

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv616t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC16F616/16HV616 16-Pin Diagram (QFN)

TABLE 4:	PIC16F616/16HV616	16-PIN SUMMARY

I/O	Pin	Analog	Comparators	Timers	ССР	Interrupts	Pull-ups	Basic
RA0	12	AN0	C1IN+	—	—	IOC	Y	ICSPDAT
RA1	11	AN1/VREF	C12IN0-	—	—	IOC	Y	ICSPCLK
RA2	10	AN2	C1OUT	T0CKI	—	INT/IOC	Y	_
RA3 ⁽¹⁾	3		—	_	_	IOC	Y(2)	MCLR/VPP
RA4	2	AN3	—	T1G	_	IOC	Y	OSC2/CLKOUT
RA5	1		—	T1CKI	—	IOC	Y	OSC1/CLKIN
RC0	9	AN4	C2IN+	—	—	—	—	—
RC1	8	AN5	C12IN1-	_	—	—	—	—
RC2	7	AN6	C12IN2-	—	P1D	—	_	—
RC3	6	AN7	C12IN3-	—	P1C	—	—	—
RC4	5	_	C2OUT	_	P1B	—	—	—
RC5	4		—	—	CCP1/P1A	—	—	—
	16	_	—		—		—	VDD
—	13	_			_			Vss

Note 1: Input only.

2: Only when pin is configured for external MCLR.

NOTES:

3.0 OSCILLATOR MODULE

3.1 Overview

The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured with a choice of two selectable speeds: internal or external system clock source.

The Oscillator module can be configured in one of eight clock modes.

- 1. EC External clock with I/O on OSC2/CLKOUT.
- 2. LP 32 kHz Low-Power Crystal mode.
- 3. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS High Gain Crystal or Ceramic Resonator mode.
- 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 6. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 7. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.

Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The Internal Oscillator module provides a selectable system clock mode of either 4 MHz (Postscaler) or 8 MHz (INTOSC).

3.3.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 3-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 3-3 and Figure 3-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 3-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

- **2:** The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ).
- **3:** An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

3.4.1.1 OSCTUNE Register

The oscillator is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-1). The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 3-1: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			TUN4	TUN3 TUN2		TUN1	TUN0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0

TUN<4:0>: Frequency Tuning bits
01111 = Maximum frequency
01110 =
•
•
•
00001 =
00000 = Oscillator module is running at the manufacturer calibrated frequency.
11111 =
•
•
•
10000 = Minimum frequency

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	IOSCFS	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	—	—
OSCTUNE	_		_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 12-1) for operation of all register bits.

4.2.4.5 RA4/AN3⁽¹⁾/T1G/OSC2/CLKOUT

Figure 4-4 shows the diagram for this pin. The RA4 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC⁽¹⁾

- a Timer1 gate (count enable)
- a crystal/resonator connection
- · a clock output
 - Note 1: PIC16F616/16HV616 only.

FIGURE 4-4: BLOCK DIAGRAM OF RA4

4.2.4.6 RA5/T1CKI/OSC1/CLKIN

Figure 4-5 shows the diagram for this pin. The RA5 pin is configurable to function as one of the following:

- a general purpose I/O
- a Timer1 clock input
- a crystal/resonator connection
- a clock input

NOTES:

6.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of TCY as determined by the Timer1 prescaler.

6.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge.

6.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

6.4 Timer1 Oscillator

A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when the oscillator is in the LP Oscillator mode. The user must provide a software time delay to ensure proper oscillator start-up.

TRISA5 and TRISA4 bits are set when the Timer1 oscillator is enabled. RA5 and RA4 bits read as '0' and TRISA5 and TRISA4 bits read as '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

6.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 6.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

- Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.
- Note: In asynchronous counter mode or when using the internal oscillator and T1ACS=1, Timer1 can not be used as a time base for the capture or compare modes of the ECCP module (for PIC16F616/HV616 only).

6.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

6.6 Timer1 Gate

Timer1 gate source is software configurable to be the T1G pin or the output of Comparator C2. This allows the device to directly time external events using T1G or analog events using Comparator C2. See the CM2CON1 register (Register 8-3) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND **VOLTAGE REFERENCE MODULES**

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3 ⁽¹⁾	ANS2 ⁽¹⁾	ANS1	ANS0	1111 1111	1111 1111
CM1CON0	C1ON	C1OUT	C1OE	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	0000 0000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 0000	0000 0000
CM2CON1	MC1OUT	MC2OUT	—	T1ACS	C1HYS	C2HYS	T1GSS	C2SYNC	00-0 0010	00-0 0010
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
PIE1	_	ADIE ⁽¹⁾	CCP1IE ⁽¹⁾	C2IE	C1IE	_	TMR2IE ⁽¹⁾	TMR1IE	-000 0-00	-000 0-00
PIR1	—	ADIF ⁽¹⁾	CCP1IF ⁽¹⁾	C2IF	C1IF		TMR2IF ⁽¹⁾	TMR1IF	-000 0-00	-000 0-00
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	x0 x000
PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 00xx	uu 00uu
SRCON0	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	_	SRCLKEN	0000 00-0	0000 00-0
SRCON1	SRCS1	SRCS0	_	_	_	_	_	—	00	00
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
TRISC			TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
VRCON	C1VREN	C2VREN	VRR	FVREN	VR3	VR2	VR1	VR0	0000 0000	0000 0000

 Legend:
 x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

 Note
 1:
 PIC16F616/16HV616 only.

FIGURE 9-4: ANALOG INPUT MODEL

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 10-1.

EQUATION 10-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$
$$(TMR2 Prescale Value)$$

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPR1L into CCPR1H.

Note:	The Timer2 postscaler (see Section 7.1							
	"Timer2 Operation") is not used in the							
	determination of the PWM frequency.							

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and CCP1<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the CCP1<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and CCP1<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only.

Equation 10-2 is used to calculate the PWM pulse width.

Equation 10-3 is used to calculate the PWM duty cycle ratio.

EQUATION 10-2: PULSE WIDTH

 $Pulse Width = (CCPR1L:CCP1CON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 10-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPR1L:CCP1CON < 5:4>)}{4(PR2 + 1)}$$

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 10-3).

10.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 10-4.

EQUATION 10-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 10-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 10-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

FIGURE 10-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

				Period	>
(Single Output)	P1A Modulated		.(1)		Ì
	P1A Modulated		5		
(Half-Bridge)	P1B Modulated	_ ' 			
	P1A Active			· · · · · · · · · · · · · · · · · · ·	 :
(Full-Bridge,	P1B Inactive			1 1 1	
⁰¹ Forward)	P1C Inactive	_ i _ <u> </u>		1 1	
	P1D Modulated			1	
	P1A Inactive	_ ;		1 1 1	
(Full-Bridge,	P1B Modulated			ļ	
Reverse)	P1C Active				
	P1D Inactive			1 1 1	<u> </u>
	(Single Output) (Half-Bridge) (Full-Bridge, Forward) (Full-Bridge, Reverse)	(Single Output) P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive Forward) P1C Inactive P1D Modulated (Full-Bridge, P1B Modulated (Full-Bridge, P1B Modulated P1A Active P1D Inactive P1D Inactive P1D Inactive P1D Inactive	(Single Output) P1A Modulated Delay P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive P1D Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Inactiv	(Single Output) P1A Modulated Delay ⁽¹⁾ P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated P1A Active P1A Active P1B Inactive P1C Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Active P1D Modulated P1A Inactive P1D Modulated P1A Inactive P1D Inactive	(Single Output) P1A Modulated P1A Modulated (Half-Bridge) P1B Modulated (Full-Bridge, P1B Inactive Forward) P1C Inactive P1D Modulated P1A Inactive P1B Modulated P1A Inactive P1D Inac

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 10.4.6 "Programmable Dead-Band Delay mode").

12.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- PWRT time-out is invoked after POR has expired.
- OST is activated after the PWRT time-out has expired.

The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC16F610/616/ 16HV610/616 device operating in parallel.

Table 12-5 shows the Reset conditions for some special registers, while Table 12-4 shows the Reset conditions for all the registers.

12.3.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Poweron Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see **Section 12.3.4** "**Brown-out Reset (BOR)**".

Occillator Configuration	Powe	er-up	Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	х	1	1	Power-on Reset
u	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
PCON	_		_	_			POR	BOR	dd	uu
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

FIGURE 15-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standa Operatir	ng Temperating (conditions (u re -40°C	Inless otherwis $\leq TA \leq +125^{\circ}C$	se stated)					
Param No.	Sym		Characterist	ic	Min	Тур†	Max	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns	
					10	_	_	ns	
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 TCY + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	TT0P	T0CKI Period	3		Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	_		ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	—	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—		ns	
48	Ft1	Timer1 Oscill (oscillator en	lator Input Frequency Range abled by setting bit T1OSCEN)		—	32.768	_	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	dge to Timer	2 Tosc	_	7 Tosc	_	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.

FIGURE 16-2: PIC16F610/616 IDD EC (1 MHz) vs. VDD

PIC16HV610/616 IDD LP (32 kHz) vs. VDD

16-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4x0.9mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Contact Pitch	ontact Pitch E			0.65 BSC			
Optional Center Pad Width	W2			2.50			
Optional Center Pad Length	T2			2.50			
Contact Pad Spacing	C1		4.00				
Contact Pad Spacing	C2		4.00				
Contact Pad Width (X28)	X1			0.35			
Contact Pad Length (X28)				0.80			
Distance Between Pads	G	0.30					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2127A

INDEX

Α	
A/D	
Specifications1	65. 166
Absolute Maximum Ratings	143
AC Characteristics	
Industrial and Extended	157
Load Conditions	156
ADC	
Acquisition Requirements	
Associated registers	
Block Diagram	
Calculating Acquisition Time	
Channel Selection	
Configuration	74
Configuring Interrupt	
Conversion Clock	74
Conversion Procedure	
Internal Sampling Switch (Rss) Impedance	81
Interrupts	75
Operation	
Operation During Sleep	
Port Configuration	74
Reference Voltage (VREF)	74
Result Formatting	75
Source Impedance	81
Special Event Trigger	
Starting an A/D Conversion	75
ADCON0 Register	78
ADCON1 Register	79
ADRESH Register (ADFM = 0)	80
ADRESH Register (ADFM = 1)	80
ADRESL Register (ADFM = 0)	80
ADRESL Register (ADFM = 1)	80
Analog-to-Digital Converter. See ADC	
ANSEL Register	34
Assembler	
MPASM Assembler	140

В

Block Diagrams	
(CCP) Capture Mode Operation	86
ADC	73
ADC Transfer Function	82
Analog Input Model6	4, 82
CCP PWM	90
Clock Source	27
Comparator C1	58
Comparator C2	58
Compare Mode Operation	88
Crystal Operation	29
External RC Mode	30
In-Circuit Serial Programming Connections	. 126
Interrupt Logic	. 119
MCLR Circuit	. 112
On-Chip Reset Circuit	. 111
PIC16F610/16HV610	9
PIC16F616/16HV616	10
PWM (Enhanced)	93
RA0 and RA1 Pins	36
RA2 Pins	37
RA3 Pin	38
RA4 Pin	39
RA5 Pin	40
RC0 and RC1 Pins	43

RC2 and RC3 Pins	43
RC4 Pin	44
RC5 Pin	44
Resonator Operation	29
Timer1	49
Timer2	55
TMR0/WDT Prescaler	45
Watchdog Timer	122
Brown-out Reset (BOR)	113
Associated Registers	114
Specifications	161
Timing and Characteristics	160

С	
C Compilers	
MPLAB C18 14	40
Calibration Bits 11	11
Capture Module. See Enhanced Capture/Compare/PW/ (ECCP)	M
Capture/Compare/PWM (CCP)	
Associated registers w/ Capture/Compare/PWM 87,89	9,
Capture Mode 8	36
CCP1 Pin Configuration 8	36
Compare Mode 8	38
CCP1 Pin Configuration	38
Software Interrupt Mode 86, 8	38
Special Event Trigger 8	38
Timer1 Mode Selection	38
Prescaler	36
PWM Mode) 0
Duty Cycle	<u>}1</u>
Effects of Reset	92 22
Example PWM Frequencies and Resolutions, 2	20
MHZ	<u>۱</u>
Example PWW Frequencies and Resolutions,	ŏ ⊿≀
MHZ	11 22
Sotup for Operation	2נ 22
System Clock Frequency Changes	າ∠ າว
DW/M Deriod	<u>י</u> בי 1
Setup for PWM Operation	יי 22
CCP1CON (Enhanced) Register	25
Clock Sources	
External Modes	28
EC	28
HS	29
LP	29
OST	28
RC	30
XT	29
Internal Modes	30
INTOSC	30
INTOSCIO	30
CM1CON0 Register6	32
CM2CON0 Register 6	33
CM2CON1 Register	35
Code Examples	
A/D Conversion7	77
Assigning Prescaler to Timer04	1 6
Assigning Prescaler to WDT4	16
Changing Between Capture Prescalers	36
Indirect Addressing	24
Initializing PORTA	33