# E·XFL



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                     | Active                                                                                                              |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Core Processor                     | ARM® Cortex®-A9                                                                                                     |
| Number of Cores/Bus<br>Width       | 2 Core, 32-Bit                                                                                                      |
| Speed                              | 1.0GHz                                                                                                              |
| Co-Processors/DSP                  | Multimedia; NEON™ SIMD                                                                                              |
| RAM Controllers                    | LPDDR2, LVDDR3, DDR3                                                                                                |
| Graphics Acceleration              | Yes                                                                                                                 |
| Display & Interface<br>Controllers | Keypad, LCD                                                                                                         |
| Ethernet                           | 10/100/1000Mbps (1)                                                                                                 |
| SATA                               | SATA 3Gbps (1)                                                                                                      |
| USB                                | USB 2.0 + PHY (4)                                                                                                   |
| Voltage - I/O                      | 1.8V, 2.5V, 2.8V, 3.3V                                                                                              |
| Operating Temperature              | -20°C ~ 105°C (TJ)                                                                                                  |
| Security Features                  | ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection |
| Package / Case                     | 624-LFBGA, FCBGA                                                                                                    |
| Supplier Device Package            | 624-FCPBGA (21x21)                                                                                                  |
| Purchase URL                       | https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6d5eym10ad                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 3 Modules List

The i.MX 6Dual/6Quad processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order.

| Block<br>Mnemonic | Block Name                                                                         | Subsystem                                  | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 512x8 Fuse<br>Box | Electrical Fuse Array                                                              | Security                                   | Electrical Fuse Array. Enables to setup Boot Modes, Security Levels,<br>Security Keys, and many other system parameters.<br>The i.MX 6Dual/6Quad processors consist of 512x8-bit fuse box<br>accessible through OCOTP_CTRL interface.                                                                                                                                                                                                                                                                                                                                                |
| APBH-DMA          | NAND Flash and<br>BCH ECC DMA<br>Controller                                        | System<br>Control<br>Peripherals           | DMA controller used for GPMI2 operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ARM               | ARM Platform                                                                       | ARM                                        | The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores version r2p10 and associated sub-blocks, including Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, Watchdog, and CoreSight debug modules.                                                                                                                                                                                                                                                                                                                   |
| ASRC              | Asynchronous<br>Sample Rate<br>Converter                                           | Multimedia<br>Peripherals                  | The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.                                                                                                                                               |
| AUDMUX            | Digital Audio Mux                                                                  | Multimedia<br>Peripherals                  | The AUDMUX is a programmable interconnect for voice, audio, and<br>synchronous data routing between host serial interfaces (for example,<br>SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice<br>codecs). The AUDMUX has seven ports with identical functionality and<br>programming models. A desired connectivity is achieved by configuring<br>two or more AUDMUX ports.                                                                                                                                                                                    |
| BCH40             | Binary-BCH ECC<br>Processor                                                        | System<br>Control<br>Peripherals           | The BCH40 module provides up to 40-bit ECC encryption/decryption for NAND Flash controller (GPMI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CAAM              | Cryptographic<br>Accelerator and<br>Assurance Module                               | Security                                   | CAAM is a cryptographic accelerator and assurance module. CAAM<br>implements several encryption and hashing functions, a run-time<br>integrity checker, and a Pseudo Random Number Generator (PRNG).<br>The pseudo random number generator is certified by Cryptographic<br>Algorithm Validation Program (CAVP) of National Institute of Standards<br>and Technology (NIST). Its DRBG validation number is 94 and its SHS<br>validation number is 1455.<br>CAAM also implements a Secure Memory mechanism. In i.MX<br>6Dual/6Quad processors, the security memory provided is 16 KB. |
| CCM<br>GPC<br>SRC | Clock Control<br>Module, Global<br>Power Controller,<br>System Reset<br>Controller | Clocks,<br>Resets, and<br>Power<br>Control | These modules are responsible for clock and reset distribution in the system, and also for the system power management.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Table 2. i.MX 6Dual/6Quad Modules List

# 4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 33 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.

|                            |        |                                                                                | Тур                                              |                                                  |      |
|----------------------------|--------|--------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------|
| Parameter                  | Symbol | Test Conditions                                                                | NVCC_DRAM=1.5 V<br>(DDR3)<br>DDR_SEL=11          | NVCC_DRAM=1.2 V<br>(LPDDR2)<br>DDR_SEL=10        | Unit |
| Output Driver<br>Impedance | Rdrv   | Drive Strength (DSE) =<br>000<br>001<br>010<br>011<br>100<br>101<br>110<br>111 | Hi-Z<br>240<br>120<br>80<br>60<br>48<br>40<br>34 | Hi-Z<br>240<br>120<br>80<br>60<br>48<br>40<br>34 | Ω    |

Table 33. DDR I/O Output Buffer Impedance

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

2. Calibration is done against 240 W external reference resistor.

3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

# 4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

# 4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad processor.

# 4.9.1 Reset Timings Parameters

Figure 8 shows the reset timing and Table 34 lists the timing parameters.



Figure 8. Reset Timing Diagram

## 4.9.3.3 General EIM Timing-Synchronous Mode

Figure 10, Figure 11, and Table 38 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the BCLK rising edge according to corresponding assertion/negation control fields.



Figure 10. EIM Output Timing Diagram



Figure 11. EIM Input Timing Diagram

### 4.9.3.4 Examples of EIM Synchronous Accesses

#### Table 38. EIM Bus Timing Parameters

| ID  | Parameter                    | Min <sup>1</sup> | Max <sup>1</sup> | Unit |
|-----|------------------------------|------------------|------------------|------|
| WE1 | BCLK cycle time <sup>2</sup> | t*(k+1)          | —                | ns   |
| WE2 | BCLK high level width        | 0.4*t*(k+1)      | —                | ns   |



Figure 21. DTACK Write Access (DAP=0)

| Table 39. EIM | Asynchronous | Timing P | arameters | Table Relative | Chip Select |
|---------------|--------------|----------|-----------|----------------|-------------|
|               |              |          |           |                |             |

| Ref No.                 | Parameter                                       | Determination by<br>Synchronous measured<br>parameters <sup>1</sup>                                    | Min                                        | Max<br>(If 132 MHz is<br>supported by SoC) | Unit |
|-------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------|
| WE31                    | CSx_B valid to Address Valid                    | WE4 - WE6 - CSA <sup>2</sup>                                                                           | _                                          | 3 - CSA                                    | ns   |
| WE32                    | Address Invalid to CSx_B invalid                | WE7 - WE5 - CSN <sup>3</sup>                                                                           | —                                          | 3 - CSN                                    | ns   |
| WE32A<br>(muxed<br>A/D) | CSx_B valid to Address Invalid                  | t <sup>4</sup> + WE4 - WE7 + (ADVN <sup>5</sup> + -3 + (ADV<br>ADVA <sup>6</sup> + 1 - CSA) ADVA + 1 - |                                            | _                                          | ns   |
| WE33                    | CSx_B Valid to WE_B Valid                       | WE8 - WE6 + (WEA - WCSA)                                                                               | _                                          | 3 + (WEA - WCSA)                           | ns   |
| WE34                    | WE_B Invalid to CSx_B Invalid                   | WE7 - WE9 + (WEN - WCSN)                                                                               | —                                          | 3 - (WEN_WCSN)                             | ns   |
| WE35                    | CSx_B Valid to OE_B Valid                       | WE10 - WE6 + (OEA - RCSA)                                                                              | _                                          | 3 + (OEA - RCSA)                           | ns   |
| WE35A<br>(muxed<br>A/D) | CSx_B Valid to OE_B Valid                       | WE10 - WE6 + (OEA + RADVN<br>+ RADVA + ADH + 1 - RCSA)                                                 | -3 + (OEA +<br>RADVN+RADVA+<br>ADH+1-RCSA) | 3 + (OEA +<br>RADVN+RADVA+AD<br>H+1-RCSA)  | ns   |
| WE36                    | OE_B Invalid to CSx_B Invalid                   | WE7 - WE11 + (OEN - RCSN)                                                                              | —                                          | 3 - (OEN - RCSN)                           | ns   |
| WE37                    | CSx_B Valid to BEy_B Valid (Read access)        | WE12 - WE6 + (RBEA - RCSA)                                                                             | —                                          | 3 + (RBEA - RCSA)                          | ns   |
| WE38                    | BEy_B Invalid to CSx_B Invalid<br>(Read access) | WE7 - WE13 + (RBEN - RCSN)                                                                             | —                                          | 3 - (RBEN- RCSN)                           | ns   |
| WE39                    | CSx_B Valid to ADV_B Valid                      | WE14 - WE6 + (ADVA - CSA)                                                                              | _                                          | 3 + (ADVA - CSA)                           | ns   |

### 4.9.4.2 LPDDR2 Parameters

Figure 25 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in Table 43.



Figure 25. LPDDR2 Command and Address Timing Diagram

| חו  | Parameter                    | Symbol | CK = 53 | Unit |      |
|-----|------------------------------|--------|---------|------|------|
|     | Falameter                    | Symbol | Min     | Мах  | Onit |
| LP1 | SDRAM clock high-level width | tсн    | 0.45    | 0.55 | tск  |
| LP2 | SDRAM clock low-level width  | tCL    | 0.45    | 0.55 | tск  |
| LP3 | CS, CKE setup time           | tıs    | 270     | _    | ps   |
| LP4 | CS, CKE hold time            | tıн    | 270     | _    | ps   |
| LP3 | CA setup time                | tıs    | 230     | _    | ps   |
| LP4 | CA hold time                 | tін    | 230     | —    | ps   |

### Table 43. LPDDR2 Timing Parameter

<sup>1</sup> All measurements are in reference to Vref level.

 $^2\,$  Measurements were done using balanced load and 25  $\Omega$  resistor from outputs to VDD\_REF.



Figure 32. Read Data Latch Cycle Timing Diagram (EDO Mode)

| ID   | Parameter          | Symbol | Timing<br>Symbol T <sup>2</sup> = GPMI Clock Cycle |              | Example T<br>GPMI Clock<br>T = 1 | Unit |    |
|------|--------------------|--------|----------------------------------------------------|--------------|----------------------------------|------|----|
|      |                    |        | Min.                                               | Max.         | Min.                             | Max. |    |
| NF1  | CLE setup time     | tCLS   | (AS <sup>3</sup> +1)*T                             | —            | 10                               | —    | ns |
| NF2  | CLE hold time      | tCLH   | (DH+1)*T                                           | —            | 20                               | —    | ns |
| NF3  | CEn setup time     | tCS    | (AS+1)*T                                           | —            | 10                               | —    | ns |
| NF4  | CE hold time       | tCH    | (DH+1)*T                                           | —            | 20                               | —    | ns |
| NF5  | WE pulse width     | tWP    | tWP DS*T 10                                        |              |                                  | 0    | ns |
| NF6  | ALE setup time     | tALS   | (AS+1)*T                                           | (AS+1)*T —   |                                  | —    | ns |
| NF7  | ALE hold time      | tALH   | (DH+1)*T                                           | —            | 20                               | —    | ns |
| NF8  | Data setup time    | tDS    | DS*T                                               | —            | 10                               | —    | ns |
| NF9  | Data hold time     | tDH    | DH*T                                               | —            | 10                               | —    | ns |
| NF10 | Write cycle time   | tWC    | (DS+I                                              | (DS+DH)*T 20 |                                  | 0    | ns |
| NF11 | WE hold time       | tWH    | DH*T 10                                            |              | 0                                | ns   |    |
| NF12 | Ready to RE low    | tRR    | (AS+1)*T                                           | —            | 10                               | —    | ns |
| NF13 | RE pulse width     | tRP    | DS*T                                               | —            | 10                               | —    | ns |
| NF14 | READ cycle time    | tRC    | (DS+DH)*T                                          | (DS+DH)*T —  |                                  | —    | ns |
| NF15 | RE high hold time  | tREH   | DH                                                 | I*T          | 10                               | _    | ns |
| NF16 | Data setup on read | tDSR   | N/                                                 | /A           | 10                               | —    | ns |
| NF17 | Data hold on read  | tDHR   | N/                                                 | /A           | 10                               | —    | ns |

### Table 46. Asynchronous Mode Timing Parameters<sup>1</sup>

**Electrical Characteristics** 



Figure 34. Source Synchronous Mode Data Write Timing Diagram

| ID   | Parameter                                   | Symbol | Timin<br>T = GPMI Clo | Unit |    |
|------|---------------------------------------------|--------|-----------------------|------|----|
|      |                                             |        | Min.                  | Max. |    |
| NF18 | CE# access time                             | tCE    | CE_DELAY*tCK          | —    | ns |
| NF19 | CE# hold time                               | tCH    | 0.5 *tCK              | _    | ns |
| NF20 | Command/address DQ setup time               | tCAS   | 0.5*tCK               | _    | ns |
| NF21 | Command/address DQ hold time                | tCAH   | 0.5*tCK               | _    | ns |
| NF22 | clock period                                | tCK    | 5                     |      | ns |
| NF23 | preamble delay                              | tPRE   | PRE_DELAY*tCK         | _    | ns |
| NF24 | postamble delay                             | tPOST  | POST_DELAY*tCK        | _    | ns |
| NF25 | CLE and ALE setup time                      | tCALS  | 0.5*tCK               | _    | ns |
| NF26 | CLE and ALE hold time                       | tCALH  | 0.5*tCK               | _    | ns |
| NF27 | Data input to first DQS latching transition | tDQSS  | tCK                   | —    | ns |

#### Table 47. Source Synchronous Mode Timing Parameters<sup>1</sup>

GPMI's Source sync mode output timing could be controlled by module's internal register, say GPMI\_TIMING2\_CE\_DELAY, GPMI\_TIMING\_PREAMBLE\_DELAY, GPMI\_TIMING2\_POST\_DELAY. This AC timing depends on these registers' settings. In the above table, we use CE\_DELAY/PRE\_DELAY/POST\_DELAY to represent each of these settings.

Figure 36 shows the timing diagram of DQS/DQ read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample DQ[7:0] at both rising and falling edge of an delayed DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI\_READ\_DDR\_DLL\_CTRL.SLV\_DLY\_TARGET (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

### 4.11.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC Timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing and eMMC4.4 (Dual Date Rate) timing.

### 4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing

Figure 43 depicts the timing of SD/eMMC4.3, and Table 52 lists the SD/eMMC4.3 timing characteristics.



Figure 43. SD/eMMC4.3 Timing

| ID  | Parameter                                       | Symbols                      | Min  | Мах   | Unit |  |  |  |
|-----|-------------------------------------------------|------------------------------|------|-------|------|--|--|--|
|     | Card Input Clock                                |                              |      |       |      |  |  |  |
| SD1 | Clock Frequency (Low Speed)                     | f <sub>PP</sub> <sup>1</sup> | 0    | 400   | kHz  |  |  |  |
|     | Clock Frequency (SD/SDIO Full Speed/High Speed) | f <sub>PP</sub> <sup>2</sup> | 0    | 25/50 | MHz  |  |  |  |
|     | Clock Frequency (MMC Full Speed/High Speed)     | f <sub>PP</sub> <sup>3</sup> | 0    | 20/52 | MHz  |  |  |  |
|     | Clock Frequency (Identification Mode)           | f <sub>OD</sub>              | 100  | 400   | kHz  |  |  |  |
| SD2 | Clock Low Time                                  | t <sub>WL</sub>              | 7    | —     | ns   |  |  |  |
| SD3 | Clock High Time                                 | t <sub>WH</sub>              | 7    | —     | ns   |  |  |  |
| SD4 | Clock Rise Time                                 | t <sub>TLH</sub>             | —    | 3     | ns   |  |  |  |
| SD5 | Clock Fall Time                                 | t <sub>THL</sub>             | —    | 3     | ns   |  |  |  |
|     | eSDHC Output/Card Inputs CMD, DA                | T (Reference to              | CLK) |       |      |  |  |  |
| SD6 | eSDHC Output Delay                              | t <sub>OD</sub>              | -6.6 | 3.6   | ns   |  |  |  |

| Table 52. | SD/eMMC4.3   | Interface | Timina | Specification |
|-----------|--------------|-----------|--------|---------------|
|           | 00/01110 110 | monuoo    |        | opeenioanen   |

| i.MX 6Dual/6Quad        | ad LCD                                  |               |               |               |                             |                                         |                 |                                                                 |                      |
|-------------------------|-----------------------------------------|---------------|---------------|---------------|-----------------------------|-----------------------------------------|-----------------|-----------------------------------------------------------------|----------------------|
|                         | RGB, RGB/TV Signal Allocation (Example) |               |               |               |                             | RGB, RGB/TV Signal Allocation (Example) |                 | e)                                                              | Comment <sup>1</sup> |
| Port Name<br>(x = 0, 1) | Signal<br>Name<br>(General)             | 16-bit<br>RGB | 18-bit<br>RGB | 24 Bit<br>RGB | 8-bit<br>YCrCb <sup>2</sup> | 16-bit<br>YCrCb                         | 20-bit<br>YCrCb |                                                                 |                      |
| DISPx_DAT22             | DAT[22]                                 | —             | —             | R[6]          | —                           | _                                       | _               | _                                                               |                      |
| DISPx_DAT23             | DAT[23]                                 | -             | —             | R[7]          | —                           | —                                       | —               | _                                                               |                      |
| DIx_DISP_CLK            |                                         |               |               | PixCLK        | •                           | •                                       | 1               | —                                                               |                      |
| DIx_PIN1                |                                         |               |               |               |                             |                                         |                 | May be required for anti-tearing                                |                      |
| DIx_PIN2                |                                         |               |               | HSYNC         |                             |                                         |                 | —                                                               |                      |
| DIx_PIN3                |                                         |               |               | VSYNC         |                             |                                         |                 | VSYNC out                                                       |                      |
| DIx_PIN4                |                                         | —             |               |               |                             |                                         |                 | Additional frame/row synchronous                                |                      |
| DIx_PIN5                |                                         |               |               |               |                             |                                         |                 | signals with programmable timing                                |                      |
| DIx_PIN6                |                                         |               |               |               |                             |                                         |                 |                                                                 |                      |
| DIx_PIN7                |                                         |               |               | _             |                             |                                         |                 |                                                                 |                      |
| DIx_PIN8                |                                         |               |               | _             |                             |                                         |                 |                                                                 |                      |
| DIx_D0_CS               |                                         |               |               |               |                             |                                         |                 | —                                                               |                      |
| DIx_D1_CS               |                                         |               |               | _             |                             |                                         |                 | Alternate mode of PWM output for contrast or brightness control |                      |
| DIx_PIN11               |                                         |               |               | _             |                             |                                         |                 | —                                                               |                      |
| DIx_PIN12               |                                         |               |               | _             |                             |                                         |                 | —                                                               |                      |
| DIx_PIN13               |                                         |               |               | _             |                             |                                         |                 | Register select signal                                          |                      |
| DIx_PIN14               | —                                       |               |               |               |                             |                                         | Optional RS2    |                                                                 |                      |
| Dix_PIN15               |                                         |               | [             | )<br>DRDY/D   | /                           |                                         |                 | Data validation/blank, data enable                              |                      |
| DIx_PIN16               |                                         |               |               | _             |                             |                                         |                 | Additional data synchronous                                     |                      |
| DIx_PIN17               | Q                                       |               |               |               |                             |                                         |                 | features/timing                                                 |                      |

#### Table 66. Video Signal Cross-Reference (continued)

<sup>1</sup> Signal mapping (both data and control/synchronization) is flexible. The table provides examples.

<sup>2</sup> This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.

## 4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams

Figure 68 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All the parameters shown in the figure are programmable. All controls are started by corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of the IPP\_DISP\_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.



Figure 68. TFT Panels Timing Diagram—Horizontal Sync Pulse

Figure 69 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable.





### Table 67 shows timing characteristics of signals presented in Figure 68 and Figure 69.

| ID   | Parameter                      | Symbol | Value                                 | Description                                                                                                                                                                                                                                                                                                      | Unit |
|------|--------------------------------|--------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| IP5  | Display interface clock period | Tdicp  | (1)                                   | Display interface clock. IPP_DISP_CLK                                                                                                                                                                                                                                                                            | ns   |
| IP6  | Display pixel clock period     | Tdpcp  | DISP_CLK_PER_PIXEL<br>× Tdicp         | Time of translation of one pixel to display,<br>DISP_CLK_PER_PIXEL—number of pixel<br>components in one pixel (1.n). The<br>DISP_CLK_PER_PIXEL is virtual<br>parameter to define display pixel clock<br>period.<br>The DISP_CLK_PER_PIXEL is received by<br>DC/DI one access division to <b>n</b><br>components. | ns   |
| IP7  | Screen width time              | Tsw    | (SCREEN_WIDTH)<br>× Tdicp             | SCREEN_WIDTH—screen width in,<br>interface clocks. horizontal blanking<br>included.<br>The SCREEN_WIDTH should be built by<br>suitable DI's counter <sup>2</sup> .                                                                                                                                               | ns   |
| IP8  | HSYNC width time               | Thsw   | (HSYNC_WIDTH)                         | HSYNC_WIDTH—Hsync width in DI_CLK<br>with 0.5 DI_CLK resolution. Defined by DI's<br>counter.                                                                                                                                                                                                                     | ns   |
| IP9  | Horizontal blank interval 1    | Thbi1  | BGXP × Tdicp                          | BGXP—width of a horizontal blanking<br>before a first active data in a line (in<br>interface clocks). The BGXP should be built<br>by suitable DI's counter.                                                                                                                                                      | ns   |
| IP10 | Horizontal blank interval 2    | Thbi2  | (SCREEN_WIDTH –<br>BGXP – FW) × Tdicp | Width a horizontal blanking after a last<br>active data in a line (in interface clocks)<br>FW—with of active line in interface clocks.<br>The FW should be built by suitable DI's<br>counter.                                                                                                                    | ns   |
| IP12 | Screen height                  | Tsh    | (SCREEN_HEIGHT)<br>X Tsw              | SCREEN_HEIGHT— screen height in lines<br>with blanking.<br>The SCREEN_HEIGHT is a distance<br>between 2 VSYNCs.<br>The SCREEN_HEIGHT should be built by<br>suitable DI's counter.                                                                                                                                | ns   |
| IP13 | VSYNC width                    | Tvsw   | VSYNC_WIDTH                           | VSYNC_WIDTH—Vsync width in DI_CLK<br>with 0.5 DI_CLK resolution. Defined by DI's<br>counter.                                                                                                                                                                                                                     | ns   |
| IP14 | Vertical blank interval 1      | Tvbi1  | BGYP X Tsw                            | BGYP—width of first Vertical<br>blanking interval in line. The BGYP should<br>be built by suitable DI's counter.                                                                                                                                                                                                 | ns   |
| IP15 | Vertical blank interval 2      | Tvbi2  | (SCREEN_HEIGHT –<br>BGYP – FH) × Tsw  | Width of second vertical blanking interval in line. The FH should be built by suitable DI's counter.                                                                                                                                                                                                             | ns   |

### Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level)

| ID    | Parameter              | Symbol | Value                       | Description                                                                                                                                                                                                                             | Unit |
|-------|------------------------|--------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| IP5o  | Offset of IPP_DISP_CLK | Todicp | DISP_CLK_OFFSET<br>× Tdiclk | DISP_CLK_OFFSET—offset of<br>IPP_DISP_CLK edges from local start<br>point, in DI_CLK×2<br>(0.5 DI_CLK Resolution).<br>Defined by DISP_CLK counter.                                                                                      | ns   |
| IP13o | Offset of VSYNC        | Tovs   | VSYNC_OFFSET<br>X Tdiclk    | VSYNC_OFFSET—offset of Vsync edges<br>from a local start point, when a Vsync<br>should be active, in DI_CLK×2<br>(0.5 DI_CLK Resolution). The<br>VSYNC_OFFSET should be built by<br>suitable DI's counter.                              | ns   |
| IP8o  | Offset of HSYNC        | Tohs   | HSYNC_OFFSET<br>X Tdiclk    | HSYNC_OFFSET—offset of Hsync edges<br>from a local start point, when a Hsync<br>should be active, in DI_CLK×2<br>(0.5 DI_CLK Resolution). The<br>HSYNC_OFFSET should be built by<br>suitable DI's counter.                              | ns   |
| IP9o  | Offset of DRDY         | Todrdy | DRDY_OFFSET<br>× Tdiclk     | DRDY_OFFSET—offset of DRDY edges<br>from a suitable local start point, when a<br>corresponding data has been set on the<br>bus, in DI_CLK×2<br>(0.5 DI_CLK Resolution).<br>The DRDY_OFFSET should be built by<br>suitable DI's counter. | ns   |

#### Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)

<sup>1</sup> Display interface clock period immediate value.

$$Tdicp = \begin{cases} T_{diclk} \times \frac{DISP\_CLK\_PERIOD}{DI\_CLK\_PERIOD}, & for integer \frac{DISP\_CLK\_PERIOD}{DI\_CLK\_PERIOD} \\ T_{diclk} (floor[\frac{DISP\_CLK\_PERIOD}{DI\_CLK\_PERIOD}] + 0.5 \pm 0.5), & for fractional \frac{DISP\_CLK\_PERIOD}{DI\_CLK\_PERIOD} \end{cases}$$

DISP\_CLK\_PERIOD—number of DI\_CLK per one Tdicp. Resolution 1/16 of DI\_CLK. DI\_CLK\_PERIOD—relation of between programing clock frequency and current system clock frequency Display interface clock period average value.

$$\overline{T}$$
dicp = T<sub>diclk</sub> ×  $\frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}$ 

<sup>2</sup> DI's counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the counter. Same of parameters in the table are not defined by DI's registers directly (by name), but can be generated by corresponding DI's counter. The SCREEN\_WIDTH is an input value for DI's HSYNC generation counter. The distance between HSYNCs is a SCREEN\_WIDTH.

The maximal accuracy of UP/DOWN edge of controls is:

Accuracy = 
$$(0.5 \times T_{diclk}) \pm 0.62$$
 ns











### Figure 90. TRST Timing Diagram

| Table | 76. | JTAG | Timing |
|-------|-----|------|--------|
|-------|-----|------|--------|

| ID   | Percenter 1.2                                                  | All Freq | Unit |          |  |
|------|----------------------------------------------------------------|----------|------|----------|--|
| U    |                                                                | Min      | Мах  | - Office |  |
| SJ0  | TCK frequency of operation 1/(3xT <sub>DC</sub> ) <sup>1</sup> | 0.001    | 22   | MHz      |  |
| SJ1  | TCK cycle time in crystal mode                                 | 45       | —    | ns       |  |
| SJ2  | TCK clock pulse width measured at $V_M^2$                      | 22.5     | —    | ns       |  |
| SJ3  | TCK rise and fall times                                        | —        | 3    | ns       |  |
| SJ4  | Boundary scan input data set-up time                           | 5        | —    | ns       |  |
| SJ5  | Boundary scan input data hold time                             | 24       | —    | ns       |  |
| SJ6  | TCK low to output data valid                                   | —        | 40   | ns       |  |
| SJ7  | TCK low to output high impedance                               | —        | 40   | ns       |  |
| SJ8  | TMS, TDI data set-up time                                      | 5        | —    | ns       |  |
| SJ9  | TMS, TDI data hold time                                        | 25       | —    | ns       |  |
| SJ10 | TCK low to TDO data valid                                      | —        | 44   | ns       |  |
| SJ11 | TCK low to TDO high impedance                                  | —        | 44   | ns       |  |
| SJ12 | TRST assert time                                               | 100      | —    | ns       |  |
| SJ13 | TRST set-up time to TCK low                                    | 40       | —    | ns       |  |

<sup>1</sup>  $T_{DC}$  = target frequency of SJC

<sup>2</sup>  $V_{\rm M}$  = mid-point voltage

### 4.11.18 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 77 and Figure 91 and Figure 92 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the modulating Tx clock (STCLK) for SPDIF in Tx mode.

### NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

# 4.11.20 UART I/O Configuration and Timing Parameters

### 4.11.20.1 UART RS-232 I/O Configuration in Different Modes

The i.MX 6Dual/6Quad UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default  $0 - DCE \mod e$ ). Table 83 shows the UART I/O configuration based on the enabled mode.

| Port    |           | DTE Mode                    | DCE Mode  |                             |  |  |  |  |
|---------|-----------|-----------------------------|-----------|-----------------------------|--|--|--|--|
| FOIL    | Direction | Description                 | Direction | Description                 |  |  |  |  |
| RTS     | Output    | RTS from DTE to DCE         | Input     | RTS from DTE to DCE         |  |  |  |  |
| CTS     | Input     | CTS from DCE to DTE         | Output    | CTS from DCE to DTE         |  |  |  |  |
| DTR     | Output    | DTR from DTE to DCE         | Input     | DTR from DTE to DCE         |  |  |  |  |
| DSR     | Input     | DSR from DCE to DTE         | Output    | DSR from DCE to DTE         |  |  |  |  |
| DCD     | Input     | DCD from DCE to DTE         | Output    | DCD from DCE to DTE         |  |  |  |  |
| RI      | Input     | RING from DCE to DTE        | Output    | RING from DCE to DTE        |  |  |  |  |
| TXD_MUX | Input     | Serial data from DCE to DTE | Output    | Serial data from DCE to DTE |  |  |  |  |
| RXD_MUX | Output    | Serial data from DTE to DCE | Input     | Serial data from DTE to DCE |  |  |  |  |

Table 83. UART I/O Configuration vs. Mode

# 5 Boot Mode Configuration

This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.

# 5.1 Boot Mode Configuration Pins

Table 90 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT\_FUSE\_SEL fuse. The boot option pins are in effect when BT\_FUSE\_SEL fuse is '0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6Dual/6Quad Fuse Map document and the System Boot chapter of the i.MX 6Dual/6Quad reference manual.

| Pin        | Direction at Reset | eFuse Name          | Details             |
|------------|--------------------|---------------------|---------------------|
| BOOT_MODE1 | Input              | Boot Mode Selection | Boot Mode selection |
| BOOT_MODE0 | Input              | Boot Mode Selection | Boot Mode Selection |

### Table 90. Fuses and Associated Pins Used for Boot

**Boot Mode Configuration** 

| Pin      | Direction at Reset | eFuse Name   | Details                                                                           |
|----------|--------------------|--------------|-----------------------------------------------------------------------------------|
| EIM_DA0  | Input              | BOOT_CFG1[0] | Boot Options, Pin value overrides fuse                                            |
| EIM_DA1  | Input              | BOOT_CFG1[1] | Settings for BI_FUSE_SEL = '0'. Signal<br>Configuration as Fuse Override Input at |
| EIM_DA2  | Input              | BOOT_CFG1[2] | Power Up. These are special I/O lines that                                        |
| EIM_DA3  | Input              | BOOT_CFG1[3] | product development. In production, the                                           |
| EIM_DA4  | Input              | BOOT_CFG1[4] | boot configuration can be controlled by fuses.                                    |
| EIM_DA5  | Input              | BOOT_CFG1[5] |                                                                                   |
| EIM_DA6  | Input              | BOOT_CFG1[6] |                                                                                   |
| EIM_DA7  | Input              | BOOT_CFG1[7] |                                                                                   |
| EIM_DA8  | Input              | BOOT_CFG2[0] |                                                                                   |
| EIM_DA9  | Input              | BOOT_CFG2[1] |                                                                                   |
| EIM_DA10 | Input              | BOOT_CFG2[2] |                                                                                   |
| EIM_DA11 | Input              | BOOT_CFG2[3] |                                                                                   |
| EIM_DA12 | Input              | BOOT_CFG2[4] |                                                                                   |
| EIM_DA13 | Input              | BOOT_CFG2[5] |                                                                                   |
| EIM_DA14 | Input              | BOOT_CFG2[6] |                                                                                   |
| EIM_DA15 | Input              | BOOT_CFG2[7] |                                                                                   |
| EIM_A16  | Input              | BOOT_CFG3[0] |                                                                                   |
| EIM_A17  | Input              | BOOT_CFG3[1] |                                                                                   |
| EIM_A18  | Input              | BOOT_CFG3[2] |                                                                                   |
| EIM_A19  | Input              | BOOT_CFG3[3] |                                                                                   |
| EIM_A20  | Input              | BOOT_CFG3[4] |                                                                                   |
| EIM_A21  | Input              | BOOT_CFG3[5] |                                                                                   |
| EIM_A22  | Input              | BOOT_CFG3[6] |                                                                                   |
| EIM_A23  | Input              | BOOT_CFG3[7] |                                                                                   |
| EIM_A24  | Input              | BOOT_CFG4[0] |                                                                                   |
| EIM_WAIT | Input              | BOOT_CFG4[1] |                                                                                   |
| EIM_LBA  | Input              | BOOT_CFG4[2] |                                                                                   |
| EIM_EB0  | Input              | BOOT_CFG4[3] |                                                                                   |
| EIM_EB1  | Input              | BOOT_CFG4[4] |                                                                                   |
| EIM_RW   | Input              | BOOT_CFG4[5] |                                                                                   |
| EIM_EB2  | Input              | BOOT_CFG4[6] |                                                                                   |
| EIM_EB3  | Input              | BOOT_CFG4[7] |                                                                                   |

### Table 90. Fuses and Associated Pins Used for Boot (continued)

#### Package Information and Contact Assignments

|               |      |              |              | Out of Reset Condition <sup>1</sup> |                    |              |           |  |  |  |
|---------------|------|--------------|--------------|-------------------------------------|--------------------|--------------|-----------|--|--|--|
| Ball Name     | Ball | Power Group  | Ball<br>Type | Default<br>Mode<br>(Reset<br>Mode)  | Default Function   | Input/Output | Value     |  |  |  |
| PMIC_STBY_REQ | F11  | VDD_SNVS_IN  | GPIO         | ALT0                                | ccm_PMIC_VSTBY_REQ | Output       | 0         |  |  |  |
| POR_B         | C11  | VDD_SNVS_IN  | GPIO         | ALT0                                | src_POR_B          | Input        | PU (100K) |  |  |  |
| RGMII_RD0     | C24  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[25]     | Input        | PU (100K) |  |  |  |
| RGMII_RD1     | B23  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[27]     | Input        | PU (100K) |  |  |  |
| RGMII_RD2     | B24  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[28]     | Input        | PU (100K) |  |  |  |
| RGMII_RD3     | D23  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[29]     | Input        | PU (100K) |  |  |  |
| RGMII_RX_CTL  | D22  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[24]     | Input        | PD (100K) |  |  |  |
| RGMII_RXC     | B25  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[30]     | Input        | PD (100K) |  |  |  |
| RGMII_TD0     | C22  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[20]     | Input        | PU (100K) |  |  |  |
| RGMII_TD1     | F20  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[21]     | Input        | PU (100K) |  |  |  |
| RGMII_TD2     | E21  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[22]     | Input        | PU (100K) |  |  |  |
| RGMII_TD3     | A24  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[23]     | Input        | PU (100K) |  |  |  |
| RGMII_TX_CTL  | C23  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[26]     | Input        | PD (100K) |  |  |  |
| RGMII_TXC     | D21  | NVCC_RGMII   | DDR          | ALT5                                | gpio6_GPIO[19]     | Input        | PD (100K) |  |  |  |
| RTC_XTALI     | D9   | VDD_SNVS_CAP |              |                                     | RTC_XTALI          | —            | —         |  |  |  |
| RTC_XTALO     | C9   | VDD_SNVS_CAP |              |                                     | RTC_XTALO          | —            | —         |  |  |  |
| SATA_RXM      | A14  | SATA_VPH     |              |                                     | SATA_RXM           | —            | —         |  |  |  |
| SATA_RXP      | B14  | SATA_VPH     |              |                                     | SATA_RXP           | —            | —         |  |  |  |
| SATA_TXM      | B12  | SATA_VPH     |              |                                     | SATA_TXM           | —            | —         |  |  |  |
| SATA_TXP      | A12  | SATA_VPH     |              |                                     | SATA_TXP           | —            | —         |  |  |  |
| SD1_CLK       | D20  | NVCC_SD1     | GPIO         | ALT5                                | gpio1_GPIO[20]     | Input        | PU (100K) |  |  |  |
| SD1_CMD       | B21  | NVCC_SD1     | GPIO         | ALT5                                | gpio1_GPIO[18]     | Input        | PU (100K) |  |  |  |
| SD1_DAT0      | A21  | NVCC_SD1     | GPIO         | ALT5                                | gpio1_GPIO[16]     | Input        | PU (100K) |  |  |  |
| SD1_DAT1      | C20  | NVCC_SD1     | GPIO         | ALT5                                | gpio1_GPIO[17]     | Input        | PU (100K) |  |  |  |
| SD1_DAT2      | E19  | NVCC_SD1     | GPIO         | ALT5                                | gpio1_GPIO[19]     | Input        | PU (100K) |  |  |  |
| SD1_DAT3      | F18  | NVCC_SD1     | GPIO         | ALT5                                | gpio1_GPIO[21]     | Input        | PU (100K) |  |  |  |
| SD2_CLK       | C21  | NVCC_SD2     | GPIO         | ALT5                                | gpio1_GPIO[10]     | Input        | PU (100K) |  |  |  |
| SD2_CMD       | F19  | NVCC_SD2     | GPIO         | ALT5                                | gpio1_GPIO[11]     | Input        | PU (100K) |  |  |  |
| SD2_DAT0      | A22  | NVCC_SD2     | GPIO         | ALT5                                | gpio1_GPIO[15]     | Input        | PU (100K) |  |  |  |
| SD2_DAT1      | E20  | NVCC_SD2     | GPIO         | ALT5                                | gpio1_GPIO[14]     | Input        | PU (100K) |  |  |  |

Table 93. 21 x 21 mm Functional Contact Assignments (continued)

| В | PCIE_RXM | PCIE_RXP   | PCIE_TXP  | GND       | VDD_FA   | USB_OTG_DN | XTALO    | USB_OTG_CHD_B | MLB_SP <sup>1</sup> | MLB_DN <sup>1</sup> | MLB_CP <sup>1</sup> | SATA_TXM   | SD3_CMD    | SATA_RXP  | SD3_DAT3   | NANDF_RB0 | SD4_CMD   | NANDF_D5   | SD4_DAT1 | SD4_DAT6  | SD1_CMD   | SD2_DAT3     | RGMII_RD1    | RGMII_RD2 | RGMII_RXC |
|---|----------|------------|-----------|-----------|----------|------------|----------|---------------|---------------------|---------------------|---------------------|------------|------------|-----------|------------|-----------|-----------|------------|----------|-----------|-----------|--------------|--------------|-----------|-----------|
| U | GND      | JTAG_TRSTB | JTAG_TMS  | GND       | CLK2_N   | GND        | CLK1_N   | GPANAIO       | RTC_XTALO           | GND                 | POR_B               | BOOT_MODE0 | SD3_DAT5   | SATA_REXT | NANDF_CLE  | NANDF_CS1 | NANDF_D1  | NANDF_D7   | SD4_DAT5 | SD1_DAT1  | SD2_CLK   | RGMII_TD0    | RGMII_TX_CTL | RGMII_RD0 | EIM_D16   |
| ٥ | CSI_D1M  | CSI_D1P    | GND       | CSI_REXT  | CLK2_P   | GND        | CLK1_P   | GND           | RTC_XTALI           | USB_H1_VBUS         | PMIC_ON_REQ         | ONOFF      | SD3_DAT4   | SD3_CLK   | SD3_RST    | NANDF_CS3 | NANDF_D3  | SD4_DAT0   | SD4_DAT7 | SD1_CLK   | RGMII_TXC | RGMII_RX_CTL | RGMII_RD3    | EIM_D18   | EIM_D23   |
| ш | CSI_D2M  | CSI_D2P    | CSI_D0P   | CSI_D0M   | GND      | GND        | GND      | NVCC_PLL_OUT  | USB_OTG_VBUS        | USB_H1_DP           | TAMPER              | TEST_MODE  | SD3_DAT6   | SD3_DAT0  | NANDF_WP_B | SD4_CLK   | NANDF_D6  | SD4_DAT4   | SD1_DAT2 | SD2_DAT1  | RGMII_TD2 | EIM_EB2      | EIM_D22      | EIM_D26   | EIM_D27   |
| L | CSI_D3P  | CSI_D3M    | CSI_CLK0P | CSI_CLK0M | GND      | GND        | GND      | GND           | VDDUSB_CAP          | USB_H1_DN           | PMIC_STBY_REQ       | BOOT_MODE1 | SD3_DAT7   | SD3_DAT1  | NANDF_CS0  | NANDF_D2  | SD4_DAT2  | SD1_DAT3   | SD2_CMD  | RGMII_TD1 | EIM_D17   | EIM_D24      | EIM_EB3      | EIM_A22   | EIM_A24   |
| σ | DSI_D0P  | DSI_DOM    | GND       | DSI_REXT  | JTAG_TDI | JTAG_TDO   | PCIE_VPH | PCIE_VPTX     | VDD_SNVS_CAP        | GND                 | VDD_SNVS_IN         | SATA_VPH   | SATA_VP    | NVCC_SD3  | NVCC_NANDF | NVCC_SD1  | NVCC_SD2  | NVCC_RGMII | GND      | EIM_D20   | EIM_D19   | EIM_D25      | EIM_D28      | EIM_A17   | EIM_A19   |
| т | DSI_D1P  | DSI_D1M    | DSI_CLK0M | DSI_CLK0P | JTAG_TCK | JTAG_MOD   | PCIE_VP  | GND           | VDDHIGH_IN          | VDDHIGH_CAP         | VDDARM23_CAP        | GND        | VDDARM_CAP | VDDARM_IN | GND        | VDDSOC_IN | VDDPU_CAP | GND        | EIM_A25  | EIM_D21   | EIM_D31   | EIM_A20      | EIM_A21      | EIM_CS0   | EIM_A16   |

i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1

Package Information and Contact Assignments