E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-20°C ~ 105°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA, FCBGA
Supplier Device Package	624-FCPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q5eym10ad

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

- Nettops (Internet desktop devices)
- High-end mobile Internet devices (MID)
- High-end PDAs
- High-end portable media players (PMP) with HD video capability
- Gaming consoles
- Portable navigation devices (PND)

The i.MX 6Dual/6Quad processors have some very exciting features, for example:

- Applications processors—The processors enhance the capabilities of high-tier portable applications by fulfilling the ever increasing MIPS needs of operating systems and games. Freescale's Dynamic Voltage and Frequency Scaling (DVFS) provides significant power reduction, allowing the device to run at lower voltage and frequency with sufficient MIPS for tasks, such as audio decode.
- Multilevel memory system—The multilevel memory system of each processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processors support many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNANDTM, and managed NAND, including eMMC up to rev 4.4.
- Smart speed technology—The processors have power management throughout the device that enables the rich suite of multimedia features and peripherals to consume minimum power in both active and various low power modes. Smart speed technology enables the designer to deliver a feature-rich product, requiring levels of power far lower than industry expectations.
- Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices by scaling the voltage and frequency to optimize performance.
- Multimedia powerhouse—The multimedia performance of each processor is enhanced by a multilevel cache system, Neon MPE (Media Processor Engine) co-processor, a multi-standard hardware video codec, 2 autonomous and independent image processing units (IPU), and a programmable smart DMA (SDMA) controller.
- Powerful graphics acceleration—Each processor provides three independent, integrated graphics processing units: an OpenGL[®] ES 2.0 3D graphics accelerator with four shaders (up to 200 MT/s and OpenCL support), 2D graphics accelerator, and dedicated OpenVGTM 1.1 accelerator.
- Interface flexibility—Each processor supports connections to a variety of interfaces: LCD controller for up to four displays (including parallel display, HDMI1.4, MIPI display, and LVDS display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces (such as UART, I²C, and I²S serial audio, SATA-II, and PCIe-II).
- Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features are discussed in detail in the i.MX 6Dual/6Quad security reference manual. Contact your local Freescale representative for more information.

Supply for RGMII I/O power group ⁸	NVCC_RGMII	1.15		2.625	V	 1.15 V – 1.30 V in HSIC 1.2 V mode 1.43 V – 1.58 V in RGMII 1.5 V mode 1.70 V – 1.90 V in RGMII 1.8 V mode 2.25 V – 2.625 V in RGMII 2.5 V mode
GPIO supplies ⁸	NVCC_CSI, NVCC_EIM0, NVCC_EIM1, NVCC_EIM2, NVCC_ENET, NVCC_GPIO, NVCC_LCD, NVCC_LCD, NVCC_SD1, NVCC_SD2, NVCC_SD3, NVCC_JTAG	1.65	1.8, 2.8, 3.3	3.6	V	Isolation between the NVCC_EIMx and NVCC_SDx different supplies allow them to operate at different voltages within the specified range. Example: NVCC_EIM1 can operate at 1.8 V while NVCC_EIM2 operates at 3.3 V.
	NVCC_LVDS2P5 ⁹ NVCC_MIPI	2.25	2.5	2.75	V	
HDMI supply	HDMI_VP	0.99	1.1	1.3	V	
voltages	HDMI_VPH	2.25	2.5	2.75	V	
PCIe supply voltages	PCIE_VP	1.023	1.1	1.3	V	
	PCIE_VPH	2.325	2.5	2.75	V	
	PCIE_VPTX	1.023	1.1	1.3	V	
SATA Suppy voltages	SATA_VP	0.99	1.1	1.3	V	
	SATA_VPH	2.25	2.5	2.75	V	
Junction temperature Extended Consumer	ТJ	-20	_	105	°C	See Consumer qualification report for details (including product lifetime information).
Junction temperature Standard Consumer	ТJ	0	_	95	°C	See Consumer qualification report for details (including product lifetime information).

Table 7. Operating Ranges (continued)

¹ Applying the maximum voltage results in maximum power consumption and heat generation. Freescale recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.

² For Quad core system, connect to VDDARM_IN. For Dual core system, may be shorted to GND together with VDDARM23_CAP to reduce leakage.

³ VDDARM_IN and VDDSOC_IN must be at least 125 mV higher than the LDO Output Set Point for correct voltage regulation.

- ⁴ VDDARM_CAP must not exceed VDD_CACHE_CAP by more than 50 mV. VDD_CACHE_CAP must not exceed VDDARM_CAP by more than 200 mV.
- ⁵ VDDSOC_CAP and VDDPU_CAP must be equal.
- ⁶ VDDSOC and VDDPU output voltages must be set according to this rule: VDDARM-VDDSOC/PU<50mV.
- ⁷ While setting VDD_SNVS_IN voltage with respect to Charging Currents and RTC, see Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).
- ⁸ All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or not, and associated I/O pins need to have a pull-up or pull-down resistor applied to limit any floating gate current.
- ⁹ This supply also powers the pre-drivers of the DDR I/O pins; therefore, it must always be provided, even when LVDS is not used.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single output slew rate, measured between Vol(ac) and Voh(ac)	tsr	Driver impedance = 34Ω	2.5	—	5	V/ns
Skew between pad rise/fall asymmetry + skew caused by SSN	t _{SKD}	clk = 533 MHz	_	—	0.1	ns

Table 29. DDR I/O DDR3/DDR3L Mode AC Parameters¹ (continued)

¹ Note that the JEDEC JESD79_3C specification supersedes any specification in this document.

² Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the "true" input signal and Vcp is the "complementary" input signal. The Minimum value is equal to Vih(ac) – Vil(ac).

³ The typical value of Vix(ac) is expected to be about 0.5 * OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac) indicates the voltage at which differential input signal must cross.

4.7.3 LVDS I/O AC Parameters

The differential output transition time waveform is shown in Figure 6.

Figure 6. Differential LVDS Driver Transition Time Waveform

Table 30 shows the AC parameters for LVDS I/O.

Table 30. I/O AC Parameters of LVDS Pad

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Differential pulse skew ¹	t _{SKD}		—	_	0.25	
Transition Low to High Time ²	t _{TLH}	Rload = 100 Ω, Cload = 2 pF	—	_	0.5	ns
Transition High to Low Time ²	t _{THL}		—	_	0.5	
Operating Frequency	f	—	—	600	800	MHz
Offset voltage imbalance	Vos	—	—		150	mV

¹ t_{SKD} = I t_{PHLD} - t_{PLHD} I, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

² Measurement levels are 20-80% from output voltage.

Figure 19. Asynchronous A/D Muxed Write Access

Figure 20. DTACK Read Access (DAP=0)

Ref No.	Parameter	Determination by Synchronous measured parameters ¹	Min	Max (If 132 MHz is supported by SoC)	Unit
WE40	ADV_B Invalid to CSx_B Invalid (ADVL is asserted)	WE7 - WE15 - CSN	_	3 - CSN	ns
WE40A (muxed A/D)	CSx_B Valid to ADV_B Invalid	WE14 - WE6 + (ADVN + ADVA + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	3 + (ADVN + ADVA + 1 - CSA)	ns
WE41	CSx_B Valid to Output Data Valid	WE16 - WE6 - WCSA	_	3 - WCSA	ns
WE41A (muxed A/D)	CSx_B Valid to Output Data Valid	WE16 - WE6 + (WADVN + WADVA + ADH + 1 - WCSA)	_	3 + (WADVN + WADVA + ADH + 1 - WCSA)	ns
WE42	Output Data Invalid to CSx_B Invalid	WE17 - WE7 - CSN	_	3 - CSN	ns
MAXCO	Output max. delay from internal driving ADDR/control FFs to chip outputs.	10	—	_	ns
MAXCSO	Output max. delay from CSx internal driving FFs to CSx out.	10	_	_	
MAXDI	DATA MAXIMUM delay from chip input data to its internal FF	5	—	_	
WE43	Input Data Valid to CSx_B Invalid	MAXCO - MAXCSO + MAXDI	MAXCO - MAXCSO + MAXDI	_	ns
WE44	CSx_B Invalid to Input Data invalid	0	0	_	ns
WE45	CSx_B Valid to BEy_B Valid (Write access)	WE12 - WE6 + (WBEA - WCSA)	_	3 + (WBEA - WCSA)	ns
WE46	BEy_B Invalid to CSx_B Invalid (Write access)	WE7 - WE13 + (WBEN - WCSN)	—	-3 + (WBEN - WCSN)	ns
MAXDTI	DTACK MAXIMUM delay from chip dtack input to its internal FF + 2 cycles for synchronization	10	_	_	_
WE47	Dtack Active to CSx_B Invalid	MAXCO - MAXCSO + MAXDTI	MAXCO - MAXCSO + MAXDTI	_	ns
WE48	CSx_B Invalid to Dtack invalid	0	0	—	ns

Table 39. EIM Asynchronous Timing Parameters Table Relative Chip Select (continued)

¹ For more information on configuration parameters mentioned in this table, see the i.MX 6Solo/6DualLite reference manual.

² In this table, CSA means WCSA when write operation or RCSA when read operation.

³ In this table, CSN means WCSN when write operation or RCSN when read operation.

⁴ t is axi_clk cycle time.

⁵ In this table, ADVN means WADVN when write operation or RADVN when read operation.

п	Parameter	Symbol	CK = 53	Unit	
	i arameter	Symbol	Min	Мах	onn
DDR6	Address output setup time	tis	500	—	ps
DDR7	Address output hold time	tıн	400	—	ps

Table 40. DDR3/DDR3L Timing Parameter Table (continued)

¹ All measurements are in reference to Vref level.

 $^2\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

Figure 23 shows the DDR3/DDR3L write timing diagram. The timing parameters for this diagram appear in Table 41.

Figure 23. DDR3/DDR3L Write Cycle

Table 41. DDR3/DDR3L Write Cycle

п	Parameter	Symbol	CK = 53	2 MHz	Unit
	Falanetei	Symbol	Min	Max	Omt
DDR17	DQ and DQM setup time to DQS (differential strobe)	tDS	240	_	ps
DDR18	DQ and DQM hold time to DQS (differential strobe)	tDH	240	—	ps
DDR21	DQS latching rising transitions to associated clock edges	tDQSS	-0.25	+0.25	tCK
DDR22	DQS high level width	t DQSH	0.45	0.55	tCK
DDR23	DQS low level width	tDQSL	0.45	0.55	tCK

¹ To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window.

² All measurements are in reference to Vref level.

³ Measurements were taken using balanced load and 25 Ω resistor from outputs to VDD_REF.

ID	Parameter	Symbol	Timin T = GPMI Clo	g ck Cycle	Unit	
			Min.	Max.		
NF18	CE# access time	tCE	CE_DELAY*tCK	—	ns	
NF19	CE# hold time	tCH	0.5 *tCK	_	ns	
NF20	Command/address DQ setup time	tCAS	0.5*tCK	_	ns	
NF21	Command/address DQ hold time	tCAH	0.5*tCK	_	ns	
NF22	clock period	tCK	5		ns	
NF23	preamble delay	tPRE	PRE_DELAY*tCK	_	ns	
NF24	postamble delay	tPOST	POST_DELAY*tCK	_	ns	
NF25	CLE and ALE setup time	tCALS	0.5*tCK	_	ns	
NF26	CLE and ALE hold time	tCALH	0.5*tCK	_	ns	
NF27	Data input to first DQS latching transition	tDQSS	tCK	—	ns	

Table 47. Source Synchronous Mode Timing Parameters¹

GPMI's Source sync mode output timing could be controlled by module's internal register, say GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers' settings. In the above table, we use CE_DELAY/PRE_DELAY/POST_DELAY to represent each of these settings.

Figure 36 shows the timing diagram of DQS/DQ read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample DQ[7:0] at both rising and falling edge of an delayed DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

ID	Parameter ^{1,2}	Symbol	Expression ²	Min	Max	Condition ³	Unit
81	SCKT rising edge to FST out (wr) low ⁵			_	22.0 12.0	x ck i ck	ns
82	SCKT rising edge to FST out (wI) high	_	_	_	19.0 9.0	x ck i ck	ns
83	SCKT rising edge to FST out (wI) low	_		_	20.0 10.0	x ck i ck	ns
84	SCKT rising edge to data out enable from high impedance	_		_	22.0 17.0	x ck i ck	ns
86	SCKT rising edge to data out valid	_		_	19.0 13.0	x ck i ck	ns
87	SCKT rising edge to data out high impedance ⁶⁷	_		_	21.0 16.0	x ck i ck	ns
89	FST input (bl, wr) setup time before SCKT falling edge ⁵			2.0 18.0		x ck i ck	ns
90	FST input (wl) setup time before SCKT falling edge		_	2.0 18.0	_	x ck i ck	ns
91	FST input hold time after SCKT falling edge	_		4.0 5.0	—	x ck i ck	ns
95	HCKR/HCKT clock cycle	—	2 x T _C	15	_	—	ns
96	HCKT input rising edge to SCKT output	—	—	—	18.0	—	ns
97	HCKR input rising edge to SCKR output	_	_	_	18.0	—	ns

Table 51. Enhanced Serial Audio Interface (ESAI) Timing (continued)

¹ i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that SCKT and SCKR are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that SCKT and SCKR are the same clock)

- ² bl = bit length
 - wl = word length
 - wr = word length relative
- ³ SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

ID	Parameter	Symbols	Min	Max	Unit
	eSDHC Input/Card Outputs CMD, DA	T (Reference to	CLK)		
SD7	eSDHC Input Setup Time	t _{ISU}	2.5	—	ns
SD8	eSDHC Input Hold Time ⁴	t _{IH}	5.6	—	ns

Table 52. SD/eMMC4.3 Interface Timing Specification (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0-25 MHz. In high-speed mode, clock frequency can be any value between 0-50 MHz.

³ In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz.

⁴To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.11.4.2 eMMC4.4 (Dual Data Rate) eSDHCv3 AC Timing

Figure 44 depicts the timing of eMMC4.4. Table 53 lists the eMMC4.4 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).

Figure 44. eMMC4.4 Timing

Table 53. eMMC4.4 Interface Timing Specification

ID	Parameter	Symbols	Min	Max	Unit
	Card Input	Clock			
SD1	Clock Frequency (EMMC4.4 DDR)	f _{PP}	0	52	MHz
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz
	uSDHC Output / Card Inputs CM	ID, DAT (Refere	nce to CLK)		
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns

Figure 56. Source Termination

Table 61. Electrical Characteristic

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		MI				
avddtmds	Termination supply voltage	-	3.15	3.3	3.45	V
R _T	Termination resistance	-	45	50	55	Ω
		TMDS drivers DC specification	ons			
V _{OFF}	Single-ended standby voltage	RT = 50 Ω	avo	dtmds ± 10	mV	mV
V _{SWING}	Single-ended output swing voltage	For measurement conditions and definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	-	600	mV
V _H	Single-ended output high voltage	If attached sink supports TMDSCLK < or = 165 MHz	avo	mV		
	For definition, see the second figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 200 mV	-	avddtmds + 10 mV	mV
VL	VL Single-ended output low voltage If attached sink supports TMDSCLK < or = 165 MHz		avddtmds – 600 mV	-	avddtmds - 400mV	mV
	figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 700 mV	-	avddtmds - 400 mV	mV

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.	-	50	-	200	Ω
		Hot plug detect specificatio	ns			
HPD ^{VH}	Hot plug detect high range	-	2.0	-	5.3	V
VHPD VL	Hot plug detect low range	-	0	-	0.8	V
HPD z	Hot plug detect input impedance	-	10	-	-	kΩ
HPD t	Hot plug detect time delay	-	-	-	100	μs

Table 61. Electrical Characteristics (continued)

4.11.8 Switching Characteristics

Table 62 describes switching characteristics for the HDMI 3D Tx PHY. Figure 57 to Figure 62 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

Figure 57. TMDS Clock Signal Definitions

_	Differential signal undershoot	Referred to 2x V _{SWING}	—	—	25	%			
	Data and Control Interface Specifications								
t _{Power-up} 2	HDMI 3D Tx PHY power-up time	From power-down to TX_READY assertion	—	_	3.35	ms			

¹ Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.

² For information about latencies and associated timings, see Section 4.11.7.1, "Latencies and Timing Information."

4.11.9 I²C Module Timing Parameters

This section describes the timing parameters of the I^2C module. Figure 63 depicts the timing of I^2C module, and Table 63 lists the I^2C module timing characteristics.

Figure 63. I²C Bus Timing

Table 63.	I ² C Module	Timing	Parameters
-----------	-------------------------	--------	------------

	Parameter	Standa	ard Mode	Fast Mo	Unit	
	Falameter	Standard Mode Fast Mode Min Max Min Max 10 - 2.5 - 4.0 - 0.6 - 4.0 - 0.6 - 4.0 - 0.6 - 4.0 - 0.6 - 4.0 - 0.6 - 4.0 - 0.6 - 4.1 3.45^2 0^1 0.9^2 4.7 - 1.3 - 100 - 0.6 - 250 - 100^3 - RT condition 4.7 - 1.3 -	Onnt			
IC1	I2CLK cycle time	10	_	2.5	_	μs
IC2	Hold time (repeated) START condition	4.0	_	0.6	_	μs
IC3	Set-up time for STOP condition	4.0	_	0.6	_	μs
IC4	Data hold time	0 ¹	3.45 ²	01	0.9 ²	μs
IC5	HIGH Period of I2CLK Clock	4.0	_	0.6	_	μs
IC6	LOW Period of the I2CLK Clock	4.7	_	1.3	_	μs
IC7	Set-up time for a repeated START condition	4.7	_	0.6	_	μs
IC8	Data set-up time	250	_	100 ³	_	ns
IC9	Bus free time between a STOP and START condition	4.7	_	1.3	_	μs
IC10	Rise time of both I2DAT and I2CLK signals	—	1000	$20 + 0.1 C_b^4$	300	ns
IC11	Fall time of both I2DAT and I2CLK signals	—	300	$20 + 0.1 C_b^4$	300	ns
IC12	Capacitive load for each bus line (C_b)	—	400	—	400	pF

4.11.10.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, "Gated Clock Mode,") except for the CSIx_HSYNC signal, which is not used (see Figure 65). All incoming pixel clocks are valid and cause data to be latched into the input FIFO. The CSIx_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

Figure 65. Non-Gated Clock Mode Timing Diagram

The timing described in Figure 65 is that of a typical sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered CSIx_VSYNC; active-high/low CSIx_HSYNC; and rising/falling-edge triggered CSIx_PIX_CLK.

i.MX 6Dual/6Quad									
	RGB,	1	RGB/TV	Comment ¹					
Port Name (x = 0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ²	16-bit YCrCb	20-bit YCrCb		
DISPx_DAT22	DAT[22]	—	—	R[6]	—	_	_	_	
DISPx_DAT23	DAT[23]	-	—	R[7]	—	—	—	_	
DIx_DISP_CLK				PixCLK	•	•	1	—	
DIx_PIN1								May be required for anti-tearing	
DIx_PIN2				HSYNC				—	
DIx_PIN3				VSYNC				VSYNC out	
DIx_PIN4				_			Additional frame/row synchronous		
DIx_PIN5								- signals with programmable timing	
DIx_PIN6									
DIx_PIN7				_					
DIx_PIN8				_					
DIx_D0_CS								—	
DIx_D1_CS				_				Alternate mode of PWM output for contrast or brightness control	
DIx_PIN11				_				—	
DIx_PIN12				_				—	
DIx_PIN13				_				Register select signal	
DIx_PIN14					Optional RS2				
Dix_PIN15			[) DRDY/D	/			Data validation/blank, data enable	
DIx_PIN16				_				Additional data synchronous	
DIx_PIN17				Q				features/timing	

Table 66. Video Signal Cross-Reference (continued)

¹ Signal mapping (both data and control/synchronization) is flexible. The table provides examples.

² This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data during blanking intervals is not supported.

NOTE

Table 66 provides information for both the Disp0 and Disp1 ports. However, Disp1 port has reduced pinout depending on IOMUXC configuration and therefore may not support all the above configurations. See the IOMUXC table for details.

4.11.10.5 IPU Display Interface Timing

The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There are two groups of external interface pins to provide synchronous and asynchronous controls.

4.11.10.5.1 Synchronous Controls

The synchronous control changes its value as a function of a system or of an external clock. This control has a permanent period and a permanent waveform.

There are special physical outputs to provide synchronous controls:

- The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display.
- The ipp_pin_1- ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display.

The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYCN) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control's changing points with half DI_CLK resolution. A full description of the counter system can be found in the IPU chapter of the i.MX 6Dual/6Quad reference manual.

4.11.10.5.2 Asynchronous Controls

The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data.

There are special physical outputs to provide asynchronous controls, as follows:

- The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
- The ipp_pin_11- ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data-oriented signal to display.

NOTE

The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data on the bus, a new internal start (local start point) is generated. The signal generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution.

4.11.13.2 Pipelined Data Flow

Figure 79. Pipelined Data Flow Ready Signal Timing (Frame Transmission Mode)

4.11.13.3 Receiver Real-Time Data Flow

Figure 80. Receiver Real-Time Data Flow READY Signal Timing

4.11.13.4 Synchronized Data Flow Transmission with Wake

Figure 81. Synchronized Data Flow Transmission with WAKE

4.11.19.1 SSI Transmitter Timing with Internal Clock

Figure 93 depicts the SSI transmitter internal clock timing and Table 79 lists the timing parameters for the SSI transmitter internal clock.

Note: SRXD input in synchronous mode only

Figure 93. SSI Transmitter Internal Clock Timing Diagram

ID	Parameter	Min	Мах	Unit						
Internal Clock Operation										
SS1	(Tx/Rx) CK clock period	81.4	—	ns						
SS2	(Tx/Rx) CK clock high period	36.0	_	ns						
SS4	(Tx/Rx) CK clock low period	36.0	_	ns						
SS6	(Tx) CK high to FS (bl) high	—	15.0	ns						
SS8	(Tx) CK high to FS (bl) low	—	15.0	ns						
SS10	(Tx) CK high to FS (wl) high	—	15.0	ns						
SS12	(Tx) CK high to FS (wl) low	_	15.0	ns						
SS14	(Tx/Rx) Internal FS rise time	—	6.0	ns						
SS15	(Tx/Rx) Internal FS fall time	—	6.0	ns						
SS16	(Tx) CK high to STXD valid from high impedance	—	15.0	ns						
SS17	(Tx) CK high to STXD high/low	—	15.0	ns						
SS18	(Tx) CK high to STXD high impedance	—	15.0	ns						

Table 79. SSI Transmitter Timing with Internal Clock

4.11.20.2.3 UART IrDA Mode Timing

The following subsections give the UART transmit and receive timings in IrDA mode.

UART IrDA Mode Transmitter

Figure 99 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 86 lists the transmit timing characteristics.

Figure 99. UART IrDA Mode Transmit Timing Diagram

Table 86. IrDA Mode Transmit Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA3	Transmit Bit Time in IrDA mode	t _{TIRbit}	$1/F_{baud_rate}^1 - T_{ref_clk}^2$	1/F _{baud_rate} + T _{ref_clk}	
UA4	Transmit IR Pulse Duration	t _{TIRpulse}	$(3/16)^*(1/F_{baud_rate}) - T_{ref_clk}$	$(3/16)^{*}(1/F_{baud_rate}) + T_{ref_clk}$	

¹ F_{baud_rate} : Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

UART IrDA Mode Receiver

Figure 100 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 87 lists the receive timing characteristics.

Figure 100. UART IrDA Mode Receive Timing Diagram

Table 87. IrDA Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA5	Receive Bit Time ¹ in IrDA mode	t _{RIRbit}	$1/F_{baud_rate}^2 - 1/(16*F_{baud_rate})$	1/F _{baud_rate} + 1/(16*F _{baud_rate})	_
UA6	Receive IR Pulse Duration	t _{RIRpulse}	1.41 μs	(5/16)*(1/F _{baud_rate})	_

¹ The UART receiver can tolerate 1/(16*F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16*F_{baud_rate}).

² F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

Package Information and Contact Assignments

		ICAL OUTLINES DOCUMENT NO:	
freescale emiconductor	DICTIONARY	PAGE:	2197
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED IRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS RRE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRA	WING REV:	А
 DELECTIONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED VERTURATED VERSIONS IN MILLIMET INTER DOLARING CONTROLLED COPY'IN RED. NOTES: ALL DIMENSIONING AND TOLERAN DIMENSIONING AND TOLERAN MAXIMUM SOLDER BALL DIA DATUM A, THE SEATING PLA SOLDER BALLS. PARALLELISM MEASUREMENT OF PACKAGE. 	DO NOT SCALE THIS DRA TERS. ICING PER ASME Y14.5M-19 METER MEASURED PARALLEL ANE, IS DETERMINED BY THE SHALL EXCLUDE ANY EFFE	MING REV: 94. . TO DATUM A. : SPHERICAL CROW CT OF MARK ON T	A WNS OF THE TOP SURFACE
	BGA. Cas	E NUMBER:	2197-01
21 X 21 PKG, 0.8	MM PITCH, STA	NDARD:	JEDEC MS-034
NO LID	SHE	ET:	2

Figure 103. 21 x 21 mm Bare Die Package Top, Bottom, and Side Views

Package Information and Contact Assignments

				Out of Reset Condition ¹			
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/Output	Value
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDCLK1	Input	Hi-Z
DRAM_SDCLK_1_B	AE14	NVCC_DRAM	DDRCLK		DRAM_SDCLK_1_B	—	_
DRAM_SDODT0	AC16	NVCC_DRAM	DDR	ALT0	mmdc_DRAM_ODT[0]	Output	0
DRAM_SDODT1	AB17	NVCC_DRAM	DDR	ALT0	mmdc_DRAM_ODT[1]	Output	0
DRAM_SDQS0	AE3	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[0]	Input	Hi-Z
DRAM_SDQS0_B	AD3	NVCC_DRAM	DDRCLK		DRAM_SDQS0_B	—	_
DRAM_SDQS1	AD6	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[1]	Input	Hi-Z
DRAM_SDQS1_B	AE6	NVCC_DRAM	DDRCLK		DRAM_SDQS1_B	—	_
DRAM_SDQS2	AD8	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[2]	Input	Hi-Z
DRAM_SDQS2_B	AE8	NVCC_DRAM	DDRCLK		DRAM_SDQS2_B	—	_
DRAM_SDQS3	AC10	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[3]	Input	Hi-Z
DRAM_SDQS3_B	AB10	NVCC_DRAM	DDRCLK		DRAM_SDQS3_B	—	_
DRAM_SDQS4	AD18	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[4]	Input	Hi-Z
DRAM_SDQS4_B	AE18	NVCC_DRAM	DDRCLK		DRAM_SDQS4_B	—	_
DRAM_SDQS5	AD20	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[5]	Input	Hi-Z
DRAM_SDQS5_B	AE20	NVCC_DRAM	DDRCLK		DRAM_SDQS5_B	—	_
DRAM_SDQS6	AD23	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[6]	Input	Hi-Z
DRAM_SDQS6_B	AE23	NVCC_DRAM	DDRCLK		DRAM_SDQS6_B	—	_
DRAM_SDQS7	AA25	NVCC_DRAM	DDRCLK	ALT0	mmdc_DRAM_SDQS[7]	Input	Hi-Z
DRAM_SDQS7_B	AA24	NVCC_DRAM	DDRCLK		DRAM_SDQS7_B	—	_
DRAM_SDWE	AB16	NVCC_DRAM	DDR	ALT0	mmdc_DRAM_SDWE	Output	0
DSI_CLK0M	H3	NVCC_MIPI			DSI_CLK0M	—	—
DSI_CLK0P	H4	NVCC_MIPI			DSI_CLK0P	—	—
DSI_D0M	G2	NVCC_MIPI			DSI_D0M	—	—
DSI_D0P	G1	NVCC_MIPI			DSI_D0P	—	—
DSI_D1M	H2	NVCC_MIPI			DSI_D1M	—	—
DSI_D1P	H1	NVCC_MIPI			DSI_D1P	—	
EIM_A16	H25	NVCC_EIM1	GPIO	ALT0	eim_EIM_A[16]	Output	0
EIM_A17	G24	NVCC_EIM1	GPIO	ALT0	eim_EIM_A[17]	Output	0
EIM_A18	J22	NVCC_EIM1	GPIO	ALT0	eim_EIM_A[18]	Output	0

Table 93. 21 x 21 mm	Functional Contact	Assignments	(continued)
----------------------	--------------------	-------------	-------------