

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	48
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 19x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-22
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe162hl20f80laafxqsa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1.2 **Definition of Feature Variants**

The XE162xL types are offered with several Flash memory sizes. Table 3 and Table 4 describe the location of the available Flash memory.

Table 3 **Continuous Flash Memory Ranges**

Total Flash Size	1st Range ¹⁾	2nd Range	3rd Range
160 Kbytes	C0'0000 _H	C1'0000 _H	C4'0000 _H
	C0'EFFF _H	C2'0FFF _H	C4'7FFF _H
96 Kbytes	C0'0000 _H	C1'0000 _H	C4'0000 _H
	C0'EFFF _H	C1'0FFF _H	C4'7FFF _H

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 4 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 0 ¹⁾	Flash 1
160	128	32
96	64	32

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFF_H).

The XE162xL types are offered with different interface options. Table 5 lists the available channels for each option.

Total Number Available Channels / Message Objects 19 ADC0 channels CH[11:0], CH13, CH[20:15] 2 CAN nodes CAN0. CAN1 32 message objects

U0C0, U0C1, U1C0, U1C1

Table 5 Interface Channel Association

4 serial channels

XE162FL, XE162HL XE166 Family / Econo Line

General Device Information

Table	e 6 Pin De	finitior	ns and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
5	P6.2	O0 / I	DA/B	Bit 2 of Port 6, General Purpose Input/Output
	ADC0_CH18	I	DA/B	Analog Input Channel 18 for ADC0
	EMUX2	01	DA/B	External Analog MUX Control Output 2 (ADC0)
	T6OUT	O2	DA/B	GPT12E Timer T6 Toggle Latch Output
	U1C1_SCLK OUT	O3	DA/B	USIC1 Channel 1 Shift Clock Output
	U1C1_DX1C	I	DA/B	USIC1 Channel 1 Shift Clock Input
6	P6.1	O0 / I	DA/B	Bit 1 of Port 6, General Purpose Input/Output
	ADC0_CH17	I	DA/B	Analog Input Channel 17 for ADC0
	EMUX1	O1	DA/B	External Analog MUX Control Output 1 (ADC0)
	T3OUT	O2	DA/B	GPT12E Timer T3 Toggle Latch Output
	U1C1_DOUT	O3	DA/B	USIC1 Channel 1 Shift Data Output
	ADC0_REQT RyE	I	DA/B	External Request Trigger Input for ADC0
	CCU63_CTR APB	I	DA/B	CCU63 Emergency Trap Input
	U1C1_DX0A	I	DA/B	USIC1 Channel 1 Shift Data Input
	ESR1_6	I	DA/B	ESR1 Trigger Input 6
7	P6.0	O0 / I	DA/B	Bit 0 of Port 6, General Purpose Input/Output
	ADC0_CH16	I	DA/B	Analog Input Channel 16 for ADC0
	EMUX0	01	DA/B	External Analog MUX Control Output 0 (ADC0)
	CCU63_COU T61	O2	DA/B	CCU63 Channel 1 Output
	BRKOUT	O3	DA/B	OCDS Break Signal Output
	ADC0_REQG TyG	I	DA/B	External Request Gate Input for ADC0
	U1C1_DX0E	I	DA/B	USIC1 Channel 1 Shift Data Input
11	P5.0	I	In/B	Bit 0 of Port 5, General Purpose Input
	ADC0_CH0	I	In/B	Analog Input Channel 0 for ADC0
12	P5.1	1	In/B	Bit 1 of Port 5, General Purpose Input
	ADC0_CH1	1	In/B	Analog Input Channel 1 for ADC0

XE162FL, XE162HL XE166 Family / Econo Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
34	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output				
	U0C0_SELO 0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output				
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output				
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.				
	CLKIN1	I	St/B	Clock Signal Input 1				
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input				
	RxDC0D	I	St/B					
	ESR2_6	I	St/B	ESR2 Trigger Input 6				
35	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output				
	U0C1_SELO 0	O1	St/B	USIC0 Channel 1 Select/Control 0 Output				
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output				
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.				
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input				
	ESR2_7	I	St/B	ESR2 Trigger Input 7				
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input				
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input				
36	P2.8	O0 / I	St/B	Bit 8 of Port 2, General Purpose Input/Output				
	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output				
	EXTCLK	O2	St/B	Programmable Clock Signal Output				
	CC2_CC21	O3 / I	St/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.				
	U0C1_DX1D	Ι	St/B	USIC0 Channel 1 Shift Clock Input				
37	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output				
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.				
	C1	I	St/B	Configuration Pin 1				
	TCK_A	I	St/B	DAP0/JTAG Clock Input				

XE162FL, XE162HL XE166 Family / Econo Line

General Device Information

Table	e 6 Pin De	finitior	ns and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
52	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output
	U0C0_SELO 4	O1	St/B	USIC0 Channel 0 Select/Control 4 Output
	U0C1_MCLK OUT	O2	St/B	USIC0 Channel 1 Master Clock Output
	TxDC1	O3	St/B	CAN Node 1 Transmit Data Output
	CCU60_CCP OS2A	I	St/B	CCU60 Position Input 2
	TCK_B	I	St/B	DAP0/JTAG Clock Input
	T3INB	I	St/B	GPT12E Timer T3 Count/Gate Input
53	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input
54	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	ESR2_2	I	St/B	ESR2 Trigger Input 2
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input
55	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes				
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbytes					
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes					
Data SRAM (DSRAM)	00'C800 _H	00'DFFF _H	6 Kbytes					
Reserved for DSRAM	00'8000 _H	00'C7FF _H	18 Kbytes					
External memory area	00'000 _H	00'7FFF _H	32 Kbytes					

Table 8XE162xL Memory Map (cont'd)¹⁾ (cont'd)

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".

3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

4) Several pipeline optimizations are not active within the external IO area.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

4 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

6 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

1024 bytes (2 \times **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XE166 Family. In order to ensure upward compatibility they should either not be accessed or written with zeros.

The on-chip Flash memory stores code, constant data, and control data. The 160 Kbytes of on-chip Flash memory consist of 1 module of 32 Kbytes (preferably for data storage) and 1 module of 128 Kbytes. Each module is organized in 4-Kbyte sectors. The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel.

For Flash parameters, please see Section 4.6.

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

XE162FL, XE162HL XE166 Family / Econo Line

Functional Description

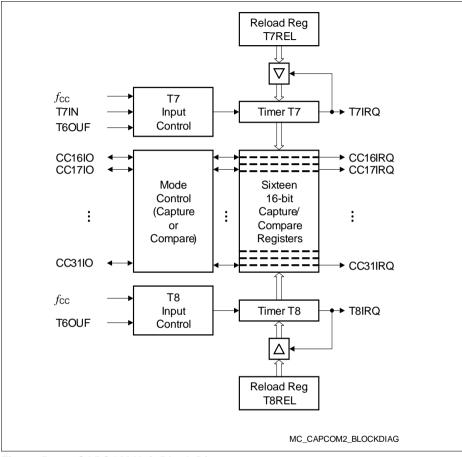


Figure 5 CAPCOM Unit Block Diagram

3.9 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin (TxIN) which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to the basic operating modes, T2 and T4 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be continuously generated without software intervention.

Note: Signals T2IN, T2EUD, T4EUD, T6IN and T6EUD are not connected to pins.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

3.17 Parallel Ports

The XE162xL provides up to 48 I/O lines which are organized into 3 input/output ports and 1 input port. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Group	Width	I/O	Connected Modules
P2	14	I/O	Analog inputs, ADC, CAN, CC2, CCU6, DAP/JTAG, GPT12E, SCU, USIC
P5	14	I	Analog inputs, CCU6, JTAG, GPT12E, CC2
P6	4	I/O	Analog inputs, ADC, CCU6, JTAG, GPT12E, USIC
P10	16	I/O	CAN, CCU6, GPT12E, DAP/JTAG, SPD, USIC

Table 10Summary of the XE162xL's Ports

3.18 Power Management

The XE162xL provides the means to control the power it consumes either at a given time or averaged over a certain duration.

Two mechanisms can be used (and partly in parallel):

 Clock Generation Management controls the frequency of internal and external clock signals. Clock signals for currently inactive parts of logic are disabled automatically. The user can drastically reduce the consumed power by reducing the XE162xL system clock frequency.

External circuits can be controlled using the programmable frequency output EXTCLK.

 Peripheral Management permits temporary disabling of peripheral modules. Each peripheral can be disabled and enabled separately. The CPU can be switched off while the peripherals can continue to operate.

Wake-up from power reduction modes can be triggered either externally with signals generated by the external system, or internally by the on-chip wake-up timer. This supports intermittent operation of the XE162xL by generating cyclic wake-up signals. Full performance is available to quickly react to action requests while the intermittent sleep phases greatly reduce the average system power consumption.

Note: When selecting the supply voltage and the clock source and generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states. Recommended sequences are provided which ensure the intended operation of power supply system and clock system. Please refer to the Programmer's Guide.

XE162FL, XE162HL XE166 Family / Econo Line

Electrical Parameters

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input high voltage (all except XTAL1)	$V_{IH}SR$	$0.7 ext{ x}$ $V_{ ext{DDP}}$	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{IL}SR$	-0.3	-	0.3 x V _{DDP}	V	
Output High voltage ⁶⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\text{OH}} \ge I_{\text{OHmax}}$
		V _{DDP} - 0.4	-	-	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{7}$
Output Low Voltage6)	$V_{\rm OL}{\rm CC}$	-	-	0.4	V	$I_{\rm OL} \le I_{\rm OLnom}^{8)}$
		-	-	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}$

Table 17 DC Characteristics for Lower Voltage Range (cont'd)

 Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.

- 2) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm OV}$.
- 3) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ-) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device.
- 5) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level.
- 6) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified.
- 8) As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL} -> V_{SS} , V_{OH} -> V_{DDP}). However, only the levels for nominal output currents are verified.

- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) V_{LV} = selected SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for *t*_{SPO} Timing Measurement

The time required for the transition from **Power-On** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0 V and remains above 3.0 V even though the XE162xL is starting up. No debugger is attached.

Start condition: Power on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from Flash after startup.

Conditions for t_{sso} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on ESR pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

4.7 AC Parameters

These parameters describe the dynamic behavior of the XE162xL.

4.7.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

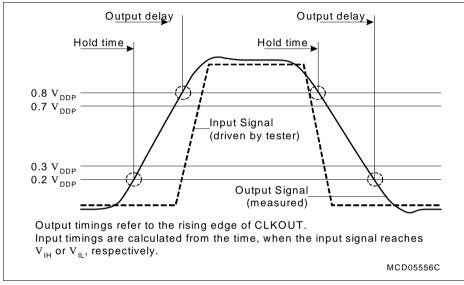
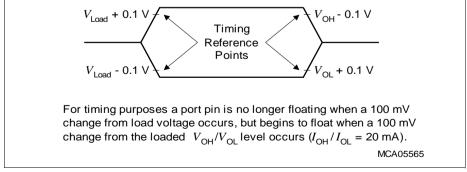
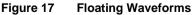




Figure 16 Input Output Waveforms

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
VCO output frequency	$f_{\rm VCO}$ CC	50	-	110	MHz	VCOSEL= 00 _B ; VCOmode= controlled
		10	-	40	MHz	VCOSEL= 00 _B ; VCOmode= free running
		100	-	160	MHz	VCOSEL= 01 _B ; VCOmode= controlled
		20	-	80	MHz	VCOSEL= 01 _B ; VCOmode= free running

Table 28 System PLL Parameters

4.7.2.2 Wakeup Clock

When wakeup operation is selected (SYSCON0.CLKSEL = 00_B), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WU}$.

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

4.7.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states.

Many applications change the frequency of the system clock (f_{SYS}) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.

4.7.4 Pad Properties

The output pad drivers of the XE162xL can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 30 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	3.0	mA	Driver_Strength = Medium
		-	-	5.0	mA	Driver_Strength = Strong
		-	-	0.5	mA	Driver_Strength = Weak
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	1.0	mA	Driver_Strength = Medium
		-	-	1.6	mA	Driver_Strength = Strong
		_	-	0.25	mA	Driver_Strength = Weak

 Table 30
 Standard Pad Parameters for Upper Voltage Range

Table 39 is valid under the following conditions: C_L= 20 pF; voltage_range= lower

				•	·	
Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	100 ¹⁾	-	-	ns	
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ²⁾	t ₈ CC	-	39	43	ns	
TDO high impedance to valid output from TCK falling edge ³⁾²⁾	t ₉ CC	-	39	43	ns	
TDO valid output to high impedance from TCK falling edge ²⁾	<i>t</i> ₁₀ CC	-	39	43	ns	
TDO hold after TCK falling edge ²⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 39 JTAG Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) The falling edge on TCK is used to generate the TDO timing.

3) The setup time for TDO is given implicitly by the TCK cycle time.

Package and Reliability

5 Package and Reliability

The XE166 Family devices use the package type:

• PG-LQFP (Plastic Green - Low Profile Quad Flat Package)

The following specifications must be regarded to ensure proper integration of the XE162xL in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Limi	t Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	-	5.4 imes 5.4	mm	-
Power Dissipation	P_{DISS}	-	0.7	W	-
Thermal resistance Junction-Ambient	R _{OJA}	-	65	K/W	No thermal via, 2-layer ¹⁾
			47	K/W	No thermal via, 4-layer ²⁾
			45	K/W	4-layer, no pad ³⁾
			32	K/W	4-layer, pad ⁴⁾

Table 40 Package Parameters (PG-LQFP-64-22)

 Device mounted on a 2-layer JEDEC board (according to JESD 51-3) without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Package Compatibility Considerations

The XE162xL is a member of the XE166 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

www.infineon.com

Published by Infineon Technologies AG