

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	48
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 19x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-22
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe162fl20f80laafxqsa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2012-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XE162xL Data Sheet

Revision History: V1.2 2012-07

Previous Versions: V1.0 2010-12, V1.1 2011-09

Page	Subjects (major changes since last revision)
55, 56	The value of absolute sum of overload currents parameter in absolute maximum rating parameter and operating conditions tables are switched.
77	Table description on coding of bit field LEVxV is updated.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

General Device Information

2.1 Pin Configuration and Definition

The pins of the XE162xL are described in detail in **Table 6**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Figure 2 XE162xL Pin Configuration (top view)

General Device Information

Table	Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
34	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	CLKIN1	I	St/B	Clock Signal Input 1		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input		
	ESR2_6	I	St/B	ESR2 Trigger Input 6		
35	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output		
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output		
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output		
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.		
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input		
	ESR2_7	I	St/B	ESR2 Trigger Input 7		
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input		
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input		
36	P2.8	O0 / I	St/B	Bit 8 of Port 2, General Purpose Input/Output		
	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output		
	EXTCLK	O2	St/B	Programmable Clock Signal Output		
	CC2_CC21	O3 / I	St/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.		
	U0C1_DX1D	I	St/B	USIC0 Channel 1 Shift Clock Input		
37	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output		
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.		
	C1	I	St/B	Configuration Pin 1		
	TCK_A	I	St/B	DAP0/JTAG Clock Input		

General Device Information

Table	able 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
50	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_COU T63	O2	St/B	CCU60 Channel 3 Output		
	CCU63_COU T61	O3	St/B	CCU63 Channel 1 Output		
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input		
	CCU60_CCP OS0A	1	St/B	CCU60 Position Input 0		
	T4INB	I	St/B	GPT12E Timer T4 Count/Gate Input		
51	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output		
	U0C0_MCLK OUT	O1	St/B	USIC0 Channel 0 Master Clock Output		
	U0C1_SELO 0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output		
	U1C0_SCLK OUT	O3	St/B	USIC1 Channel 0 Shift Clock Output		
	CCU60_CCP OS1A	1	St/B	CCU60 Position Input 1		
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input		
	BRKIN_B	I	St/B	OCDS Break Signal Input		
	T3EUDB	I	St/B	GPT12E Timer T3 External Up/Down Control Input		
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input		
	ESR2_11	I	St/B	ESR2 Trigger Input 11		

Functional Description

Figure 5 CAPCOM Unit Block Diagram

Functional Description

Figure 6 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

Functional Description

Functional Description

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- Set of independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.14 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.15 Window Watchdog Timer

The Window Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Window Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Window Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Window Watchdog Timer overflows, generating a reset request.

The Window Watchdog Timer has a 'programmable window boundary', it disallows refresh during the Window Watchdog Timer's count-up. A refresh during this window-boundary will cause the Window Watchdog Timer to also generate a reset request.

The Window Watchdog Timer is a 16-bit timer clocked with either the system clock or the independent wake-up oscillator clock, divided by 16,384 or 256. The Window Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Window Watchdog Timer is reloaded.

Functional Description

When clocked by $f_{\rm SYS}$ = 80 MHz, time intervals between 12.5 ns and 13.4 s can be monitored.

When clocked by $f_{\rm WU}$ = 500 kHz, time intervals between 2.0 µs and 2147.5 s can be monitored.

The default Watchdog Timer interval after power-up is 0.13 s (@ f_{WU} = 500 kHz).

3.16 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE162xL from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on the EXTCLK pin.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock f_{ADCI}	INPCRx.7-0 (STC)	Sample Time ¹⁾
000000 _B	f _{SYS}	00 _H	$t_{ADCI} \times 2$
000001 _B	f _{SYS} / 2	01 _H	$t_{ADCI} \times 3$
000010 _B	f _{SYS} / 3	02 _H	$t_{ADCI} \times 4$
:	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$
111110 _B	f _{SYS} / 63	FE _H	$t_{ADCI} imes 256$
111111 _B	f _{SYS} / 64	FF _H	$t_{ADCI} imes 257$

Table 23 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 4 = 20 \text{ MHz}$, i.e. $t_{ADCI} = 50 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 2 = 100 \text{ ns}$
Conversion 12	-bit:	
	<i>t</i> _{C12}	= $16 \times t_{ADCI}$ + 2 × t_{SYS} = 16 × 50 ns + 2 × 12.5 ns = 0.825 µs
Conversion 10	-bit:	
	<i>t</i> _{C10}	= $12 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 12×50 ns + 2×12.5 ns = 0.625 μ s
Conversion 8-b	oit:	
	t _{C8}	= $10 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 10×50 ns + 2×12.5 ns = 0.525 µs
Converter Timi	ng Exar	nple B:
Assumptions:	$f_{\rm SYS}$	= 66 MHz (i.e. t_{SYS} = 15.2 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\sf ADCI}$	$= f_{SYS} / 4 = 16.5 \text{ MHz}$, i.e. $t_{ADCI} = 60.6 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 2 = 121.2 \text{ ns}$

Conversion 12-bit:

$$t_{C12} = 16 \times t_{ADCI} + 2 \times t_{SYS} = 16 \times 60.6 \text{ ns} + 2 \times 15.2 \text{ ns} = 1.0 \ \mu \text{s}$$

Conversion 10-bit:

$$t_{C10} = 12 \times t_{ADCI} + 2 \times t_{SYS} = 12 \times 60.6 \text{ ns} + 2 \times 15.2 \text{ ns} = 0.758 \ \mu \text{s}$$

Conversion 8-bit:

 $t_{C8} = 10 \times t_{ADCI} + 2 \times t_{SYS} = 10 \times 60.6 \text{ ns} + 2 \times 15.2 \text{ ns} = 0.636 \text{ } \mu\text{s}$

4.6 Flash Memory Parameters

The XE162xL is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XE162xL's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module	$N_{\rm PP}{\rm SR}$	-	-	2 ¹⁾		$N_{\rm FL_RD} \leq 1$
program/erase limit depending on Flash read activity		_	-	1 ²⁾		N _{FL_RD} > 1
Flash erase endurance for security pages	$N_{\rm SEC}{ m SR}$	10	-	-	cycle s	$t_{\text{RET}} \ge 20$ years
Flash wait states ³⁾	N _{WSFLASH} SR	1	-	-		f _{SYS} ≤ 8 MHz
		2	-	-		$f_{\rm SYS} \le 13 \ \rm MHz$
		3	-	-		$f_{\rm SYS}$ \leq 17 MHz
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	3 ⁴⁾	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm ER} \le$ 1,000 cycl es
Drain disturb limit	$N_{\rm DD}{ m SR}$	32	-	-	cycle s	

Table 27Flash Parameters

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{SYS} = f_{IN}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.7.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $({\bf F} = {\bf N} / ({\bf P} \times {\bf K2})).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

4.7.3 External Clock Input Parameters

These parameters specify the external clock generation for the XE162xL. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.
- By supplying an **external clock signal**. This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	_	40	MHz	Input= Clock Signal
		4	-	16	MHz	Input= Crystal or Resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	_	ns	
Input clock low time	t_2 SR	6	-	_	ns	
Input clock rise time	t ₃ SR	_	8	8	ns	
Input clock fall time	t ₄ SR	_	8	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{\rm AX1}{ m SR}$	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	_	-	V	$f_{OSC} \ge 4 \text{ MHz};$ $f_{OSC} \le 16 \text{ MHz}$
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\text{OSC}} \ge$ 16 MHz; $f_{\text{OSC}} \le$ 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\rm OSC} \ge$ 25 MHz; $f_{\rm OSC} \le$ 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}~{ m SR}$	-1.7 + V _{DDIM}	-	1.7	V	2)

 Table 29
 External Clock Input Characteristics

 The amplitude voltage V_{AX1} refers to the offset voltage V_{OFF}. This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by V_{IX1}.

4.7.4 Pad Properties

The output pad drivers of the XE162xL can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 30 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	3.0	mA	Driver_Strength = Medium
		_	-	5.0	mA	Driver_Strength = Strong
		_	-	0.5	mA	Driver_Strength = Weak
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	1.0	mA	Driver_Strength = Medium
		_	-	1.6	mA	Driver_Strength = Strong
		_	-	0.25	mA	Driver_Strength = Weak

 Table 30
 Standard Pad Parameters for Upper Voltage Range

Table 31	Standard Pad Parameters for Lower Voltage Range (co	ont'd)
----------	---	--------

Parameter	Symbol	Values			Unit	Note /										
		Min.	Тур.	Max.		Test Condition										
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	0.8	mA	Driver_Strength = Medium										
		-	_	1.0	mA	Driver_Strength = Strong										
		-	-	0.15	mA	Driver_Strength = Weak										
Rise and Fall times (10% - 90%)	t _{RF} CC	-	_	73 + 0.85 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium										
		-	-	6+0.6 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Soft										
														-	-	33 + 0.6 x C _L
		-	-	385 + 3.25 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Weak										

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 25 mA.

Table 33 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= lower

Table 33	USIC SSC Master	Mode Timing for	Lower Voltage Range
----------	-----------------	-----------------	---------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 10 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 9 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-7	-	11	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	-	_	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 34 is valid under the following conditions: C_L = 20 pF; *SSC*= slave ; voltage_range= upper

Table 34	USIC SSC Slave Mod	le Timing for	Upper Voltage Range
----------	--------------------	---------------	----------------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	10	_	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	_	-	ns	

Electrical Parameters

Figure 23 DAP Timing Host to Device

Figure 24 DAP Timing Device to Host

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.

Package and Reliability

5 Package and Reliability

The XE166 Family devices use the package type:

• PG-LQFP (Plastic Green - Low Profile Quad Flat Package)

The following specifications must be regarded to ensure proper integration of the XE162xL in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	-	5.4 imes 5.4	mm	-
Power Dissipation	P _{DISS}	-	0.7	W	-
Thermal resistance Junction-Ambient	R _{OJA}	_	65	K/W	No thermal via, 2-layer ¹⁾
			47	K/W	No thermal via, 4-layer ²⁾
			45	K/W	4-layer, no pad ³⁾
			32	K/W	4-layer, pad4)

Table 40 Package Parameters (PG-LQFP-64-22)

 Device mounted on a 2-layer JEDEC board (according to JESD 51-3) without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XE162xL is a member of the XE166 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In