



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 20MHz                                                                     |
| Connectivity               | -                                                                         |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                          |
| Number of I/O              | 11                                                                        |
| Program Memory Size        | 3.5KB (2K x 14)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 128 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5V                                                                   |
| Data Converters            | A/D 8x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 14-SOIC (0.154", 3.90mm Width)                                            |
| Supplier Device Package    | 14-SOIC                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16hv616-i-sl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Name                 | Function | Input<br>Type | Output<br>Type | Description                                          |
|----------------------|----------|---------------|----------------|------------------------------------------------------|
| RA0/C1IN+/ICSPDAT    | RA0      | TTL           | CMOS           | PORTA I/O with prog. pull-up and interrupt-on-change |
|                      | C1IN+    | AN            | _              | Comparator C1 non-inverting input                    |
|                      | ICSPDAT  | ST            | CMOS           | Serial Programming Data I/O                          |
| RA1/C12IN0-/ICSPCLK  | RA1      | TTL           | CMOS           | PORTA I/O with prog. pull-up and interrupt-on-change |
|                      | C12IN0-  | AN            | _              | Comparators C1 and C2 inverting input                |
|                      | ICSPCLK  | ST            | _              | Serial Programming Clock                             |
| RA2/T0CKI/INT/C1OUT  | RA2      | ST            | CMOS           | PORTA I/O with prog. pull-up and interrupt-on-change |
|                      | TOCKI    | ST            | _              | Timer0 clock input                                   |
|                      | INT      | ST            | _              | External Interrupt                                   |
|                      | C1OUT    | _             | CMOS           | Comparator C1 output                                 |
| RA3/MCLR/Vpp         | RA3      | TTL           | _              | PORTA input with interrupt-on-change                 |
|                      | MCLR     | ST            | _              | Master Clear w/internal pull-up                      |
|                      | Vpp      | HV            |                | Programming voltage                                  |
| RA4/T1G/OSC2/CLKOUT  | RA4      | TTL           | CMOS           | PORTA I/O with prog. pull-up and interrupt-on-change |
|                      | T1G      | ST            | _              | Timer1 gate (count enable)                           |
|                      | OSC2     | —             | XTAL           | Crystal/Resonator                                    |
|                      | CLKOUT   | _             | CMOS           | Fosc/4 output                                        |
| RA5/T1CKI/OSC1/CLKIN | RA5      | TTL           | CMOS           | PORTA I/O with prog. pull-up and interrupt-on-change |
|                      | T1CKI    | ST            | _              | Timer1 clock input                                   |
|                      | OSC1     | XTAL          | _              | Crystal/Resonator                                    |
|                      | CLKIN    | ST            | _              | External clock input/RC oscillator connection        |
| RC0/C2IN+            | RC0      | TTL           | CMOS           | PORTC I/O                                            |
|                      | C2IN+    | AN            | _              | Comparator C2 non-inverting input                    |
| RC1/C12IN1-          | RC1      | TTL           | CMOS           | PORTC I/O                                            |
|                      | C12IN1-  | AN            | —              | Comparators C1 and C2 inverting input                |
| RC2/C12IN2-          | RC2      | TTL           | CMOS           | PORTC I/O                                            |
|                      | C12IN2-  | AN            | —              | Comparators C1 and C2 inverting input                |
| RC3/C12IN3-          | RC3      | TTL           | CMOS           | PORTC I/O                                            |
|                      | C12IN3-  | AN            | —              | Comparators C1 and C2 inverting input                |
| RC4/C2OUT            | RC4      | TTL           | CMOS           | PORTC I/O                                            |
|                      | C2OUT    | —             | CMOS           | Comparator C2 output                                 |
| RC5                  | RC5      | TTL           | CMOS           | PORTC I/O                                            |
| VDD                  | Vdd      | Power         | —              | Positive supply                                      |
| Vss                  | Vss      | Power         | _              | Ground reference                                     |

| TABLE 1-1: | PIC16F610/16HV610 | PINOUT DESCRIPTION |
|------------|-------------------|--------------------|
|            |                   |                    |

Legend:

 AN = Analog input or output
 CMOS = CMOS compatible input or output
 HV = High Voltage

 ST = Schmitt Trigger input with CMOS levels
 TTL = TTL compatible input
 XTAL = Crystal

#### 2.2.2.4 PIE1 Register

The PIE1 register contains the peripheral interrupt enable bits, as shown in Register 2-4.

**Note:** Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

#### REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| U-0   | R/W-0               | R/W-0                 | R/W-0 | R/W-0 | U-0 | R/W-0                 | R/W-0  |
|-------|---------------------|-----------------------|-------|-------|-----|-----------------------|--------|
| —     | ADIE <sup>(1)</sup> | CCP1IE <sup>(1)</sup> | C2IE  | C1IE  | —   | TMR2IE <sup>(1)</sup> | TMR1IE |
| bit 7 |                     |                       |       |       |     |                       | bit 0  |

| Legend:    |                     |                                                                                                |                               |                    |
|------------|---------------------|------------------------------------------------------------------------------------------------|-------------------------------|--------------------|
| R = Read   | lable bit           | W = Writable bit                                                                               | U = Unimplemented bit,        | read as '0'        |
| -n = Value | e at POR            | '1' = Bit is set                                                                               | '0' = Bit is cleared          | x = Bit is unknown |
|            |                     |                                                                                                |                               |                    |
| bit 7      | Unimple             | emented: Read as '0'                                                                           |                               |                    |
| bit 6      | ADIE: A             | /D Converter (ADC) Interrupt                                                                   | Enable bit <sup>(1)</sup>     |                    |
|            | 1 = Ena<br>0 = Disa | bles the ADC interrupt<br>bles the ADC interrupt                                               |                               |                    |
| bit 5      | CCP1IE              | : CCP1 Interrupt Enable bit <sup>(1)</sup>                                                     |                               |                    |
|            | 1 = Ena<br>0 = Disa | bles the CCP1 interrupt<br>bles the CCP1 interrupt                                             |                               |                    |
| bit 4      | <b>C2IE:</b> C      | omparator C2 Interrupt Enabl                                                                   | e bit                         |                    |
|            | 1 <b>= Ena</b>      | bles the Comparator C2 inter                                                                   | rupt                          |                    |
|            | 0 = Disa            | bles the Comparator C2 inter                                                                   | rupt                          |                    |
| bit 3      | <b>C1IE:</b> C      | omparator C1 Interrupt Enabl                                                                   | e bit                         |                    |
|            | 1 = Ena<br>0 = Disa | bles the Comparator C1 internubles the Comparator C1 internubles the Comparator C1 internubles | rupt<br>rupt                  |                    |
| bit 2      | Unimple             | emented: Read as '0'                                                                           |                               |                    |
| bit 1      | TMR2IE              | : Timer2 to PR2 Match Interru                                                                  | upt Enable bit <sup>(1)</sup> |                    |
|            | 1 <b>= Ena</b>      | bles the Timer2 to PR2 match                                                                   | interrupt                     |                    |
|            | 0 = Disa            | bles the Timer2 to PR2 matcl                                                                   | h interrupt                   |                    |
| bit 0      | TMR1IE              | : Timer1 Overflow Interrupt E                                                                  | nable bit                     |                    |
|            | 1 <b>= Ena</b>      | bles the Timer1 overflow inter                                                                 | rrupt                         |                    |
|            | 0 = Disa            | bles the Timer1 overflow inte                                                                  | rrupt                         |                    |
| Note 1:    | PIC16F616/1         | 6HV616 only. PIC16F610/16                                                                      | HV610 unimplemented, read     | <b>as</b> '0'.     |

#### 4.2 Additional Pin Functions

Every PORTA pin on the PIC16F610/616/16HV610/ 616 has an interrupt-on-change option and a weak pullup option. The next three sections describe these functions.

#### 4.2.1 ANSEL REGISTER

The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

#### 4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION register). A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an input. There is no software control of the MCLR pull-up.

#### 4.2.3 INTERRUPT-ON-CHANGE

Each PORTA pin is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-5. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RAIF) in the INTCON register (Register 2-3).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then,
- b) Clear the flag bit RAIF.

A mismatch condition will continue to set flag bit RAIF. Reading PORTA will end the mismatch condition and allow flag bit RAIF to be cleared. The <u>latch</u> holding the last read value is not affected by a MCLR nor BOR Reset. After these resets, the RAIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when any PORTA operation is being executed, then the RAIF interrupt flag may not get set.

#### REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

| R/W-1                              | R/W-1 | R/W-1 | R/W-1 | R/W-1                                   | R/W-1               | R/W-1 | R/W-1 |  |
|------------------------------------|-------|-------|-------|-----------------------------------------|---------------------|-------|-------|--|
| ANS7                               | ANS6  | ANS5  | ANS4  | ANS3 <sup>(2)</sup>                     | ANS2 <sup>(2)</sup> | ANS1  | ANS0  |  |
| bit 7 bit 0                        |       |       |       |                                         |                     |       |       |  |
|                                    |       |       |       |                                         |                     |       |       |  |
| Legend:                            |       |       |       |                                         |                     |       |       |  |
| R = Readable bit W = Writable bit  |       |       |       | U = Unimplemented bit, read as '0'      |                     |       |       |  |
| -n = Value at POR '1' = Bit is set |       |       |       | '0' = Bit is cleared x = Bit is unknown |                     |       |       |  |

bit 7-0 ANS<7:0>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

1 =Analog input. Pin is assigned as analog input<sup>(1)</sup>.

0 = Digital I/O. Pin is assigned to port or special function.

- **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
  - 2: PIC16F616/HV616.

### 5.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow

Figure 5-1 is a block diagram of the Timer0 module.

#### 5.1 Timer0 Operation

When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

#### 5.1.1 8-BIT TIMER MODE

When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to '0'.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

#### 5.1.2 8-BIT COUNTER MODE

When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to '1'.





## 5.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

#### 5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1 must be executed.

## EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 $\rightarrow$ WDT)

| BANKSEL | TMR0            | i                  |
|---------|-----------------|--------------------|
| CLRWDT  |                 | ;Clear WDT         |
| CLRF    | TMR0            | ;Clear TMR0 and    |
|         |                 | ;prescaler         |
| BANKSEL | OPTION_REG      | ;                  |
| BSF     | OPTION_REG, PSA | ;Select WDT        |
| CLRWDT  | ;               |                    |
|         | ;               |                    |
| MOVLW   | b'11111000'     | ;Mask prescaler    |
| ANDWF   | OPTION_REG,W    | ;bits              |
| IORLW   | b'00000101'     | ;Set WDT prescaler |
| MOVWF   | OPTION_REG      | ;to 1:32           |
|         |                 |                    |

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2).

| EXAMPLE 5-2: | CHANGING PRESCALER         |
|--------------|----------------------------|
|              | (WDT $\rightarrow$ TIMER0) |

| CLRWDT  |              | ;Clear WDT and<br>;prescaler |
|---------|--------------|------------------------------|
| BANKSEL | OPTION_REG   | ;                            |
| MOVLW   | b'11110000'  | ;Mask TMR0 select and        |
| ANDWF   | OPTION_REG,W | ;prescaler bits              |
| IORLW   | b'0000011'   | ;Set prescale to 1:16        |
| MOVWF   | OPTION_REG   | i                            |

#### 5.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

| Note: | The Timer0 interrupt cannot wake the    |  |  |  |  |  |  |  |  |
|-------|-----------------------------------------|--|--|--|--|--|--|--|--|
|       | processor from Sleep since the timer is |  |  |  |  |  |  |  |  |
|       | frozen during Sleep.                    |  |  |  |  |  |  |  |  |

## 5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in **Section 15.0 "Electrical Specifications"**.

#### TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

| Name    | Bit 7                                                                       | Bit 6               | Bit 5                 | Bit 4   | Bit 3   | Bit 2  | Bit 1                 | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|-----------------------------------------------------------------------------|---------------------|-----------------------|---------|---------|--------|-----------------------|--------|----------------------|---------------------------------|
| CM2CON0 | C2ON                                                                        | C2OUT               | C2OE                  | C2POL   | _       | C2R    | C2CH1                 | C2CH0  | 0000 -000            | 0000 -000                       |
| CM2CON1 | MC1OUT                                                                      | MC2OUT              | _                     | T1ACS   | C1HYS   | C2HYS  | T1GSS                 | C2SYNC | 00-0 0010            | 00-0 0010                       |
| INTCON  | GIE                                                                         | PEIE                | T0IE                  | INTE    | RAIE    | T0IF   | INTF                  | RAIF   | 0000 0000            | 0000 0000                       |
| PIE1    | _                                                                           | ADIE <sup>(1)</sup> | CCP1IE <sup>(1)</sup> | C2IE    | C1IE    | _      | TMR2IE <sup>(1)</sup> | TMR1IE | -000 0-00            | -000 0-00                       |
| PIR1    | —                                                                           | ADIF <sup>(1)</sup> | CCP1IF <sup>(1)</sup> | C2IF    | C1IF    | _      | TMR2IF <sup>(1)</sup> | TMR1IF | -000 0-00            | -000 0-00                       |
| TMR1H   | Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  |                     |                       |         |         |        |                       |        |                      | uuuu uuuu                       |
| TMR1L   | Holding Register for the Least Significant Byte of the 16-bit TMR1 Register |                     |                       |         |         |        |                       |        | xxxx xxxx            | uuuu uuuu                       |
| T1CON   | T1GINV                                                                      | TMR1GE              | T1CKPS1               | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS                | TMR10N | 0000 0000            | uuuu uuuu                       |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16F616/16HV616 only.

#### 8.11 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6V)

The VRCON register (Register 8-6) controls the voltage reference module shown in Figure 8-9.

#### 8.11.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the FVREN bit of the VRCON register will enable the voltage reference.

#### 8.11.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

#### EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range):  $CVREF = (VR < 3:0 > /24) \times VDD$  VRR = 0 (high range):  $CVREF = (VDD/4) + (VR < 3:0 > \times VDD/32)$ 

The full range of Vss to VDD cannot be realized due to the construction of the module. See Figure 8-9.

#### 8.11.3 OUTPUT CLAMPED TO Vss

The fixed voltage reference output voltage can be set to Vss with no power consumption by clearing the FVREN bit of the VRCON register (FVREN = 0). This allows the comparator to detect a zero-crossing while not consuming additional module current.

#### 8.11.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 15.0 "Electrical Specifications"**.

### 9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE (PIC16F616/16HV616 ONLY)

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 9-1 shows the block diagram of the ADC.

#### FIGURE 9-1: ADC BLOCK DIAGRAM



Note: The ADRESL and ADRESH registers are read-only.

| Name                    | Bit 7      | Bit 6               | Bit 5                 | Bit 4  | Bit 3               | Bit 2               | Bit 1                 | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|-------------------------|------------|---------------------|-----------------------|--------|---------------------|---------------------|-----------------------|--------|----------------------|---------------------------------|
| ADCON0 <sup>(1)</sup>   | ADFM       | VCFG                | CHS3                  | CHS2   | CHS1                | CHS0                | GO/DONE               | ADON   | 0000 0000            | 0000 0000                       |
| ADCON1 <sup>(1)</sup>   | _          | ADCS2               | ADCS1                 | ADCS0  | —                   | _                   | —                     | _      | -000                 | -000                            |
| ANSEL                   | ANS        | ANS6                | ANS5                  | ANS4   | ANS3 <sup>(1)</sup> | ANS2 <sup>(1)</sup> | ANS1                  | ANS0   | 1111 1111            | 1111 1111                       |
| ADRESH <sup>(1,2)</sup> | A/D Result | Register Hig        | h Byte                |        |                     |                     |                       |        | xxxx xxxx            | uuuu uuuu                       |
| ADRESL <sup>(1,2)</sup> | A/D Result | Register Lov        | v Byte                |        |                     |                     |                       |        | xxxx xxxx            | uuuu uuuu                       |
| INTCON                  | GIE        | PEIE                | T0IE                  | INTE   | RAIE                | T0IF                | INTF                  | RAIF   | 0000 0000            | 0000 0000                       |
| PIE1                    | _          | ADIE <sup>(1)</sup> | CCP1IE <sup>(1)</sup> | C2IE   | C1IE                | _                   | TMR2IE <sup>(1)</sup> | TMR1IE | -000 0-00            | -000 0-00                       |
| PIR1                    | _          | ADIF <sup>(1)</sup> | CCP1IF <sup>(1)</sup> | C2IF   | C1IF                | _                   | TMR2IF <sup>(1)</sup> | TMR1IF | -000 0-00            | -000 0-00                       |
| PORTA                   | _          | _                   | RA5                   | RA4    | RA3                 | RA2                 | RA1                   | RA0    | x0 x000              | u0 u000                         |
| PORTC                   | _          | _                   | RC5                   | RC4    | RC3                 | RC2                 | RC1                   | RC0    | xx 00xx              | uu 00uu                         |
| TRISA                   | —          | _                   | TRISA5                | TRISA4 | TRISA3              | TRISA2              | TRISA1                | TRISA0 | 11 1111              | 11 1111                         |
| TRISC                   | _          | —                   | TRISC5                | TRISC4 | TRISC3              | TRISC2              | TRISC1                | TRISC0 | 11 1111              | 11 1111                         |

#### **TABLE 9-2:** SUMMARY OF ASSOCIATED ADC REGISTERS

x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module. Legend:

Note 1:

PIC16F616/16HV616 only. 2: Read-only Register.

|      |                                                         |                                                     | -                            |                  | — Period —  |                                       |
|------|---------------------------------------------------------|-----------------------------------------------------|------------------------------|------------------|-------------|---------------------------------------|
| 00   | (Single Output)                                         | P1A Modulated                                       |                              |                  |             | · · · · · · · · · · · · · · · · · · · |
|      |                                                         | P1A Modulated                                       | <br>'◀                       | ►<br>lov(1)      |             | i                                     |
| 10   | (Half-Bridge)                                           | P1B Modulated                                       | i                            | ildy', '         |             |                                       |
|      |                                                         | P1A Active                                          |                              |                  |             |                                       |
| 01   | (Full-Bridge,                                           | P1B Inactive                                        | — <u> </u>                   |                  |             | <u> </u>                              |
|      | i orward)                                               | P1C Inactive                                        | <u>'</u>                     |                  |             |                                       |
|      |                                                         | P1D Modulated                                       |                              |                  |             |                                       |
|      |                                                         | P1A Inactive                                        | I<br>                        |                  | 1<br>1<br>1 |                                       |
| 11   | (Full-Bridge,                                           | P1B Modulated                                       |                              |                  |             | <br>                                  |
|      | Reverse)                                                | P1C Active                                          | — ;<br>                      |                  |             | 1<br>1<br>1                           |
|      |                                                         | P1D Inactive                                        | <u>_</u>                     |                  | <br>1<br>1  |                                       |
| Rela | tionships:<br>• Period = 4 * Tose<br>• Pulse Width = To | c * (PR2 + 1) * (TMR2 Pre<br>osc * (CCPR1L<7:0>:CCP | escale Value)<br>21CON<5:4>) | * (TMR2 Prescale | Value)      | ·                                     |

#### FIGURE 10-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

| Mnemonic, |      | Description                  |              |       | 14-Bit | Opcode | )    | Status   | Nete    |
|-----------|------|------------------------------|--------------|-------|--------|--------|------|----------|---------|
| Opera     | nds  | Description                  | Cycles       | MSb   |        |        | LSb  | Affected | Notes   |
|           |      | BYTE-ORIENTED FILE REGIS     | TER OPE      | RATIO | NS     |        |      |          |         |
| ADDWF     | f, d | Add W and f                  | 1            | 00    | 0111   | dfff   | ffff | C, DC, Z | 1, 2    |
| ANDWF     | f, d | AND W with f                 | 1            | 00    | 0101   | dfff   | ffff | Z        | 1, 2    |
| CLRF      | f    | Clear f                      | 1            | 00    | 0001   | lfff   | ffff | Z        | 2       |
| CLRW      | -    | Clear W                      | 1            | 00    | 0001   | 0xxx   | xxxx | Z        |         |
| COMF      | f, d | Complement f                 | 1            | 00    | 1001   | dfff   | ffff | Z        | 1, 2    |
| DECF      | f, d | Decrement f                  | 1            | 00    | 0011   | dfff   | ffff | Z        | 1, 2    |
| DECFSZ    | f, d | Decrement f, Skip if 0       | 1 <b>(2)</b> | 00    | 1011   | dfff   | ffff |          | 1, 2, 3 |
| INCF      | f, d | Increment f                  | 1            | 00    | 1010   | dfff   | ffff | Z        | 1, 2    |
| INCFSZ    | f, d | Increment f, Skip if 0       | 1 <b>(2)</b> | 00    | 1111   | dfff   | ffff |          | 1, 2, 3 |
| IORWF     | f, d | Inclusive OR W with f        | 1            | 00    | 0100   | dfff   | ffff | Z        | 1, 2    |
| MOVF      | f, d | Move f                       | 1            | 00    | 1000   | dfff   | ffff | Z        | 1, 2    |
| MOVWF     | f    | Move W to f                  | 1            | 00    | 0000   | lfff   | ffff |          |         |
| NOP       | -    | No Operation                 | 1            | 00    | 0000   | 0xx0   | 0000 |          |         |
| RLF       | f, d | Rotate Left f through Carry  | 1            | 00    | 1101   | dfff   | ffff | С        | 1, 2    |
| RRF       | f, d | Rotate Right f through Carry | 1            | 00    | 1100   | dfff   | ffff | С        | 1, 2    |
| SUBWF     | f, d | Subtract W from f            | 1            | 00    | 0010   | dfff   | ffff | C, DC, Z | 1, 2    |
| SWAPF     | f, d | Swap nibbles in f            | 1            | 00    | 1110   | dfff   | ffff |          | 1, 2    |
| XORWF     | f, d | Exclusive OR W with f        | 1            | 00    | 0110   | dfff   | ffff | Z        | 1, 2    |
|           |      | BIT-ORIENTED FILE REGIST     |              |       | IS     |        |      |          |         |
| BCF       | f, b | Bit Clear f                  | 1            | 01    | 00bb   | bfff   | ffff |          | 1, 2    |
| BSF       | f, b | Bit Set f                    | 1            | 01    | 01bb   | bfff   | ffff |          | 1, 2    |
| BTFSC     | f, b | Bit Test f, Skip if Clear    | 1 (2)        | 01    | 10bb   | bfff   | ffff |          | 3       |
| BTFSS     | f, b | Bit Test f, Skip if Set      | 1 (2)        | 01    | 11bb   | bfff   | ffff |          | 3       |
|           |      | LITERAL AND CONTROL          | OPERAT       | IONS  |        |        |      |          |         |
| ADDLW     | k    | Add literal and W            | 1            | 11    | 111x   | kkkk   | kkkk | C, DC, Z |         |
| ANDLW     | k    | AND literal with W           | 1            | 11    | 1001   | kkkk   | kkkk | Z        |         |
| CALL      | k    | Call Subroutine              | 2            | 10    | 0kkk   | kkkk   | kkkk |          |         |
| CLRWDT    | _    | Clear Watchdog Timer         | 1            | 00    | 0000   | 0110   | 0100 | TO, PD   |         |
| GOTO      | k    | Go to address                | 2            | 10    | 1kkk   | kkkk   | kkkk |          |         |
| IORLW     | k    | Inclusive OR literal with W  | 1            | 11    | 1000   | kkkk   | kkkk | Z        |         |
| MOVLW     | k    | Move literal to W            | 1            | 11    | 00xx   | kkkk   | kkkk |          |         |
| RETFIE    | -    | Return from interrupt        | 2            | 00    | 0000   | 0000   | 1001 |          |         |
| RETLW     | k    | Return with literal in W     | 2            | 11    | 01xx   | kkkk   | kkkk |          |         |
| RETURN    | _    | Return from Subroutine       | 2            | 00    | 0000   | 0000   | 1000 |          |         |
| SLEEP     | -    | Go into Standby mode         | 1            | 00    | 0000   | 0110   | 0011 | TO, PD   |         |
| SUBLW     | k    | Subtract W from literal      | 1            | 11    | 110x   | kkkk   | kkkk | C, DC, Z |         |
| XORLW     | k    | Exclusive OR literal with W  | 1            | 11    | 1010   | kkkk   | kkkk | Z        |         |

#### TABLE 13-2: PIC16F610/616/16HV610/616 INSTRUCTION SET

**Note 1:** When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

**3:** If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

#### 15.2 DC Characteristics: PIC16F610/616-I (Industrial) PIC16F610/616-E (Extended)

| DC CH | ARACTERISTICS                          | <b>Standa</b><br>Operat | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |       |           |            |                           |  |  |  |  |  |
|-------|----------------------------------------|-------------------------|------------------------------------------------------|-------|-----------|------------|---------------------------|--|--|--|--|--|
| Param | Device Observatoriation                |                         | Turk                                                 | Maria | l les lte | Conditions |                           |  |  |  |  |  |
| No.   | Device Characteristics                 | win                     | турт                                                 | Max   | Units     | Vdd        | Note                      |  |  |  |  |  |
| D010  | Supply Current (IDD) <sup>(1, 2)</sup> |                         | 13                                                   | 25    | μΑ        | 2.0        | Fosc = 32 kHz             |  |  |  |  |  |
|       | PIC16F610/616                          | —                       | 19                                                   | 29    | μΑ        | 3.0        | LP Oscillator mode        |  |  |  |  |  |
|       |                                        | _                       | 32                                                   | 51    | μΑ        | 5.0        |                           |  |  |  |  |  |
| D011* |                                        | _                       | 135                                                  | 225   | μΑ        | 2.0        | Fosc = 1 MHz              |  |  |  |  |  |
|       |                                        | _                       | 185                                                  | 285   | μA        | 3.0        | XT Oscillator mode        |  |  |  |  |  |
|       |                                        | _                       | 300                                                  | 405   | μA        | 5.0        | 1                         |  |  |  |  |  |
| D012  |                                        | _                       | 240                                                  | 360   | μΑ        | 2.0        | Fosc = 4 MHz              |  |  |  |  |  |
|       |                                        | _                       | 360                                                  | 505   | μA        | 3.0        | XT Oscillator mode        |  |  |  |  |  |
|       |                                        | _                       | 0.66                                                 | 1.0   | mA        | 5.0        | ]                         |  |  |  |  |  |
| D013* |                                        | —                       | 75                                                   | 110   | μΑ        | 2.0        | Fosc = 1 MHz              |  |  |  |  |  |
|       |                                        | —                       | 155                                                  | 255   | μΑ        | 3.0        | EC Oscillator mode        |  |  |  |  |  |
|       |                                        | —                       | 345                                                  | 530   | μΑ        | 5.0        |                           |  |  |  |  |  |
| D014  |                                        | —                       | 185                                                  | 255   | μΑ        | 2.0        | Fosc = 4 MHz              |  |  |  |  |  |
|       |                                        | —                       | 325                                                  | 475   | μΑ        | 3.0        | EC Oscillator mode        |  |  |  |  |  |
|       |                                        | —                       | 0.665                                                | 1.0   | mA        | 5.0        |                           |  |  |  |  |  |
| D016* |                                        |                         | 245                                                  | 340   | μΑ        | 2.0        | Fosc = 4 MHz              |  |  |  |  |  |
|       |                                        | _                       | 360                                                  | 485   | μΑ        | 3.0        | INTOSC mode               |  |  |  |  |  |
|       |                                        | —                       | 0.620                                                | 0.845 | mA        | 5.0        |                           |  |  |  |  |  |
| D017  |                                        |                         | 395                                                  | 550   | μΑ        | 2.0        | Fosc = 8 MHz              |  |  |  |  |  |
|       |                                        |                         | 0.620                                                | 0.850 | mA        | 3.0        | INTOSC mode               |  |  |  |  |  |
|       |                                        | —                       | 1.2                                                  | 1.6   | mA        | 5.0        |                           |  |  |  |  |  |
| D018  |                                        |                         | 175                                                  | 235   | μΑ        | 2.0        | FOSC = 4 MHz              |  |  |  |  |  |
|       |                                        |                         | 285                                                  | 390   | μΑ        | 3.0        | EXTRC mode <sup>(*)</sup> |  |  |  |  |  |
|       |                                        |                         | 530                                                  | 750   | μΑ        | 5.0        |                           |  |  |  |  |  |
| D019  |                                        |                         | 2.2                                                  | 3.1   | mA        | 4.5        | Fosc = 20 MHz             |  |  |  |  |  |
|       |                                        |                         | 2.8                                                  | 3.35  | mA        | 5.0        | HS Oscillator mode        |  |  |  |  |  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k $\Omega$ .

#### 15.10 Thermal Considerations

| Standard<br>Operating | Operating (<br>temperature | Conditions (unless otherwise $-40^{\circ}C \le TA \le +125^{\circ}C$ | e stated) |       |                                                          |
|-----------------------|----------------------------|----------------------------------------------------------------------|-----------|-------|----------------------------------------------------------|
| Param<br>No.          | Sym                        | Characteristic                                                       | Тур       | Units | Conditions                                               |
| TH01                  | θJA                        | Thermal Resistance                                                   | 70*       | C/W   | 14-pin PDIP package                                      |
|                       |                            | Junction to Ambient                                                  | 85.0*     | C/W   | 14-pin SOIC package                                      |
|                       |                            |                                                                      | 100*      | C/W   | 14-pin TSSOP package                                     |
|                       |                            |                                                                      | 37*       | C/W   | 16-pin QFN 4x4mm package                                 |
| TH02                  | θις                        | Thermal Resistance                                                   | 32.5*     | C/W   | 14-pin PDIP package                                      |
|                       |                            | Junction to Case                                                     | 31.0*     | C/W   | 14-pin SOIC package                                      |
|                       |                            |                                                                      | 31.7*     | C/W   | 14-pin TSSOP package                                     |
|                       |                            |                                                                      | 2.6*      | C/W   | 16-pin QFN 4x4mm package                                 |
| TH03                  | TDIE                       | Die Temperature                                                      | 150*      | С     |                                                          |
| TH04                  | PD                         | Power Dissipation                                                    | —         | W     | PD = PINTERNAL + PI/O                                    |
| TH05                  | PINTERNAL                  | Internal Power Dissipation                                           | —         | W     | PINTERNAL = IDD x VDD<br>(NOTE 1)                        |
| TH06                  | Pi/o                       | I/O Power Dissipation                                                | —         | W     | $PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$ |
| TH07                  | Pder                       | Derated Power                                                        | _         | W     | Pder = PDmax (Tdie - Ta)/θja<br>(NOTE 2)                 |
| *                     | These para                 | meters are characterized but n                                       | ot tested |       |                                                          |

These parameters are characterized but not tested.

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

**2:** TA = Ambient Temperature.

#### TABLE 15-7: **COMPARATOR SPECIFICATIONS**

#### Standard Operating Conditions (unless otherwise stated)

| Operating Temperature | $-40^{\circ}C \leq TA \leq +125^{\circ}C$ |
|-----------------------|-------------------------------------------|
|                       |                                           |

| Param<br>No. | Sym     | Characteristics                      | Min       | Тур†  | Мах       | Units | Comments |  |  |  |
|--------------|---------|--------------------------------------|-----------|-------|-----------|-------|----------|--|--|--|
| CM01         | Vos     | Input Offset Voltage <sup>(2)</sup>  | —         | ± 5.0 | ± 10      | mV    |          |  |  |  |
| CM02         | Vсм     | Input Common Mode Voltage            | 0         |       | Vdd - 1.5 | V     |          |  |  |  |
| CM03*        | CMRR    | Common Mode Rejection Ratio          |           |       | _         | -     | dB       |  |  |  |
| CM04*        | Trt     | Response Time <sup>(1)</sup> Falling |           | _     | 150       | 600   | ns       |  |  |  |
|              |         |                                      | Rising    | _     | 200       | 1000  | ns       |  |  |  |
| CM05*        | TMC2COV | Comparator Mode Change to Out        | put Valid | _     | _         | 10    | μS       |  |  |  |
| CM06*        | VHYS    | Input Hysteresis Voltage             |           | _     | 45        | 60    | mV       |  |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. The other input is at (VDD -1.5)/2.

2: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.

#### **COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS TABLE 15-8:**

| <b>Standar</b><br>Operatir | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |                                  |     |                  |                |            |                                             |  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|------------------|----------------|------------|---------------------------------------------|--|--|--|--|
| Param<br>No.               | Sym                                                                                                                  | Characteristics                  | Min | Тур†             | Max            | Units      | Comments                                    |  |  |  |  |
| CV01                       | CLSB                                                                                                                 | Step Size <sup>(2)</sup>         | —   | Vdd/24<br>Vdd/32 |                | V<br>V     | Low Range (VRR = 1)<br>High Range (VRR = 0) |  |  |  |  |
| CV02                       | CACC                                                                                                                 | Absolute Accuracy <sup>(3)</sup> | _   |                  | ± 1/2<br>± 1/2 | LSb<br>LSb | Low Range (VRR = 1)<br>High Range (VRR = 0) |  |  |  |  |
| CV03                       | CR                                                                                                                   | Unit Resistor Value (R)          | —   | 2k               | _              | Ω          |                                             |  |  |  |  |
| CV04                       | CST                                                                                                                  | Settling Time <sup>(1)</sup>     | _   | —                | 10             | μS         |                                             |  |  |  |  |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

- 2: See Section 8.11 "Comparator Voltage Reference" for more information.
- **3:** Absolute Accuracy when CVREF output is  $\leq$  (VDD-1.5).

#### TABLE 15-9: VOLTAGE REFERENCE SPECIFICATIONS

| VR Voltage Reference Specifications |         |                        | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |      |      |       |          |  |
|-------------------------------------|---------|------------------------|----------------------------------------------------------------------------------------------------------------------|------|------|-------|----------|--|
| Param<br>No.                        | Symbol  | cymbol Characteristics |                                                                                                                      | Тур  | Max  | Units | Comments |  |
| VR01                                | VP6out  | VP6 voltage output     | 0.50                                                                                                                 | 0.6  | 0.7  | V     |          |  |
| VR02                                | V1P2out | V1P2 voltage output    | 1.05                                                                                                                 | 1.20 | 1.35 | V     |          |  |
| VR03*                               | TSTABLE | Settling Time          |                                                                                                                      | 10   |      | μS    |          |  |

These parameters are characterized but not tested.

| SHUNT REGULATOR CHARACTERISTICS |               |                             | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |     |     |       |                                        |  |  |
|---------------------------------|---------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|-----|-----|-------|----------------------------------------|--|--|
| Param<br>No.                    | Symbol        | Characteristics             | Min                                                                                                                  | Тур | Max | Units | Comments                               |  |  |
| SR01                            | VSHUNT        | Shunt Voltage               | 4.75                                                                                                                 | 5   | 5.4 | V     |                                        |  |  |
| SR02                            | ISHUNT        | Shunt Current               | 4                                                                                                                    | —   | 50  | mA    |                                        |  |  |
| SR03*                           | TSETTLE       | Settling Time               |                                                                                                                      | —   | 150 | ns    | To 1% of final value                   |  |  |
| SR04                            | CLOAD         | Load Capacitance            | 0.01                                                                                                                 | —   | 10  | μF    | Bypass capacitor on VDD pin            |  |  |
| SR05                            | $\Delta$ ISNT | Regulator operating current | —                                                                                                                    | 180 | —   | μΑ    | Includes band gap<br>reference current |  |  |

#### TABLE 15-10: SHUNT REGULATOR SPECIFICATIONS (PIC16HV610/616 only)

These parameters are characterized but not tested.

\*

#### TABLE 15-11: PIC16F616/16HV616 A/D CONVERTER (ADC) CHARACTERISTICS:

| <b>Standa</b><br>Operatii | Standard Operating Conditions (unless otherwise stated)         Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |                                                      |            |      |         |       |                                                                     |  |  |  |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|------|---------|-------|---------------------------------------------------------------------|--|--|--|--|--|--|
| Param<br>No.              | Sym                                                                                                                           | Characteristic                                       | Min        | Тур† | Max     | Units | Conditions                                                          |  |  |  |  |  |  |
| AD01                      | NR                                                                                                                            | Resolution                                           | —          | _    | 10 bits | bit   |                                                                     |  |  |  |  |  |  |
| AD02                      | EIL                                                                                                                           | Integral Error                                       | _          | _    | ±1      | LSb   | Vref = 5.12V <sup>(5)</sup>                                         |  |  |  |  |  |  |
| AD03                      | Edl                                                                                                                           | Differential Error                                   | _          | —    | ±1      | LSb   | No missing codes to 10 bits<br>VREF = 5.12V <sup>(5)</sup>          |  |  |  |  |  |  |
| AD04                      | EOFF                                                                                                                          | Offset Error                                         | -          | +1.5 | + 2.0   | LSb   | VREF = 5.12V <sup>(5)</sup>                                         |  |  |  |  |  |  |
| AD07                      | Egn                                                                                                                           | Gain Error                                           | _          | _    | ±1      | LSb   | VREF = 5.12V <sup>(5)</sup>                                         |  |  |  |  |  |  |
| AD06<br>AD06A             | Vref                                                                                                                          | Reference Voltage <sup>(3)</sup>                     | 2.2<br>2.5 | _    | <br>Vdd | V     | Absolute minimum to ensure 1 LSb<br>accuracy                        |  |  |  |  |  |  |
| AD07                      | VAIN                                                                                                                          | Full-Scale Range                                     | Vss        | _    | VREF    | V     |                                                                     |  |  |  |  |  |  |
| AD08                      | ZAIN                                                                                                                          | Recommended<br>Impedance of Analog<br>Voltage Source | _          | _    | 10      | kΩ    |                                                                     |  |  |  |  |  |  |
| AD09*                     | IREF                                                                                                                          | VREF Input Current <sup>(3)</sup>                    | 10         | —    | 1000    | μA    | During VAIN acquisition.<br>Based on differential of VHOLD to VAIN. |  |  |  |  |  |  |
|                           |                                                                                                                               |                                                      | _          | _    | 50      | μA    | During A/D conversion cycle.                                        |  |  |  |  |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** Total Absolute Error includes integral, differential, offset and gain errors.

**2:** The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

**5:** VREF = 5V for PIC16HV616.

# PIC16F610/616/16HV610/616

| Param | Device          | Unito | Min  | Turn | Max |     | Condition                   |
|-------|-----------------|-------|------|------|-----|-----|-----------------------------|
| No.   | Characteristics | Units | WIIN | тур  | Max | Vdd | Note                        |
| D020E |                 |       | _    | 0.05 | 12  | 2.0 |                             |
|       | Power Down IPD  | μΑ    | _    | 0.15 | 13  | 3.0 | IPD Base                    |
|       |                 |       | _    | 0.35 | 14  | 5.0 |                             |
| D021E |                 |       | —    | 0.5  | 20  | 2.0 |                             |
|       |                 | μΑ    | _    | 2.5  | 25  | 3.0 | WDT Current                 |
|       |                 |       | _    | 9.5  | 36  | 5.0 |                             |
| D022E |                 |       | _    | 5.0  | 28  | 3.0 | ROP Current                 |
|       |                 | μΑ    | _    | 6.0  | 36  | 5.0 | BOR Current                 |
| D023E |                 |       | _    | 105  | 195 | 2.0 |                             |
|       |                 | μA    | _    | 110  | 210 | 3.0 | IPD Current (Both           |
|       |                 |       | _    | 116  | 220 | 5.0 |                             |
|       |                 | ıιΔ   | _    | 50   | 105 | 2.0 |                             |
|       |                 | μ     | _    | 55   | 110 | 3.0 | Finabled                    |
|       |                 |       | _    | 60   | 125 | 5.0 |                             |
| D024E |                 |       | _    | 30   | 58  | 2.0 |                             |
|       |                 | μΑ    | —    | 45   | 85  | 3.0 | IPD (CVREF, High Range)     |
|       |                 |       | _    | 75   | 142 | 5.0 |                             |
| D025E |                 |       | _    | 39   | 76  | 2.0 |                             |
|       |                 | μA    | _    | 59   | 114 | 3.0 | IPD (CVREF, Low Range)      |
|       |                 |       | _    | 98   | 190 | 5.0 |                             |
| D026E |                 |       | _    | 5.5  | 30  | 2.0 |                             |
|       |                 | μΑ    | —    | 7.0  | 35  | 3.0 | IPD (T1 OSC, 32 kHz)        |
|       |                 |       | _    | 8.5  | 45  | 5.0 |                             |
| D027E |                 | ıιΔ   | _    | 0.2  | 12  | 3.0 | IPD (A2D on not converting) |
|       |                 | μA    | _    | 0.3  | 15  | 5.0 |                             |

#### TABLE 15-15: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F616 - H (High Temp.)

#### TABLE 15-16: WATCHDOG TIMER SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

| Param<br>No. | Sym  | Characteristic                                   | Units | Min | Тур | Max | Conditions        |
|--------------|------|--------------------------------------------------|-------|-----|-----|-----|-------------------|
| 31           | Twdt | Watchdog Timer Time-out Period<br>(No Prescaler) | ms    | 6   | 20  | 70  | 150°C Temperature |

#### TABLE 15-17: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

| Param<br>No. | Sym | Characteristic                                         | Units | Min | Тур  | Max  | Conditions               |
|--------------|-----|--------------------------------------------------------|-------|-----|------|------|--------------------------|
| D061         | lıL | Input Leakage Current <sup>(1)</sup><br>(GP3/RA3/MCLR) | μA    |     | ±0.5 | ±5.0 | $Vss \leq Vpin \leq Vdd$ |
| D062         | lı∟ | Input Leakage Current <sup>(2)</sup><br>(GP3/RA3/MCLR) | μA    | 50  | 250  | 400  | VDD = 5.0V               |

**Note 1:** This specification applies when GP3/RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the GP3/RA3/MCLR pin is higher than for the standard I/O port pins.

2: This specification applies when GP3/RA3/MCLR is configured as the MCLR Reset pin function with the weak pull-up enabled.

| Param<br>No. | Sym    | Characteristic                                 | Frequency<br>Tolerance | Units | Min | Тур | Max | Conditions                                                                                                                                   |
|--------------|--------|------------------------------------------------|------------------------|-------|-----|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| OS08         | INTosc | Int. Calibrated INTOSC<br>Freq. <sup>(1)</sup> | ±10%                   | MHz   | 7.2 | 8.0 | 8.8 | $\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5 \text{V} \\ \text{-40}^{\circ}\text{C} \leq \text{TA} \leq 150^{\circ}\text{C} \end{array}$ |

#### TABLE 15-18: OSCILLATOR PARAMETERS FOR PIC16F616 - H (High Temp.)

**Note 1:** To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

#### TABLE 15-19: COMPARATOR SPECIFICATIONS FOR PIC16F616 – H (High Temp.)

| Param<br>No. | Sym | Characteristic       | Units | Min | Тур | Max | Conditions    |
|--------------|-----|----------------------|-------|-----|-----|-----|---------------|
| CM01         | Vos | Input Offset Voltage | mV    |     | ±5  | ±20 | (Vdd - 1.5)/2 |

# PIC16F610/616/16HV610/616







# PIC16F610/616/16HV610/616



#### FIGURE 16-54: COMPARATOR RESPONSE TIME (FALLING EDGE)





### APPENDIX A: DATA SHEET REVISION HISTORY

#### **Revision A**

This is a new data sheet.

#### Revision B (12/06)

Added PIC16F610/16HV610 parts. Replaced Package Drawings.

#### Revision C (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section; Revised Product ID System.

#### Revision D (06/2008)

Added Graphs; Revised 28-Pin ICD Pinout, Electrical Specifications Section; Package Details.

#### **Revision E (09/2009)**

Added section 15.13 (High Temperature Operation) to the Electrical Specifications Chapter; Other minor corrections.

#### **Revision F (11/2009)**

Updated Figure 16-52.