULAT	OR CHARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
SR01	VSHUNT	Shunt Voltage	4.75	5	5.4	V		
SR02	ISHUNT	Shunt Current	4	—	50	mA		
SR03*	TSETTLE	Settling Time	—		150	ns	To 1% of final value	
SR04	CLOAD	Load Capacitance	0.01	-	10	μF	Bypass capacitor on VDD pin	
SR05	Δ ISNT	Regulator operating current	—	180	—	μΑ	Includes band gap reference current	

TABLE 15-10: SHUNT REGULATOR SPECIFICATIONS (PIC16HV610/616 only)

These parameters are characterized but not tested.

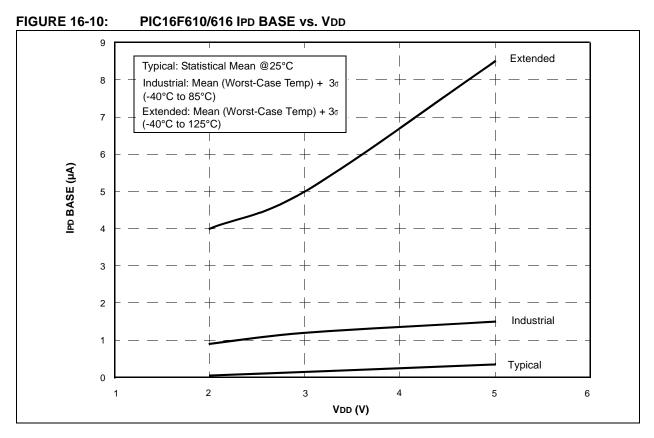
*

TABLE 15-11: PIC16F616/16HV616 A/D CONVERTER (ADC) CHARACTERISTICS:

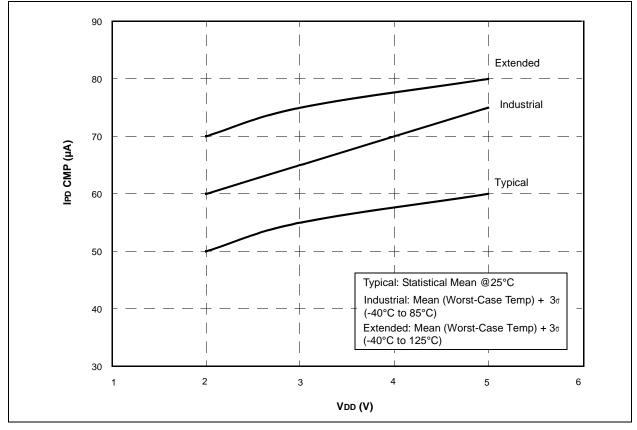
Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
AD01	Nr	Resolution	_	_	10 bits	bit		
AD02	EIL	Integral Error	_	_	±1	LSb	VREF = 5.12V ⁽⁵⁾	
AD03	Edl	Differential Error	_	—	±1	LSb	No missing codes to 10 bits VREF = 5.12V ⁽⁵⁾	
AD04	EOFF	Offset Error	_	+1.5	+ 2.0	LSb	VREF = 5.12V ⁽⁵⁾	
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V ⁽⁵⁾	
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.5	_	— Vdd	V	Absolute minimum to ensure 1 LSb accuracy	
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—		10	kΩ		
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN.	
			—	_	50	μΑ	During A/D conversion cycle.	

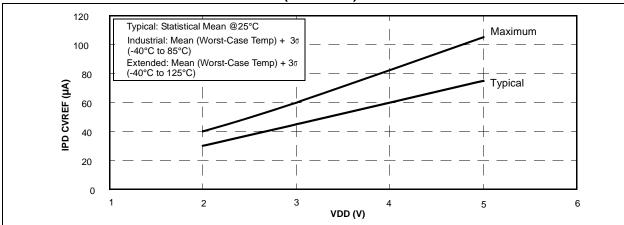
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

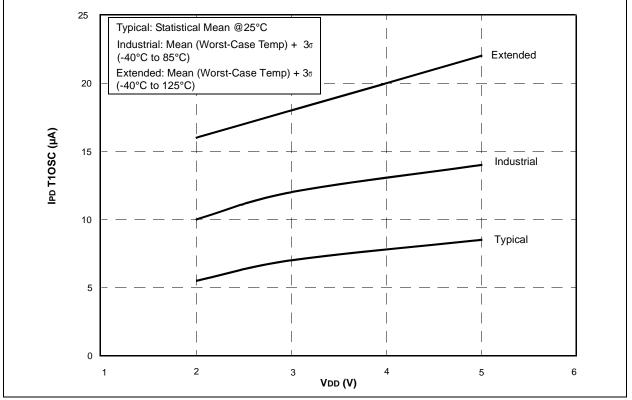

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.


3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.


4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: VREF = 5V for PIC16HV616.



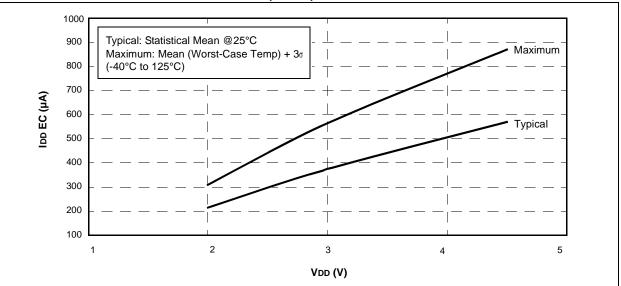


FIGURE 16-16: PIC16F610/616 IPD CVREF (HI RANGE) vs. VDD



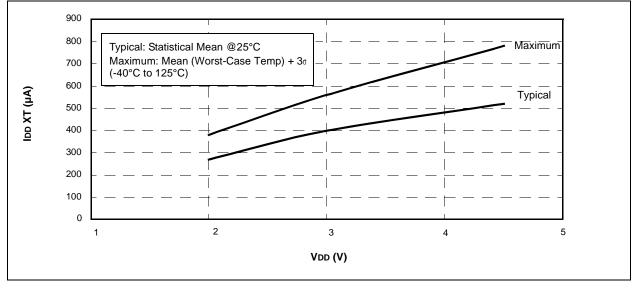


FIGURE 16-20: PIC16HV610/616 IDD EC (1 MHz) vs. VDD

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent						
RE:	Reader Response							
Fron	n: Name							
	Company							
	Address							
	City / State / ZIP / Country							
	Telephone: ()	FAX: ()						
Application (optional):								
Wou	Would you like a reply?YN							
Devi	ce: PIC16F610/616/16HV610/616	Literature Number: DS41288F						
Que	stions:							
1 \	 What are the best features of this document? 							
1.								
-								
2.	How does this document meet your h	nardware and software development needs?						
-								
3. I	Do you find the organization of this d	ocument easy to follow? If not, why?						
-								
-								
4.	What additions to the document do y	ou think would enhance the structure and subject?						
-								
-								
5.	What deletions from the document co	ould be made without affecting the overall usefulness?						
-								
-								
6.	s there any incorrect or misleading in	nformation (what and where)?						
-								
-		at2						
1.	How would you improve this docume	nt (
-								