

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Last Time Buy
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	Math Engine; MaverickCrunch™
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	1/10/100Mbps (1)
SATA	-
USB	USB 2.0 (2)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Hardware ID
Package / Case	208-LQFP
Supplier Device Package	208-LQFP
Purchase URL	https://www.e-xfl.com/product-detail/cirrus-logic/ep9302-iqz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table A. Change History	2
Table B. General Purpose Memory Interface Pin Assignments	6
Table C. Ethernet Media Access Controller Pin Assignments	7
Table D. Audio Interfaces Pin Assignment	7
Table E. 12-bit Analog-to-Digital Converter Pin Assignments	7
Table F. Universal Asynchronous Receiver/Transmitters Pin Assignments	8
Table G. Dual Port USB Host Pin Assignments	
Table H. Two-Wire Port with EEPROM Support Pin Assignments	8
Table I. Real-Time Clock with Pin Assignments	8
Table J. PLL and Clocking Pin Assignments	9
Table K. Interrupt Controller Pin Assignment	9
Table L. Dual LED Pin Assignments	9
Table M. General Purpose Input/Output Pin Assignment	9
Table N. Reset and Power Management Pin Assignments	10
Table O. Hardware Debug Interface	10
Table P. Pin List in Numerical Order by Pin Number	37
Table Q. Pin Descriptions	39
Table R. Pin Multiplex Usage Information	40

Universal Asynchronous Receiver/Transmitters (UARTs)

Two 16550-compatible UARTs are supplied. One provides asynchronous HDLC (High-level Data Link Control) protocol support for full duplex transmit and receive. The HDLC receiver handles framing, address matching, CRC checking, control-octet transparency, and optionally passes the CRC to the host at the end of the packet. The HDLC transmitter handles framing, CRC generation, and control-octet transparency. The host must assemble the frame in memory before transmission. The HDLC receiver and transmitter use the UART FIFOs to buffer the data streams. The second UART provides IrDA[®] compatibility.

- UART1 supports modem bit rates up to 115.2 kbps, supports HDLC and includes a 16 byte FIFO for receive and a 16 byte FIFO for transmit. Interrupts are generated on Rx, Tx and modem status change.
- UART2 contains an IrDA encoder operating at either the slow (up to 115 kbps), medium (0.576 or 1.152 Mbps), or fast (4 Mbps) IR data rates. It also has a 16 byte FIFO for receive and a 16 byte FIFO for transmit.

Table F. Universal Asynchronous Receiver/Transmitters Pin Assignments

Pin Mnemonic	Pin Name - Description
TXD0	UART1 Transmit
RXD0	UART1 Receive
CTSn	UART1 Clear To Send / Transmit Enable
DSRn / DCDn	UART1 Data Set Ready / Data Carrier Detect
DTRn	UART1 Data Terminal Ready
RTSn	UART1 Ready To Send
EGPIO[0] / RI	UART1 Ring Indicator
TXD1 / SIROUT	UART2 Transmit / IrDA Output
RXD1 / SIRIN	UART2 Receive / IrDA Input

Dual-port USB Host

The USB Open Host Controller Interface (Open HCI) provides full-speed serial communications ports at a baud rate of 12 Mbits/sec. Up to 127 USB devices (printer, mouse, camera, keyboard, etc.) and USB hubs can be connected to the USB host in the USB "tiered-star" topology.

This includes the following feature:

- Compliance with the USB 2.0 specification
- Compliance with the Open HCI Rev 1.0 specification

- Supports both low-speed (1.5 Mbps) and full-speed (12 Mbps) USB device connections
- · Root HUB integrated with 2 downstream USB ports
- Transceiver buffers integrated, over-current protection
 on ports
- Supports power management
- Operates as a master on the bus

The Open HCI host controller initializes the master DMA transfer with the AHB bus:

- · Fetches endpoint descriptors and transfer descriptors
- Accesses endpoint data from system memory
- Accesses the HC communication area
- · Writes status and retire transfer descriptor

Table G. Dual Port USB Host Pin Assignments

Pin Mnemonic	Pin Name - Description
USBp[2,0]	USB Positive signals
USBm[2,0]	USB Negative Signals

Note: USBm[1] and USBp[1] are not bonded out.

Two-wire Interface

The two-wire interface provides communication and control for synchronous-serial-driven devices.

Pin Mnemonic	Pin Name - Description	Alternative Usage
EECLK	Two-wire Interface Clock	General Purpose I/O
EEDATA	Two-Wire Interface Data	General Purpose I/O

Real-Time Clock with Software Trim

The software trim feature on the real time clock (RTC) provides software controlled digital compensation of the 32.768 KHz input clock. This compensation is accurate to ± 1.24 sec/month.

Note: A real time clock <u>must</u> be connected to RTCXTALI or the EP9302 device will not boot.

Table I. Real-Time Clock with	th Pin Assignments
-------------------------------	--------------------

Pin Mnemonic	Pin Name - Description
RTCXTALI	Real-Time Clock Oscillator Input
RTCXTALO	Real-Time Clock Oscillator Output

PLL and Clocking

The Processor and the Peripheral Clocks operate from a single 14.7456 MHz crystal.

The Real Time Clock operates from a 32.768 KHz external oscillator.

Table J. PLL and Clocking Pin Assignments

Pin Mnemonic	Pin Name - Description
XTALI	Main Oscillator Input
XTALO	Main Oscillator Output
VDD_PLL	Main Oscillator Power
GND_PLL	Main Oscillator Ground

Timers

The Watchdog Timer ensures proper operation by requiring periodic attention to prevent a reset-on-time-out.

Two 16-bit timers operate as free running down-counters or as periodic timers for fixed interval interrupts and have a range of 0.03 ms to 4.27 seconds.

One 32-bit timer, plus a 6-bit prescale counter, has a range of 0.03 μ s to 73.3 hours.

One 40-bit debug timer, plus 6-bit prescale counter, has a range of 1.0 μs to 12.7 days.

Interrupt Controller

The interrupt controller allows up to 54 interrupts to generate an Interrupt Request (IRQ) or Fast Interrupt Request (FIQ) signal to the processor core. Thirty-two hardware priority assignments are provided for assisting IRQ vectoring, and two levels are provided for FIQ vectoring. This allows time critical interrupts to be processed in the shortest time possible. Internal interrupts may be programmed as active high or active low level sensitive inputs. GPIO pins programmed as interrupts may be programmed as active high level sensitive, active low level sensitive, rising edge triggered, falling edge triggered, or combined rising/falling edge triggered.

- Supports 54 interrupts from a variety of sources (such as UARTs, GPIO and ADC)
- Routes interrupt sources to either the ARM920T's IRQ or FIQ (Fast IRQ) inputs
- Three dedicated off-chip interrupt lines operate as active high level sensitive interrupts
- Any of the 19 GPIO lines maybe configured to generate interrupts

Software supported priority mask for all FIQs and IRQs

Table K. External Interrupt Controller Pin Assignment

Pin Mnemonic	Pin Name - Description
INT[3] and INT[1:0]	External Interrupts 2, 1, 0

Note:	INT[2] is not bonded out.

Dual LED Drivers

Two pins are assigned specifically to drive external LEDs.

Pin Mnemonic	Pin Name - Description	Alternative Usage
GRLED	Green LED	General Purpose I/O
REDLED	Red LED	General Purpose I/O

General Purpose Input/Output (GPIO)

The 16 EGPIO and the 3 FGPIO pins may each be configured individually as an output, an input, or an interrupt input.

There are 10 pins that may alternatively be used as input, output, or open-drain pins, but do not support interrupts. These pins are:

- Ethernet MDIO
- Both LED Outputs
- EEPROM Clock and Data
- HGPIO[5:2]
- CGPIO[0]

6 pins may alternatively be used as inputs only:

- CTSn, DSRn / DCDn
- 3 Interrupt Lines

2 pins may alternatively be used as outputs only:

- RTSn
- ARSTn

Table M. General Purpose Input/Output Pin Assignment

Pin Mnemonic	Pin Name - Description
EGPIO[15:0]	Expanded General Purpose Input / Output Pins with Interrupts
FGPIO[3:1]	Expanded General Purpose Input / Output Pins with Interrupts

Reset and Power Management

The chip may be reset through the PRSTn pin or through the open drain common reset pin, RSTOn.

Clocks are managed on a peripheral-by-peripheral basis and may be turned off to conserve power.

The processor clock is dynamically adjustable from 0 to 200 MHz (184 MHz for industrial conditions).

Table N. Reset and Power Management Pin Assignments

Pin Mnemonic	Pin Name - Description
PRSTn	Power On Reset
RSTOn	User Reset In/Out – Open Drain – Preserves Real Time Clock value

Hardware Debug Interface

The JTAG interface allows use of ARM's Multi-ICE or other in-circuit emulators.

Table O. Hardware Debug Interface

Pin Mnemonic	Pin Name - Description
ТСК	JTAG Clock
TDI	JTAG Data In
TDO	JTAG Data Out
TMS	JTAG Test Mode Select
TRSTn	JTAG Port Reset

12-Channel DMA Controller

The DMA module contains 12 separate DMA channels. Ten of these may be used for peripheral-to-memory or memory-to-peripheral access. Two of these are dedicated to memory-to-memory transfers. Each DMA channel is connected to the 16-bit DMA request bus.

The request bus is a collection of requests, Serial Audio and UARTs. Each DMA channel can be used independently or dedicated to any request signal. For each DMA channel, source and destination addressing can be independently programmed to increment, decrement, or stay at the same value. All DMA addresses are physical, not virtual addresses.

Internal Boot ROM

The Internal 16-kbyte ROM allows booting from FLASH memory, SPI or UART. Consult the EP9301 User's Guide for operational details.

DC Characteristics

(T_A = 0 to 70° C; CVDD = VDD_PLL = 1.8; RVDD = 3.3 V;

All grounds = 0 V; all voltages with respect to 0 V unless otherwise noted)

Parameter		Symbol	Min	Max	Unit	
High level output voltage	lout = -4 mA	(Note 3)	V _{oh}	$0.85 \times \text{RVDD}$	-	V
Low level output voltage	lout = 4 mA		V _{ol}	-	0.15 imes RVDD	V
High level input voltage		(Note 4)	V _{ih}	0.65 imes RVDD	VDD + 0.3	V
Low level input voltage		(Note 4)	V _{il}	-0.3	0.35 imes RVDD	V
High level leakage current	Vin = 3.3 V	(Note 4)	l _{ih}	-	10	μA
Low level leakage current	Vin = 0	(Note 4)	l _{il}	-	-10	μA

Pa	irameter	Min	Тур	Max	Unit
Power Supply Pins (Outputs Unlo	aded)				
Power Supply Current:	CVDD / VDD_PLL Total RVDD		180 45	230 80	mA mA
Low-Power Mode Supply Current	CVDD / VDD_PLL Total RVDD	-	2 1.0	3.5 2	mA mA

Note: 3. For open drain pins, high level output voltage is dependent on the external load.

4. All inputs that do not include internal pull-ups or pull-downs, must be externally driven for proper operation (See Table Q on page 39). If an input is not driven, it should be tied to power or ground, depending on the particular function. If an I/O pin is not driven and programmed as an input, it should be tied to power or ground through its own resistor.

Timings

Timing Diagram Conventions

This data sheet contains one or more timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.

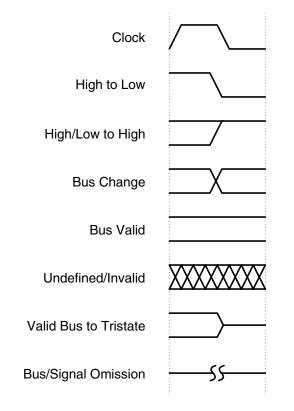


Figure 1. Timing Diagram Drawing Key

Timing Conditions

Unless specified otherwise, the following conditions are true for all timing measurements.

- T_A = 0 to 70° C
- CVDD = VDD_PLL = 1.8V
- RVDD = 3.3 V
- All grounds = 0 V
- Logic 0 = 0 V, Logic 1 = 3.3 V
- Output loading = 50 pF
- Timing reference levels = 1.5 V
- The Processor Bus Clock (HCLK) is programmable and is set by the user. The frequency is typically between 33 MHz and 100 MHz (92 MHz for industrial conditions).

Memory Interface

Figure 2 through Figure 5 define the timings associated with all phases of the SDRAM. The following table contains the values for the timings of each of the SDRAM modes.

Parameter	Symbol	Min	Тур	Max	Unit
SDCLK high time	t _{clk_high}	-	(t _{HCLK}) / 2	-	ns
SDCLK low time	t _{clk_low}	-	(t _{HCLK}) / 2	-	ns
SDCLK rise/fall time	t _{clkrf}	-	2	4	ns
Signal delay from SDCLK rising edge time	t _d	-	-	8	ns
Signal hold from SDCLK rising edge time	t _h	1	-	-	ns
DQMn delay from SDCLK rising edge time	t _{DQd}	-	-	8	ns
DQMn hold from SDCLK rising edge time	t _{DQh}	1	-	-	ns
DA valid setup to SDCLK rising edge time	t _{DAs}	2	-	-	ns
DA valid hold from SDCLK rising edge time	t _{DAh}	3	-	-	ns

SDRAM Load Mode Register Cycle

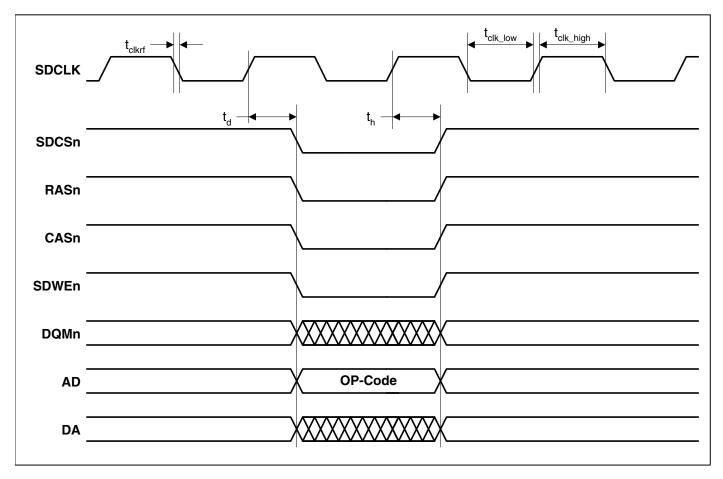


Figure 2. SDRAM Load Mode Register Cycle Timing Measurement

SDRAM Burst Write Cycle

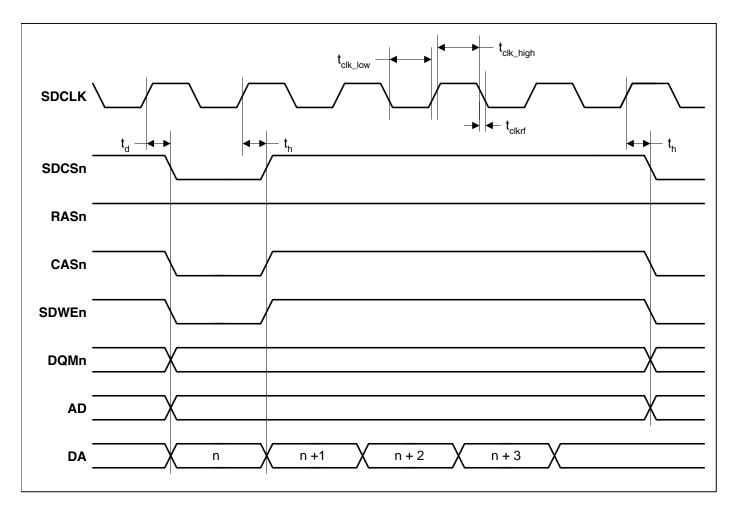
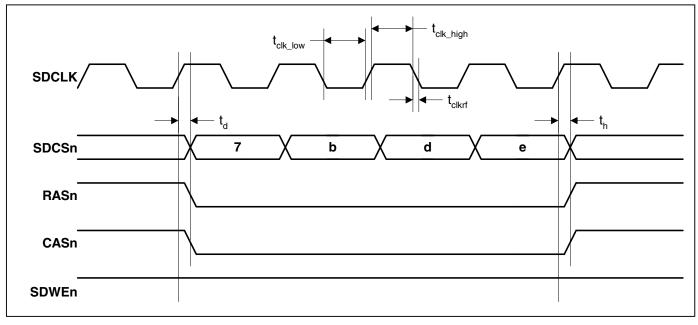



Figure 4. SDRAM Burst Write Cycle Timing Measurement

SDRAM Auto Refresh Cycle

Note: Chip select shown as bus to illustrate multiple devices being put into auto refresh in one access

Figure 5. SDRAM Auto Refresh Cycle Timing Measurement

Static Memory Burst Read Cycle

Parameter	Symbol	Min	Тур	Max	Unit
CSn assert to Address 1 transition time	t _{ADd1}	-	t _{HCLK} × (WST1 + 1)	-	ns
Address assert time	t _{ADd2}	-	t _{HCLK} × (WST2 + 1)	-	ns
AD transition to CSn deassert time	t _{ADd3}	-	t _{HCLK} × (WST1 + 2)	-	ns
AD hold from CSn deassert time	t _{ADh}	t _{HCLK}	-	-	ns
CSn to RDn delay time	t _{RDd}	-	-	3	ns
CSn to DQMn assert delay time	t _{DQMd}	-	-	1	ns
DA setup to AD transition time	t _{DAs1}	15	-	-	ns
DA setup to CSn deassert time	t _{DAs2}	t _{HCLK} + 12	-	-	ns
DA hold from AD transition time	t _{DAh1}	0	-	-	ns
DA hold from RDn deassert time	t _{DAh2}	0	-	-	ns

Note: These characteristics are valid when the Page Mode Enable (Burst Mode) bit is set. See the User's Guide for details.

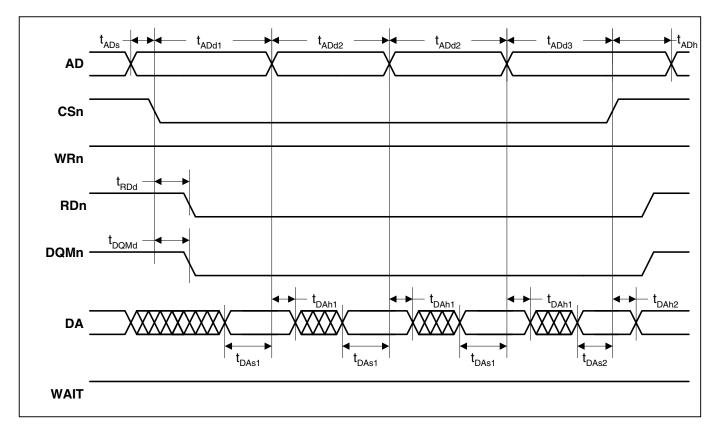


Figure 10. Static Memory Burst Read Cycle Timing Measurement

Parameter	Symbol	Min	Тур	Мах	Unit
CSn assert to WAIT time	t _{WAITd}	-	-	t _{HCLK} × (WST1-2)	ns
WAIT assert time	t _{WAITpw}	t _{HCLK} ×2	-	t _{HCLK} × 510	ns
WAIT to CSn deassert delay time	t _{CSnd}	$t_{HCLK} imes 3$	-	$t_{HCLK} imes 5$	ns

Static Memory Single Read Wait Cycle

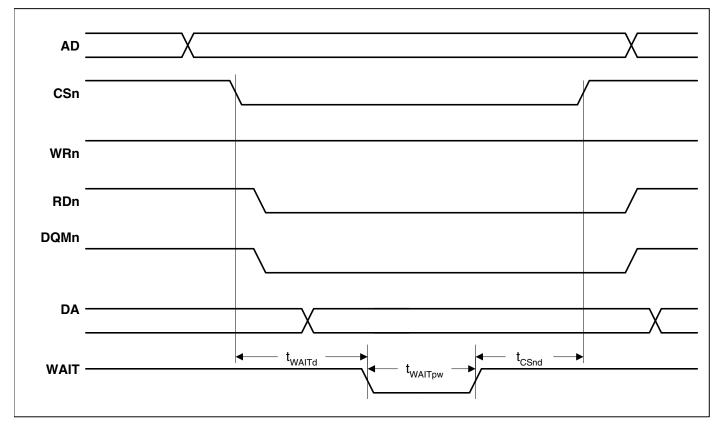
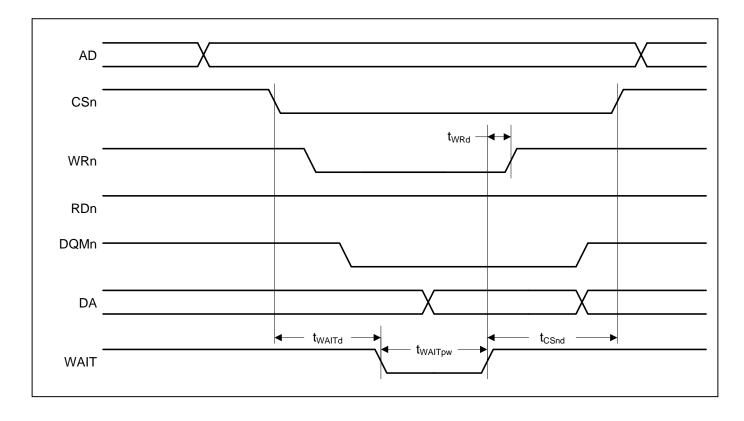
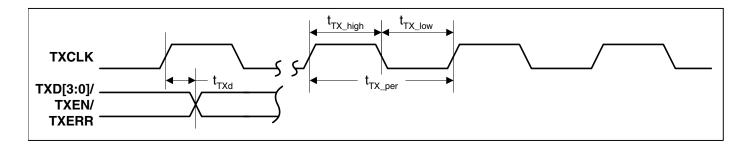


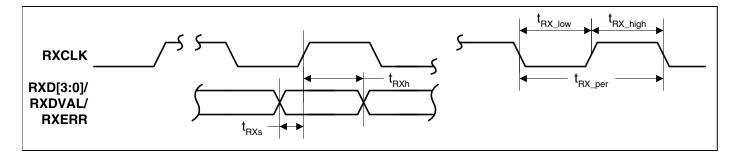
Figure 12. Static Memory Single Read Wait Cycle Timing Measurement

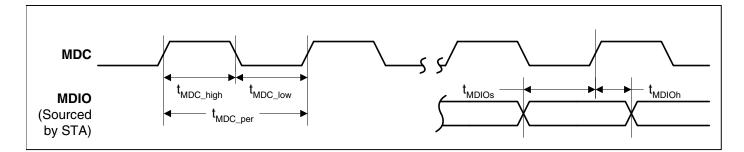
Parameter	Symbol	Min	Тур	Мах	Unit
WAIT to WRn deassert delay time	t _{WRd}	$t_{HCLK} \times 2$	-	$t_{HCLK} \times 4$	ns
CSn assert to WAIT time	t _{WAITd}	-	-	$t_{HCLK} \times (WST1-2)$	ns
WAIT assert time	t _{WAITpw}	$t_{HCLK} \times 2$	-	$t_{HCLK} imes 510$	ns
WAIT to CSn deassert delay time	t _{CSnd}	$t_{HCLK} imes 3$	-	$t_{HCLK} \times 5$	ns

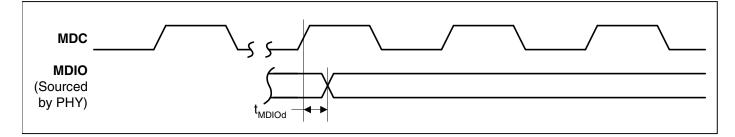
Static Memory Single Write Wait Cycle




Figure 13. Static Memory Single Write Wait Cycle Timing Measurement


Ethernet MAC Interface


		м	in	Тур		Max		
Parameter	Symbol	10 Mbit mode	100 Mbit mode	10 Mbit mode	100 Mbit mode	10 Mbit mode	100 Mbit mode	Unit
TXCLK cycle time	t _{TX_per}	-	-	400	40	-	-	ns
TXCLK high time	t _{TX_high}	140	14	200	20	260	26	ns
TXCLK low time	t _{TX_low}	140	14	200	20	260	26	ns
TXCLK to signal transition delay time	t _{TXd}	0	0	10	10	25	25	ns
TXCLK rise/fall time	t _{TXrf}	-	-	-	-	5	5	ns
RXCLK cycle time	t _{RX_per}	-	-	400	40	-	-	ns
RXCLK high time	t _{RX_high}	140	14	200	20	260	26	ns
RXCLK low time	t _{RX_low}	140	14	200	20	260	26	ns
RXDVAL / RXERR setup time	t _{RXs}	10	10	-	-	-	-	ns
RXDVAL / RXERR hold time	t _{RXh}	10	10	-	-	-	-	ns
RXCLK rise/fall time	t _{RXrf}	-	-	-	-	5	5	ns
MDC cycle time	t _{MDC_per}	-	-	400	400	-	-	ns
MDC high time	t _{MDC_high}	160	160	-	-	-	-	ns
MDC low time	t _{MDC_low}	160	160	-	-	-	-	ns
MDC rise/fall time	t _{MDCrf}	-	-	-	-	5	5	ns
MDIO setup time (STA sourced)	t _{MDIOs}	10	10	-	-	-	-	ns
MDIO hold time (STA sourced)	t _{MDIOh}	10	10	-	-	-	-	ns
MDC to MDIO signal transition delay time (PHY sourced)	t _{MDIOd}	-	-	-	-	300	300	ns


STA - Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium.

PHY - Ethernet physical layer interface.

Texas Instruments' Synchronous Serial Format

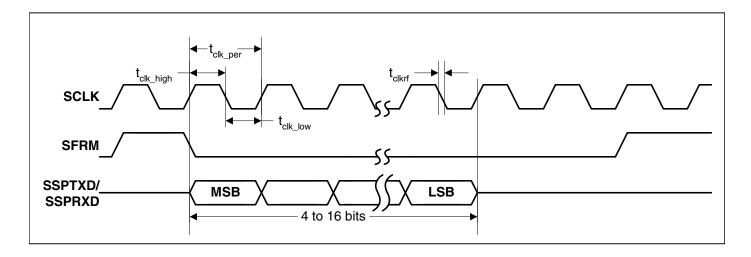


Figure 16. TI Single Transfer Timing Measurement

Microwire

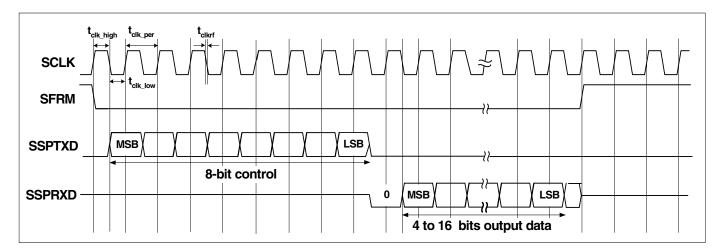


Figure 17. Microwire Frame Format, Single Transfer

Motorola SPI

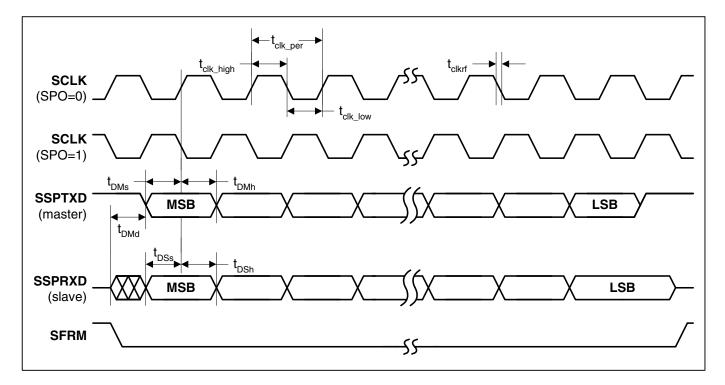


Figure 18. SPI Format with SPH=1 Timing Measurement

JTAG

Parameter	Symbol	Min	Max	Units
TCK clock period	t _{clk_per}	100	-	ns
TCK clock high time	t _{clk_high}	50	-	ns
TCK clock low time	t _{clk_low}	50	-	ns
TMS / TDI to clock rising setup time	t _{JPs}	20	-	ns
Clock rising to TMS / TDI hold time	t _{JPh}	45	-	ns
JTAG port clock to output	t _{JPco}	-	30	ns
JTAG port high impedance to valid output	t _{JPzx}	-	30	ns
JTAG port valid output to high impedance	t _{JPxz}	-	30	ns

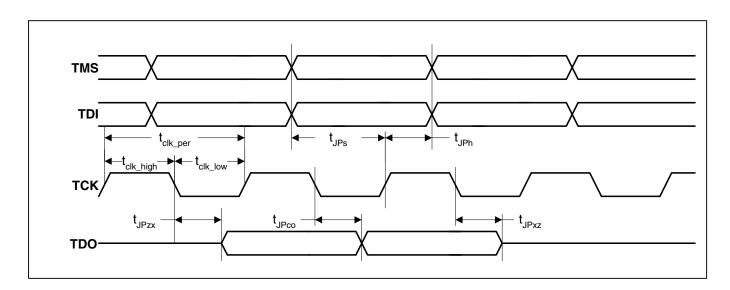
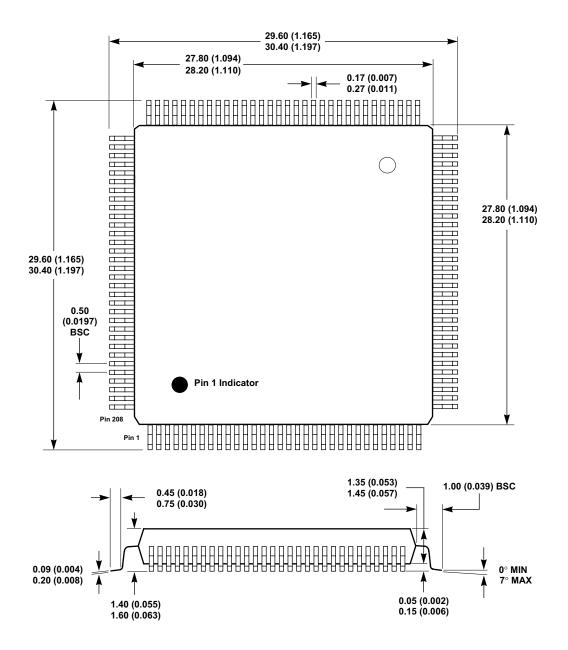



Figure 22. JTAG Timing Measurement

208 Pin LQFP Package Outline

208-Pin LQFP ($28 \times 28 \times 1.40$ -mm Body)

NOTES:

- 1) Dimensions are in millimeters, and controlling dimension is millimeter.
- 2) Package body dimensions do not include mold protrusion, which is 0.25 mm (0.010 in).
- 3) Pin 1 identification may be either ink dot or dimple.
- 4) Package top dimensions can be smaller than bottom dimensions by 0.20 mm (0.008 in).
- 5) The 'lead width with plating' dimension does not include a total allowable dambar protrusion of 0.08 mm (at maximum material condition).
- 6) Ejector pin marks in molding are present on every package.
- 7) Drawing above does not reflect exact package pin count.

Table R illustrates the pin signal multiplexing and configuration options.

Physical Pin Name	Description	Multiplex signal name
EGPIO[0]	Ring Indicator Input	RI
EGPIO[1]	1Hz clock monitor	CLK1HZ
EGPIO[3]	HDLC Clock	HDLCCLK1
EGPIO[4]	I2S Transmit Data 1	SDO1
EGPIO[5]	I2S Receive Data 1	SDI1
EGPIO[6]	I2S Transmit Data 2	SDO2
EGPIO[7]	DMA Request 0	DREQ0
EGPIO[8]	DMA Acknowledge 0	DACK0
EGPIO[9]	DMA EOT 0	DEOT0
EGPIO[10]	DMA Request 1	DREQ1
EGPIO[11]	DMA Acknowledge 1	DACK1
EGPIO[12]	DMA EOT 1	DEOT1
EGPIO[13]	I2S Receive Data 2	SDI2
EGPIO[14]	PWM1 Output	PWMOUT1
EGPIO[15]	Device active / present	DASP
ABITCLK	I2S Serial clock	SCLK
ASYNC	I2S Frame Clock	LRCK
ASDO	I2S Transmit Data 0	SDO0
ASDI	I2S Receive Data 0	SDI0
ARSTn	I2S Master clock	MCLK
SCLK1	I2S Serial clock	SCLK
SFRM1	I2S Frame Clock	LRCK
SSPTX1	I2S Transmit Data 0	SDO0
SSPRX1	I2S Receive Data 0	SDI0

Table R. Pin Multiplex Usage Information

Acronyms and Abbreviations

The following tables list abbreviations and acronyms used in this data sheet.

Term	Definition
ADC	Analog-to-Digital Converter
ALT	Alternative
AMBA	Advanced Micro-controller Bus Architecture
ATAPI	ATA Packet Interface
CODEC	COder / DECoder
CRC	Cyclic Redundancy Check
DAC	Digital-to-Analog Converter
DMA	Direct-Memory Access
EBUS	External Memory Bus
EEPROM	Electronically Erasable Programmable Read Only Memory
EMAC	Ethernet Media Access Controller
FIFO	First In / First Out
FIQ	Fast Interrupt Request
FLASH	Flash memory
GPIO	General Purpose I/O
HDLC	High-level Data Link Control
I/F	Interface
l ² S	Inter-IC Sound
IC	Integrated Circuit
ICE	In-Circuit Emulator
IDE	Integrated Drive Electronics
IEEE	Institute of Electronics and Electrical Engineers
IrDA	Infrared Data Association
IRQ	Standard Interrupt Request
ISO	International Standards Organization
JTAG	Joint Test Action Group
LFSR	Linear Feedback Shift Register
MII	Media-independent Interface
MMU	Memory Management Unit

Term	Definition
OHCI	Open Host Controller Interface
PHY	Ethernet PHYsical layer interface
PIO	Programmed I/O
RISC	Reduced Instruction Set Computer
SDMI	Secure Digital Music Initiative
SDRAM	Synchronous Dynamic RAM
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
STA	Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium
TFT	Thin Film Transistor
TLB	Translation Lookaside Buffer
USB	Universal Serial Bus

Units of Measurement

Symbol	Unit of Measure
°C	degree Celsius
Hz	Hertz = cycle per second
kbps	kilobits per second
kbyte	kilobyte
kHz	kiloHertz = 1000 Hz
Mbps	Megabits per second
MHz	MegaHertz = 1,000 KiloHertz
μΑ	microAmpere = 10 ⁻⁶ Ampere
μs	microsecond = 1,000 nanoseconds = 10 ⁻⁶ seconds
mA	milliAmpere = 10 ⁻³ Ampere
ms	millisecond = 1,000 microseconds = 10 ⁻³ seconds
mW	milliWatt = 10 ⁻³ Watts
ns	nanosecond = 10 ⁻⁹ seconds
pF	picoFarad = 10 ⁻¹² Farads
V	Volt
W	Watt