

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv616t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16F610/616/16HV610/616 is covered by this data sheet. It is available in 14-pin PDIP, SOIC, TSSOP and 16-pin QFN packages.

Block Diagrams and pinout descriptions of the devices are as follows:

- PIC16F610/16HV610 (Figure 1-1, Table 1-1)
- PIC16F616/16HV616 (Figure 1-2, Table 1-2)

FIGURE 1-1: PIC16F610/16HV610 BLOCK DIAGRAM

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 1											
80h	INDF	Addressing	this location	uses content	s of FSR to	address data	a memory (no	ot a physical	register)	XXXX XXXX	24, 116
81h	OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19, 116
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	24, 116
83h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	18, 116
84h	FSR	Indirect Dat	a Memory Ad	ddress Pointe	er					xxxx xxxx	24, 116
85h	TRISA	-	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	33, 116
86h	_	Unimpleme	Unimplemented								
87h	TRISC	—	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	42, 116
88h	_	Unimpleme	nted							_	—
89h	_	Unimpleme	nted							_	—
8Ah	PCLATH	_	_	_	Write	e Buffer for u	pper 5 bits of	f Program Co	ounter	0 0000	24, 116
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	20, 116
8Ch	PIE1	—	ADIE ⁽³⁾	CCP1IE ⁽³⁾	C2IE	C1IE	—	TMR2IE ⁽³⁾	TMR1IE	-000 0-00	21, 116
8Dh	_	Unimpleme	Unimplemented								
8Eh	PCON	—	—	—	—	—	—	POR	BOR	dd	23, 116
8Fh	_	Unimpleme	nted							_	—
90h	OSCTUNE	—	_	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	31, 117
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽³⁾	ANS2 ⁽³⁾	ANS1	ANS0	1111 1111	34, 117
92h	PR2 ⁽³⁾	Timer2 Mod	lule Period R	egister						1111 1111	55, 117
93h	_	Unimpleme	nted							_	—
94h	_	Unimpleme	nted							_	—
95h	WPUA	_	_	WPUA5	WPUA4	—	WPUA2	WPUA1	WPUA0	11 -111	35, 117
96h	IOCA	—	—	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	35, 117
97h	_	Unimpleme	nted							_	—
98h	_	Unimpleme	nted							_	—
99h	SRCON0	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	SRCLKEN	0000 00-0	69, 117
9Ah	SRCON1	SRCS1	SRCS0	—	—	—	—	—	—	00	69, 117
9Bh	—	Unimpleme	nted							_	—
9Ch	—	Unimpleme	nted							_	_
9Dh	—	Unimpleme	nted							_	_
9Eh	ADRESL ^(3,4)	Least Signif	icant 2 bits o	f the left shift	ed result or	8 bits of the	right shifted i	result		XXXX XXXX	80, 117
9Fh	ADCON1 ⁽³⁾	_	ADCS2	ADCS1	ADCS0	—	_	—	—	-000	79, 117

TABLE 2-2: PIC16F610/616/16HV610/616 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

 – = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear.
RA3 pull-up is enabled when MCLRE is '1' in the Configuration Word register. Legend:

Note 1:

2:

PIC16F616/16HV616 only. 3:

4: Read-only Register.

5.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow

Figure 5-1 is a block diagram of the Timer0 module.

5.1 Timer0 Operation

When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

5.1.1 8-BIT TIMER MODE

When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to '0'.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

5.1.2 8-BIT COUNTER MODE

When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to '1'.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
RAPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	e bit	U = Unimplemented bit, read as '0'								
-n = Value at POR		'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 7	RAPU: PORTA Pull-up Enable bit											
	1 = PORTA pull-ups are disabled											
	0 = PORTA pull-ups are enabled by individual PORT latch values											
bit 6	INTEDG: Inte	errupt Edge Se	elect bit									
	1 = Interrupt on rising edge of INT pin											
	0 = Interrupt on falling edge of INT pin											
bit 5	TOCS: TMR0 Clock Source Select bit											
	1 = Transition on T0CKI pin											
	0 = Internal instruction cycle clock (Fosc/4)											
bit 4	TOSE: TMR0 Source Edge Select bit											
	1 = Increment on high-to-low transition on T0CKI pin											
	0 = Increment on low-to-high transition on T0CKI pin											
bit 3	PSA: Prescaler Assignment bit											
	1 = Prescaler is assigned to the WDT											
	0 = Prescaler is assigned to the Timer0 module											
bit 2-0	PS<2:0>: Pr€	escaler Rate S	elect bits									
	BIT	VALUE TMR0 F	RATE WDT RA	TE								
	C	000 1:2	: 1:1									
	C	001 1:4	1:2									
	C	010 1:8	1:4									
	0											
	1	01 1:3	4 1.32									
	1	10 1:1	28 1:64									
	1	11 1 : 2	1 : 128	3								

REGISTER 5-1: OPTION_REG: OPTION REGISTER

TABLE 5-1: SUMMART OF REGISTERS ASSOCIATED WITH TIMER	TABLE 5-1:	SUMMARY OF REGISTERS	5 ASSOCIATED WITH TIMER
---	------------	----------------------	--------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o Res	e on ther sets
TMR0	Timer0 N	/lodules R		xxxx	xxxx	uuuu	uuuu					
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000	0000	0000	0000
OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111	1111	1111	1111
TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11	1111	11	1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

8.8 Additional Comparator Features

There are three additional comparator features:

- Timer1 count enable (gate)
- Synchronizing output with Timer1
- Simultaneous read of comparator outputs

8.8.1 COMPARATOR C2 GATING TIMER1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1

The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information.

8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers.

REGISTER 8-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1

R-0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0					
MC1OUT	MC2OUT	_	T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC					
bit 7							bit (
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					s 'O'							
-n = Value at PC	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own					
bit 7	MC1OUT: Mirro	or Copy of C1OU	T bit									
bit 6	it 6 MC2OUT: Mirror Copy of C2OUT bit											
bit 5	Unimplemented: Read as '0'											
bit 4	T1ACS: Timer1	1 Alternate Clock	Select bit									
	1 = Timer1 cloc	ck source is the s	ystem clock (Fo	DSC)								
	0 = Timer1 clos	ck source is the ir	nternal clock Fo	osc/4)								
bit 3	C1HYS: Comp	C1HYS: Comparator C1 Hysteresis Enable bit										
	1 = Comparator C1 Hysteresis enabled											
	0 = Comparato	r C1 Hysteresis o	lisabled									
bit 2	C2HYS: Comp	arator C2 Hyster	esis Enable bit									
	1 = Comparator C2 Hysteresis enabled											
bit 1		1 Cata Source Sc	loct bit									
	1 = Timer1 gate	$=$ source is $\overline{T1G}$	Hect Dit									
	0 = Timer1 gate	e source is SYNC	C2OUT.									
bit 0	C2SYNC: Com	parator C2 Outp	ut Synchronizat	ion bit								
	1 = C2 Output	is synchronous to	falling edge of	Timer1 clock								
	0 = C2 Output	is asynchronous										

8.9 Comparator Hysteresis

Each comparator has built-in hysteresis that is user enabled by setting the C1HYS or C2HYS bits of the CM2CON1 register. The hysteresis feature can help filter noise and reduce multiple comparator output transitions when the output is changing state. Figure 8-9 shows the relationship between the analog input levels and digital output of a comparator with and without hysteresis. The output of the comparator changes from a low state to a high state only when the analog voltage at VIN+ rises above the upper hysteresis threshold (VH+). The output of the comparator changes from a high state to a low state only when the analog voltage at VIN+ falls below the lower hysteresis threshold (VH-).

FIGURE 8-7: COMPARATOR HYSTERESIS

8.11 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6V)

The VRCON register (Register 8-6) controls the voltage reference module shown in Figure 8-9.

8.11.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the FVREN bit of the VRCON register will enable the voltage reference.

8.11.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range): $CVREF = (VR < 3:0 > /24) \times VDD$ VRR = 0 (high range): $CVREF = (VDD/4) + (VR < 3:0 > \times VDD/32)$

The full range of Vss to VDD cannot be realized due to the construction of the module. See Figure 8-9.

8.11.3 OUTPUT CLAMPED TO Vss

The fixed voltage reference output voltage can be set to Vss with no power consumption by clearing the FVREN bit of the VRCON register (FVREN = 0). This allows the comparator to detect a zero-crossing while not consuming additional module current.

8.11.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 15.0 "Electrical Specifications"**.

10.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 10-1).

10.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCP1 pin is configured as an output,										
	a write to the port can cause a capture										
	condition.										

FIGURE 10-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode.

10.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 10-1).

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	G;Load the W reg with
		; the new prescaler
MOVWF	CCP1CON	; move value and CCP ON ;Load CCP1CON with this
		; value

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON ⁽¹⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CCPR1L ⁽¹⁾	Capture/Cor	mpare/PWM I	Register 1 Lo	w Byte					XXXX XXXX	uuuu uuuu
CCPR1H ⁽¹⁾	Capture/Cor	mpare/PWM I		XXXX XXXX	uuuu uuuu					
INTCON	GIE PEIE TOIE INTE RAIE TOIF INTE RAIF						0000 0000	0000 0000		
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	0000 0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	0000 0-00
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
TMR1L	Holding Reg	ister for the L	east Significa	ant Byte of th	e 16-bit TMR	1 Register			XXXX XXXX	uuuu uuuu
TMR1H	Holding Reg	ister for the N	Aost Significa	nt Byte of the	e 16-bit TMR1	Register			XXXX XXXX	uuuu uuuu
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM. Note 1: PIC16F616/16HV616 only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
bit 7							bit 0
Logond							

REGISTER 10-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

Legend:									
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7 PRSEN: PWM Restart Enable bit

1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically

0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

bit 6-0 PDC<6:0>: PWM Delay Count bits

PDCn = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

TABLE 10-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP1CON ⁽¹⁾	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
CCPR1L ⁽¹⁾	Capture/Cor	mpare/PWM F	Register 1 Lo	w Byte					xxxx xxxx	uuuu uuuu
CCPR1H ⁽¹⁾	Capture/Cor	mpare/PWM F		xxxx xxxx	uuuu uuuu					
CM1CON0	C10N	C1OUT	C10E	C1POL	-	C1R	C1CH1	C1CH0	0000 -000	0000 -000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	-	C2R	C2CH1	C2CH0	0000 -000	0000 -000
CM2CON1	MC1OUT	MC2OUT		T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC	00-0 0010	00-0 0010
ECCPAS ⁽¹⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	0000 0000
INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	0000 0-00
PIR1	_	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF	_	TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	0000 0-00
PWM1CON ⁽¹⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	0000 0000
T2CON ⁽¹⁾		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2 ⁽¹⁾	Timer2 Mod	ule Register							0000 0000	0000 0000
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC	—	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM. Note 1: PIC16F616/16HV616 only.

NOTES:

12.4 Interrupts

The PIC16F610/616/16HV610/616 has multiple sources of interrupt:

- External Interrupt RA2/INT
- Timer0 Overflow Interrupt
- PORTA Change Interrupts
- 2 Comparator Interrupts
- A/D Interrupt (PIC16F616/16HV616 only)
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt (PIC16F616/16HV616 only)
- Enhanced CCP Interrupt (PIC16F616/16HV616 only)

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset.

When an interrupt is serviced, the following actions occur automatically:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The following interrupt flags are contained in the INT-CON register:

- INT Pin Interrupt
- PORTA Change Interrupt
- Timer0 Overflow Interrupt

The peripheral interrupt flags are contained in the special register, PIR1. The corresponding interrupt enable bit is contained in special register, PIE1.

The following interrupt flags are contained in the PIR1 register:

- A/D Interrupt
- 2 Comparator Interrupts
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt
- Enhanced CCP Interrupt

For external interrupt events, such as the INT pin or PORTA change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 12-8). The latency is the same for one or twocycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

For additional information on Timer1, Timer2, comparators, ADC, Enhanced CCP modules, refer to the respective peripheral section.

12.4.1 RA2/INT INTERRUPT

The external interrupt on the RA2/INT pin is edgetriggered; either on the rising edge if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is clear. When a valid edge appears on the RA2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The RA2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See **Section 12.7** "**Power-Down Mode (Sleep)**" for details on Sleep and Figure 12-9 for timing of wake-up from Sleep through RA2/INT interrupt.

Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0' and cannot generate an interrupt.

15.10 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym	Characteristic	Тур	Units	Conditions
TH01	θJA	Thermal Resistance	70*	C/W	14-pin PDIP package
		Junction to Ambient	85.0*	C/W	14-pin SOIC package
			100*	C/W	14-pin TSSOP package
			37*	C/W	16-pin QFN 4x4mm package
TH02	θJC	Thermal Resistance Junction to Case	32.5*	C/W	14-pin PDIP package
			31.0*	C/W	14-pin SOIC package
			31.7*	C/W	14-pin TSSOP package
			2.6*	C/W	16-pin QFN 4x4mm package
TH03	TDIE	Die Temperature	150*	С	
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD (NOTE 1)
TH06	Pi/o	I/O Power Dissipation	—	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tdie - Ta)/θja (NOTE 2)
*	These para	meters are characterized but n	ot tested		

These parameters are characterized but not tested.

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

15.11 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

<u> </u>		1	
Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O Port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 15-5: LOAD CONDITIONS

NOTES:

16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	16			
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	Е		4.00 BSC		
Exposed Pad Width	E2	2.50	2.65	2.80	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.50	2.65	2.80	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-127B

Re	set Values (special registers)	
Sp	ecial Function Registers	14
Sp	ecial Register Summary	17
SR	CON0 (SR Latch Control 0)	69
SR	CON1 (SR Latch Control 1)	69
ST	ATUS	
T1	CON	52
T2	CON	
TR	ISA (Tri-State PORTA)	
TR	ISC (Tri-State PORTC)	
VR	CON (Voltage Reference Control)	72
WF	PUA (Weak Pull Up PORTA)	
Reset		
Revisior	h History	

S

Shoot-through Current	104
Sleep	
Power-Down Mode	124
Wake-up	124
Wake-up using Interrupts	124
Software Simulator (MPLAB SIM)	141
Special Event Trigger	76
Special Function Registers	14
SRCON0 Register	69
SRCON1 Register	69
STATUS Register	18

т

T1CON Register	. 52
T2CON Register	. 56
Thermal Considerations	155
Time-out Sequence	114
Timer0	. 45
Associated Registers	. 47
External Clock	. 46
Interrupt	. 47
Operation	. 45
Specifications	162
ТОСКІ	. 46
Timer1	. 49
Associated registers	. 54
Asynchronous Counter Mode	. 50
Reading and Writing	. 50
Interrupt	. 51
Modes of Operation	. 49
Operation	. 49
Operation During Sleep	. 51
Oscillator	. 50
Prescaler	. 50
Specifications	162
Timer1 Gate	
Inverting Gate	.51
Selecting Source50,	65
SR Latch	. 68
Synchronizing COUT w/Timer1	. 65
TMR1H Register	. 49
TMR1L Register	. 49
Timer2	
Associated registers	. 56
Timers	
Timer1	
T1CON	. 52
Timer2	
T2CON	. 56
Timing Diagrams	

A/D Conversion	. 167
A/D Conversion (Sleep Mode)	. 167
Brown-out Reset (BOR)	160
Brown-out Reset Situations	. 113
CLKOUT and I/O	159
Clock Timing	157
Comparator Output	57
Enhanced Capture/Compare/PWM (ECCP)	. 163
Full-Bridge PWM Output	98
Half-Bridge PWM Output 96,	104
INT Pin Interrupt	. 120
PWM Auto-shutdown	
Auto-restart Enabled	. 103
Firmware Restart	. 103
PWM Direction Change	99
PWM Direction Change at Near 100% Duty Cycle	100
PWM Output (Active-High)	94
PWM Output (Active-Low)	95
Reset, WDT, OST and Power-up Timer	. 160
Time-out Sequence	
Case 1	. 115
Case 2	. 115
Case 3	. 115
Timer0 and Timer1 External Clock	162
Timer1 Incrementing Edge	52
Wake-up from Interrupt	125
Timing Parameter Symbology	. 156
TRISA	33
TRISA Register	33
TRISC	42
TRISC Register	42

۷

Voltage I	Reference (V	′R)			
Spe	cifications				164
Voltage	Reference.	See	Comparator	Voltage	Reference
(CV	/REF)				
Voltage I	References				
Ass	ociated regis	sters			67
VP6	6 Stabilization	n			71
VREF. SE	EE ADC Refe	rence	Voltage		

W

Wake-up Using Interrupts	
Watchdog Timer (WDT)	122
Associated registers	123
Specifications	
WPUA Register	35
WWW Address	
WWW, On-Line Support	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com