

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv616-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F616/16HV616 16-Pin Diagram (QFN)

TABLE 4:	PIC16F616/16HV616 16-PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	ССР	Interrupts	Pull-ups	Basic
RA0	12	AN0	C1IN+	—	—	IOC	Y	ICSPDAT
RA1	11	AN1/VREF	C12IN0-	—	—	IOC	Y	ICSPCLK
RA2	10	AN2	C1OUT	T0CKI	—	INT/IOC	Y	_
RA3 ⁽¹⁾	3		—	_	_	IOC	Y(2)	MCLR/VPP
RA4	2	AN3	—	T1G	_	IOC	Y	OSC2/CLKOUT
RA5	1		—	T1CKI	—	IOC	Y	OSC1/CLKIN
RC0	9	AN4	C2IN+	—	—	—	—	—
RC1	8	AN5	C12IN1-	_	—	—	—	—
RC2	7	AN6	C12IN2-	—	P1D	—	_	—
RC3	6	AN7	C12IN3-	—	P1C	—	—	—
RC4	5	_	C2OUT	_	P1B	—	—	—
RC5	4		—	—	CCP1/P1A	—	—	—
	16	_	—		—		—	VDD
—	13	_			_		_	Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

3.0 OSCILLATOR MODULE

3.1 Overview

The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured with a choice of two selectable speeds: internal or external system clock source.

The Oscillator module can be configured in one of eight clock modes.

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The Internal Oscillator module provides a selectable system clock mode of either 4 MHz (Postscaler) or 8 MHz (INTOSC).

3.3.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 3-5 shows the external RC mode connections.

FIGURE 3-5: EXTERNAL RC MODES

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

3.4 Internal Clock Modes

The Oscillator module provides a selectable system clock source of either 4 MHz or 8 MHz. The selectable frequency is configured through the IOSCFS bit of the Configuration Word.

The frequency of the internal oscillator can be can be user-adjusted via software using the OSCTUNE register.

3.4.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word register (CONFIG). See Section 12.0 "Special Features of the CPU" for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In **INTOSCIO** mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O.

4.2.4.3 RA2/AN2⁽¹⁾/T0CKI/INT/C1OUT

Figure 4-2 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾
- the clock input for TMR0
- an external edge triggered interrupt
- a digital output from Comparator C1

FIGURE 4-2: BLOCK DIAGRAM OF RA2

8.7 Comparator Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 8-6. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 8-6: ANALOG INPUT MODEL

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C1VREN	C2VREN	VRR	FVREN	VR3	VR2	VR1	VR0			
bit 7							bit 0			
1										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 7	C1VREN: Co	mparator 1 Vol	tage Referenc	e Enable bit						
	1 = CVREF cir	cuit powered o	n and routed	to C1VREF inpu	ut of Comparato	or C1				
	0 = 0.6 Volt c	onstant referer	ice routed to C	1VREF input of	f Comparator C	:1				
bit 6	C2VREN: Co	mparator 2 Vol	tage Referenc	e Enable bit						
	1 = CVREF cir	cuit powered o	n and routed	to C2VREF inpu	ut of Comparato	or C2				
	0 = 0.6 Volt c	onstant referer	ice routed to C	2VREF input of	f Comparator C	2				
bit 5	VRR: CVREF	Range Selection	on bit							
	1 = Low range	e								
	0 = High rang	le								
bit 4	FVREN: Fixe	d Voltage Refe	rence (0.6V) E	Enable bit						
	1 = Enabled									
	0 = Disabled									
bit 3-0	VR<3:0>: Co	mparator Volta	ge Reference	CVREF Value S	Selection bits (C	\leq VR<3:0> \leq	15)			
	When VRR =	<u>1</u> : CVREF = (V	R<3:0>/24) * \	VDD						
	When VRR =	$\underline{0}$: CVREF = VE	0D/4 + (VR<3:0	0>/32) * Vdd						

REGISTER 8-6: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the analog-to-digital conversion.

Note:	The GO/DONE bit should not be set in the								
	same instruction that turns on the ADC.								
	Refer to Section 9.2.6 "A/D Conversion								
	Procedure".								

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete analog-to-digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel.

Note:	A device Reset forces all registers to their									
	Reset state. Thus, the ADC module is									
	turned off and any pending conversion is									
	terminated.									

9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

9.2.5 SPECIAL EVENT TRIGGER

The ECCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not ensure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Section 10.0 "Enhanced Capture/Compare/ PWM (With Auto-Shutdown and Dead Band) Module (PIC16F616/16HV616 Only)" for more information.

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an analog-to-digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt may be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: See Section 9.3 "A/D Acquisition Requirements".

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable bit	t	U = Unimpleme	ented bit, read a	is '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	wn
b.: 7		nucroion Decult		h.:4			
DIT 7	1 = Right justif 0 = Left justifie	ied ied	-ormat Select	DIT			
bit 6	VCFG: Voltage 1 = VREF pin 0 = VDD	e Reference bit					
bit 5-2	CHS<3:0>: Ar 0000 = Chan 0001 = Chan 0010 = Chan 0010 = Chan 0100 = Chan 0101 = Chan 0110 = Chan 0111 = Chan 1000 = Rese 1001 = Rese 1010 = Rese 1011 = Rese 1011 = Rese 1100 = CVRE 1101 = 0.6V 1110 = 1.2V 1111 = Rese	alog Channel Sel nel 00 (AN0) nel 01 (AN1) nel 02 (AN2) nel 03 (AN3) nel 04 (AN4) nel 05 (AN5) nel 06 (AN6) nel 07 (AN7) rved – do not use rved – do not use rved – do not use F Fixed Voltage Ref Fixed Voltage Ref rved – do not use	ect bits erence ⁽¹⁾ erence ⁽¹⁾				
bit 1	GO/DONE: A// 1 = A/D conve This bit is a 0 = A/D conve	D Conversion Sta rsion cycle in prog automatically clea rsion completed/n	tus bit gress. Setting t red by hardwa lot in progress	his bit starts an A re when the A/D c	/D conversion c conversion has (ycle. completed.	
bit 0	ADON: ADC E 1 = ADC is ena 0 = ADC is dis	Enable bit abled abled and consur	nes no operati	ng current			
Note 1:	When the CHS<3:0	> bits change to s	elect the 1.2V	or 0.6V Fixed Volt	tage Reference	the reference out	put voltage will

Note 1: When the CHS<3:0> bits change to select the 1.2V or 0.6V Fixed Voltage Reference, the reference output voltage will have a transient. If the Comparator module uses this VP6 reference voltage, the comparator output may momentarily change state due to the transient.

10.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

10.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 3.0** "**Oscillator Module**" for additional details.

10.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

10.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Configure the PWM pin (CCP1) as an input by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPR1L register and CCP1 bits of the CCP1CON register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCP1 pin output by clearing the associated TRIS bit.

10.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCP1/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 10-8). This mode can be used for half-bridge applications, as shown in Figure 10-9, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **10.4.6 "Programmable Dead-Band Delay mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 10-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

10.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs four Timer2 cycles prior to the end of the current PWM period:

- The modulated outputs (P1B and P1D) are placed in their inactive state.
- The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 10-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.

Figure 10-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 10-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 10-12: EXAMPLE OF PWM DIRECTION CHANGE

When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle.
 modulated P1B and P1D signals are inactive at this time. The length of this time is four Timer2 counts.

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

FIGURE 15-3: PIC16F610/616 FREQUENCY TOLERANCE GRAPH,

FIGURE 15-4: PIC16HV610/616 FREQUENCY TOLERANCE GRAPH,

FIGURE 15-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standa Operatir	ng Temperating (conditions (u re -40°C	Inless otherwis $\leq TA \leq +125^{\circ}C$	se stated)					
Param No.	Sym		Characterist	ic	Min	Тур†	Max	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescaler		No Prescaler	0.5 TCY + 20	—	—	ns	
					10	_	_	ns	
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 TCY + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	TT0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	_		ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	L T1CKI Low Time	Synchronous,	No Prescaler	0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	—	—	ns	
47*	TT1P	T1CKI Input Synchronous Period		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	—		ns	
48	Ft1	Timer1 Oscill (oscillator en	ator Input Frequebled by setting	—	32.768	_	kHz		
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	_	7 Tosc	_	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym	Character	ristic	Min	Тур†	Max	Units	Conditions	
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20			ns		
			With Prescaler	20			ns		
CC02*	TccH	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	_		ns		
			With Prescaler	20		_	ns		
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N		_	ns	N = prescale value (1, 4 or 16)	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-20: PIC16HV610/616 IDD EC (1 MHz) vs. VDD

FIGURE 16-45: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)

