

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5633mf1mlq80r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor

Datasheet Addendum

MPC5634M_AD Rev. 1.0, 01/2015

MPC5634M Microcontroller Datasheet Addendum

This addendum describes corrections to the *MPC5634M Microcontroller Datasheet*, order number MPC5634M. For convenience, the addenda items are grouped by revision. Please check our website at http://www.freescale.com/powerarchitecture for the latest updates.

The current version available of the *MPC5634M Microcontroller Datasheet* is Revision 9.

Table of Contents

1	Addendum List for Revision 9	2
2	Revision History	2

- Frequency Modulating Phase-locked loop (FMPLL)
 - Reference clock pre-divider (PREDIV) for finer frequency synthesis resolution
 - Reduced frequency divider (RFD) for reducing the FMPLL output clock frequency without forcing the FMPLL to re-lock
 - System clock divider (SYSDIV) for reducing the system clock frequency in normal or bypass mode
 - Input clock frequency range from 4 MHz to 20 MHz before the pre-divider, and from 4 MHz to 16 MHz at the FMPLL input
 - Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz
 - VCO free-running frequency range from 25 MHz to 125 MHz
 - Four bypass modes: crystal or external reference with PLL on or off
 - Two normal modes: crystal or external reference
 - Programmable frequency modulation
 - Triangle wave modulation
 - Register programmable modulation frequency and depth
 - Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously monitors lock status to report loss of lock conditions
 - User-selectable ability to generate an interrupt request upon loss of lock
 - User-selectable ability to generate a system reset upon loss of lock
 - Clock quality monitor (CQM) module provides loss-of-clock detection for the FMPLL reference and output clocks
 - User-selectable ability to generate an interrupt request upon loss of clock
 - User-selectable ability to generate a system reset upon loss of clock
 - Backup clock (reference clock or FMPLL free-running) can be applied to the system in case of loss of clock
- Calibration bus interface (EBI)
 - Available only in the calibration package (496 CSP package)
 - 1.8 V to 3.3 V \pm 10% I/O (1.6 V to 3.6 V)
 - Memory controller with support for various memory types
 - 16-bit data bus, up to 22-bit address bus
 - Selectable drive strength
 - Configurable bus speed modes
 - Bus monitor
 - Configurable wait states
 - System integration unit (SIU)
 - Centralized GPIO control of 80 I/O pins
 - Centralized pad control on a per-pin basis
 - Pin function selection
 - Configurable weak pull-up or pull-down
 - Drive strength
 - Slew rate
 - Hysteresis
 - System reset monitoring and generation
 - External interrupt inputs, filtering and control
 - Critical Interrupt control
 - Non-Maskable Interrupt control
 - Internal multiplexer subblock (IMUX)
 - Allows flexible selection of eQADC trigger inputs (eTPU, eMIOS and external signals)

- Enabled out of reset
- Enhanced modular I/O system (eMIOS)
 - 16 timer channels (up to 14 channels in 144 LQFP)
 - 24-bit timer resolution
 - Supports a subset of the timer modes found in eMIOS on MPC5554
 - 3 selectable time bases plus shared time or angle counter bus from eTPU2
 - DMA and interrupt request support
 - Motor control capability
- Second-generation enhanced time processor unit (eTPU2)
 - Object-code compatible with eTPU—no changes are required to hardware or software if only eTPU features are used
 - Intelligent co-processor designed for timing control
 - High level tools, assembler and compiler available
 - 32 channels (each channel has dedicated I/O pin in all packages)
 - 24-bit timer resolution
 - 14 KB code memory and 3 KB data memory
 - Double match and capture on all channels
 - Angle clock hardware support
 - Shared time or angle counter bus with eMIOS
 - DMA and interrupt request support
 - Nexus Class 1 debug support
 - eTPU2 enhancements
 - Counters and channels can run at full system clock speed
 - Software watchdog
 - Real-time performance monitor
 - Instruction set enhancements for smaller more flexible code generation
 - Programmable channel mode for customization of channel operation
- Enhanced queued A/D converter (eQADC)
 - Two independent on-chip redundant signed digit (RSD) cyclic ADCs
 - 8-, 10-, and 12-bit resolution
 - Differential conversions
 - Targets up to 10-bit accuracy at 500 KSample/s (ADC_CLK = 7.5 MHz) and 8-bit accuracy at 1 MSample/s (ADC_CLK = 15 MHz) for differential conversions
 - Differential channels include variable gain amplifier (VGA) for improved dynamic range (×1; ×2; ×4)
 - Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics (200 kΩ; 100 kΩ; low value of 5 kΩ)
 - Single-ended signal range from 0 to 5 V
 - Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
 - Provides time stamp information when requested
 - Parallel interface to eQADC command FIFOs (CFIFOs) and result FIFOs (RFIFOs)
 - Supports both right-justified unsigned and signed formats for conversion results
 - Temperature sensor to enable measurement of die temperature
 - Ability to measure all power supply pins directly
 - Automatic application of ADC calibration constants
 - Provision of reference voltages (25% VREF and 75% VREF) for ADC calibration purposes
 - Up to 34¹ input channels available to the two on-chip ADCs

- Four pairs of differential analog input channels
- Full duplex synchronous serial interface to an external device
 - Has a free-running clock for use by the external device
 - Supports a 26-bit message length
 - Transmits a null message when there are no triggered CFIFOs with commands bound for external CBuffers, or when there are triggered CFIFOs with commands bound for external CBuffers but the external CBuffers are full
- Parallel Side Interface to communicate with an on-chip companion module
- Zero jitter triggering for queue 0. (Queue 0 trigger causes current conversion to be aborted and the queued conversions in the CBUFFER to be bypassed. Delay from Trigger to start of conversion is 13 system clocks + 1 ADC clock.)
- eQADC Result Streaming. Generation of a continuous stream of ADC conversion results from a single eQADC command word. Controlled by two different trigger signals; one to define the rate at which results are generated and the other to define the beginning and ending of the stream. Used to digitize waveforms during specific time/angle windows, e.g., engine knock sensor sampling.
- Angular Decimation. The ability of the eQADC to sample an analog waveform in the time domain, perform Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filtering also in the time domain, but to down sample the results in the angle domain. Resulting in a time domain filtered result at a given engine angle.
- Priority Based CFIFOs
 - Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority. When
 commands of distinct CFIFOs are bound for the same CBuffer, the higher priority CFIFO is always served
 first.
 - Supports software and several hardware trigger modes to arm a particular CFIFO
 - Generates interrupt when command coherency is not achieved
- External Hardware Triggers
 - Supports rising edge, falling edge, high level and low level triggers
 - Supports configurable digital filter
- Supports four external 8-to-1 muxes which can expand the input channel number from 34¹ to 59
- Two deserial serial peripheral interface modules (DSPI)
 - SPI
 - Full duplex communication ports with interrupt and DMA request support
 - Supports all functional modes from QSPI subblock of QSMCM (MPC5xx family)
 - Support for queues in RAM
 - 6 chip selects, expandable to 64 with external demultiplexers
 - Programmable frame size, baud rate, clock delay and clock phase on a per frame basis
 - Modified SPI mode for interfacing to peripherals with longer setup time requirements
 - LVDS option for output clock and data to allow higher speed communication
 - Deserial serial interface (DSI)
 - Pin reduction by hardware serialization and deserialization of eTPU, eMIOS channels and GPIO
 - 32 bits per DSPI module
 - Triggered transfer control and change in data transfer control (for reduced EMI)
 - Compatible with Microsecond Channel Version 1.0 downstream
- Two enhanced serial communication interface (eSCI) modules
 - UART mode provides NRZ format and half or full duplex interface
 - eSCI bit rate up to 1 Mbps
- 1. 176-pin and 208-pin packages have 34 input channels; 144-pin package has 32.
- 1. 176-pin and 208-ball packages.

Overview

results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully process the digitized waveform.

The eQADC provides the following features:

- Dual on-chip ADCs
 - 2 × 12-bit ADC resolution
 - Programmable resolution for increased conversion speed (12 bit, 10 bit, 8 bit)
 - 12-bit conversion time 1 µs (1M sample/sec)
 - 10-bit conversion time 867 ns (1.2M sample/second)
 - 8-bit conversion time 733 ns (1.4M sample/second)
 - Up to 10-bit accuracy at 500 KSample/s and 9-bit accuracy at 1 MSample/s
 - Differential conversions
 - Single-ended signal range from 0 to 5 V
 - Variable gain amplifiers on differential inputs $(\times 1, \times 2, \times 4)$
 - Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
 - Provides time stamp information when requested
 - Parallel interface to eQADC CFIFOs and RFIFOs
 - Supports both right-justified unsigned and signed formats for conversion results
- Up to 34¹ input channels (accessible by both ADCs)
- 23 additional internal channels for measuring control and monitoring voltages inside the device
 - Including Core voltage, I/O voltage, LVI voltages, etc.
- An internal bandgap reference to allow absolute voltage measurements
- 4 pairs of differential analog input channels
 - Programmable pull-up/pull-down resistors on each differential input for biasing and sensor diagnostic (200 kΩ, 100 kΩ, 5 kΩ)
- Silicon die temperature sensor
 - provides temperature of silicon as an analog value
 - read using an internal ADC analog channel
 - may be read with either ADC
- Decimation Filter
 - Programmable decimation factor (2 to 16)
 - Selectable IIR or FIR filter
 - Up to 4th order IIR or 8th order FIR
 - Programmable coefficients
 - Saturated or non-saturated modes
 - Programmable Rounding (Convergent; Two's Complement; Truncated)
 - Pre-fill mode to pre-condition the filter before the sample window opens
- · Full duplex synchronous serial interface to an external device
 - Free-running clock for use by an external device
 - Supports a 26-bit message length
- Priority based Queues
 - Supports six Queues with fixed priority. When commands of distinct Queues are bound for the same ADC, the higher priority Queue is always served first

^{1. 176-}pin and 208-pin packages have 34 input channels; 144-pin package has 32.

- Auxiliary Output port
 - 1 MCKO (message clock out) pin
 - 4 MDO (message data out) pins
 - 2 MSEO (message start/end out) pins
 - $-1 \overline{\text{EVTO}}$ (event out) pin
- Auxiliary input port
 - $-1 \overline{\text{EVTI}}$ (event in) pin
- 17-pin Full Port interface in calibration package used on VertiCal boards
 - 3.3 V interface
 - Auxiliary Output port
 - 1 MCKO (message clock out) pin
 - 4 (reduced port mode) or 12 (full port mode) MDO (message data out) pins; 8 extra full port pins shared with calibration bus
 - 2 MSEO (message start/end out) pins
 - $-1 \overline{\text{EVTO}}$ (event out) pin
 - Auxiliary input port
 - $-1 \overline{\text{EVTI}}$ (event in) pin
- Host processor (e200) development support features
 - IEEE-ISTO 5001-2003 standard class 2 compliant
 - Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the development tool to interpolate what transpires between the discontinuities. Thus, static code may be traced.
 - Watchpoint trigger enable of program trace messaging
 - Data Value Breakpoints (JTAG feature of the e200z335 core): allows CPU to be halted when the CPU writes a specific value to a memory location
 - 4 data value breakpoints
 - CPU only
 - Detects 'equal' and 'not equal'
 - Byte, half word, word (naturally aligned)

NOTE

This feature is imprecise due to CPU pipelining.

- Subset of Power Architecture software debug facilities with OnCE block (Nexus class 1 features)
- eTPU development support features
 - IEEE-ISTO 5001-2003 standard class 1 compliant for the eTPU
 - Nexus based breakpoint configuration and single step support (JTAG feature of the eTPU)
- Run-time access to the on-chip memory map via the Nexus read/write access protocol. This feature supports accesses for run-time internal visibility, calibration variable acquisition, calibration constant tuning, and external rapid prototyping for powertrain automotive development systems.
- All features are independently configurable and controllable via the IEEE 1149.1 I/O port
- Power-on-reset status indication during reset via MDO[0] in disabled and reset modes

2.2.20.2 JTAG

The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001

Pinout and signal description

Figure 2. 144-pin LQFP pinout (top view; all 144-pin devices)

3.2 176 LQFP pinout (MPC5634M)

Figure 3 shows the 176-pin LQFP pinout for the MPC5634M (1536 KB flash memory).

34

3.5 208 MAPBGA ballmap (MPC5633M only)

Figure 6 shows the 208-pin MAPBGA ballmap for the MPC5633M (1024 KB flash memory) as viewed from above.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
А	VSS	AN9	AN11	VDDA1	VSSA1	AN1	AN5	VRH	VRL	AN27	VSSA0	AN12-SDS	ALT_ MDO2	ALT_ MDO0	VRC33	VSS
В	VDD	VSS	AN38	AN21	AN0	AN4	REFBYPC	AN22	AN25	AN28	VDDA0	AN13-SDO	ALT_ MDO3	ALT_ MDO1	VSS	VDD
с	VSTBY	VDD	VSS	AN17	AN34	AN16	AN3	AN7	AN23	AN32	AN33	AN14-SDI	AN15 FCK	VSS	ALT_ MSEO0	тск
D	VRC33	AN39	VDD	VSS	AN18	AN2	AN6	AN24	AN30	AN31	AN35	VDDEH7	VSS	TMS	ALT_EVTO	NIC ¹
E	ETPUA30	ETPUA31	NC ²	VDD									VDDE7	TDI	ALT EVTI	ALT_ MSEO1
F	ETPUA28	ETPUA29	ETPUA26	NC ²									VDDEH6	TDO	ALT_MCKO	JCOMP
G	ETPUA24	ETPUA27	ETPUA25	ETPUA21			VSS	VSS	VSS	VSS			DSPI_B_ SOUT	DSPI_B_ PCS3	DSPI_B_ SIN	DSPI_B_ PCS0
н	ETPUA23	ETPUA22	ETPUA17	ETPUA18			VSS	VSS	VSS	VSS			NC ²	DSPI_B_ PCS4	DSPI_B_ PCS2	DSPI_B_ PCS1
J	ETPUA20	ETPUA19	ETPUA14	ETPUA13			VSS	VSS	VSS	VSS			DSPI_B_ PCS5	SCI_A_TX	NC ²	DSPI_B_ SCK
к	ETPUA16	ETPUA15	ETPUA7	VDDEH1			VSS	VSS	VSS	VSS			CAN_C_ TX	SCI_A_RX	RSTOUT	VDDREG
L	ETPUA12	ETPUA11	ETPUA6	ETPUA0									SCI_B_TX	CAN_C_ RX	WKPCFG	RESET
М	ETPUA10	ETPUA9	ETPUA1	ETPUA5									SCI_B_RX	PLLREF	BOOTCFG1	VSSPLL
Ν	ETPUA8	ETPUA4	ETPUA0	VSS	VDD	VRC33	EMIOS2	EMIOS10	VDDEH1/6 ³	EMIOS12	eTPUA19 ⁴	VRC33	VSS	VRCCTL	NIC ¹	EXTAL
Ρ	ETPUA3	ETPUA2	VSS	VDD	NC ²	VDDE7	NIC ¹	EMIOS8	eTPUA29 ³	eTPUA2 ³	eTPUA21 ³	CAN_A_ TX	VDD	VSS	NIC ¹	XTAL
R	NIC ¹	VSS	VDD	NC ²	EMIOS4	NIC ¹	EMIOS9	EMIOS11	EMIOS14	eTPUA27 ³	EMIOS23	CAN_A_ RX	NC ²	VDD	VSS	VDDPLL
т	VSS	VDD	NIC ¹	EMIOS0	NC ²	GPIO219	eTPUA25 ³	NC ²	NC ²	eTPUA4 ³	eTPUA13 ³	NIC ¹	VDDE5	CLKOUT	VDD	VSS

¹ Pins marked "NIC" have no internal connection.

² Pins marked "NC" may be connected to internal circuitry. Connections to external circuits or other pins on this device can result in unpredictable system behavior or damage.

³ This ball may be changed to "NC" (no connection) in a future revision.

⁴ eTPU output only channel.

Figure 6. 208-pin MAPBGA ballmap (MPC5633M; top view)

MPC5634M Microcontroller Data Sheet, Rev.

ø

reescale Semiconductor	
	MPC5634M Microcontroller Data Sheet, Rev. 9

Table 2. MPC563xM signal properties (continued)

		Pad Config		1/0	Voltage ⁴ /	_	Function / State	Pin No.		
Name	Function ¹	Register (PCR) ²	Field ³	Туре	Pad Type	Reset State ⁵	After Reset ⁶	144 LQFP	176 LQFP	208 MAPB GA
CAL_ADDR[16] ²¹ ALT_MDO[0] ¹²	Calibration Address Bus Nexus Msg Data Out	PCR[345]	_	0 0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low ¹⁵	MDO / ALT_ADDR ¹² / Low	—	17	A14
CAL_ADDR[17] ²¹ ALT_MDO[1] ¹²	Calibration Address Bus Nexus Msg Data Out	PCR[345]	—	0 0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low ¹⁵	ALT_MDO / CAL_ADDR ¹² / Low	_	18	B14
CAL_ADDR[18] ²¹ ALT_MDO[2] ¹²	Calibration Address Bus Nexus Msg Data Out	PCR[345]	—	0 0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low ¹⁵	ALT_MDO / CAL_ADDR ¹² / Low	_	19	A13
CAL_ADDR[19] ²¹ ALT_MDO[3] ¹²	Calibration Address Bus Nexus Msg Data Out	PCR[345]	_	0 0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low ¹⁵	ALT_MDO / CAL_ADDR ¹² / Low	—	20	B13
CAL_ADDR[20:27] ALT_MDO[4:11]	Calibration Address Bus Nexus Msg Data Out	PCR[345]	_	0 0	VDDE12 ¹³ Fast	O / Low	ALT_MDO / CAL_ADDR ¹⁶ / Low	—	—	_
CAL_ADDR[28] ²¹ ALT_MSEO[0] ¹²	Calibration Address Bus Nexus Msg Start/End Out	PCR[345]	—	0 0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low ¹⁷	ALT_MSEO ¹⁶ / CAL_ADDR ¹⁷ / Low	_	118	C15
CAL_ADDR[29] ²¹ ALT_MSEO[1] ¹²	Calibration Address Bus Nexus Msg Start/End Out	PCR[345]	—	0 0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low ¹⁷	ALT_MSEO ¹⁶ / CAL_ADDR ¹⁷ / Low	_	117	E16
CAL_ADDR[30] ²¹ ALT_EVTI ¹²	Calibration Address Bus Nexus Event In	PCR[345]	—	0 	VDDE12 ¹³ VDDE7 ¹⁴ Fast	18	ALT_EVTI / CAL_ADDR ¹⁹	_	116	E15
ALT_EVTO	Nexus Event Out	PCR[344]	—	0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low	ALT_EVTO / High	_	120	D15
ALT_MCKO	Nexus Msg Clock Out	PCR[344]	—	0	VDDE12 ¹³ VDDE7 ¹⁴ Fast	O / Low	ALT_MCKO / Enabled	_	14	F15
NEXUSCFG ¹¹	Nexus/Calibration bus selector	-	-	I	VDDE12 Fast	l / Down	NEXUSCFG / Down	—	—	-
CAL_CS[0] ¹¹	Calibration Chip Selects	PCR[336]	-	0	VDDE12 Fast	O / High	CAL_CS / High		_	-
CAL_CS[2] ¹¹ CAL_ADDR[10]	Calibration Chip Selects Calibration Address Bus	PCR[338]	11 10	0 0	VDDE12 Fast	O / High	CAL_CS / High	_	—	—

36

45

Table 2. MPC563xM	signal	properties	(continued)
-------------------	--------	------------	-------------

		Pad		I/O	Voltago ⁴ /	D (0) (5	Function / State	Pin No.			
Name	Function ¹	Register (PCR) ²	Field ³	Туре	Pad Type	Reset State ⁵	After Reset ⁶		144 LQFP	176 LQFP	208 MAPB GA
eTPU_A[28] ²⁸ DSPI_C_PCS[1] GPIO[142]	eTPU_A Ch. (Input and Output) DSPI_C Periph Chip Select GPIO	PCR[142]	10 01 00	I/O O I/O	VDDEH1a Medium	– / WKPCFG	– / WKPCFG		17	24	F1
eTPU_A[29] ²⁸ DSPI_C_PCS[2] GPIO[143]	eTPU_A Ch. (Input and Output) DSPI_C Periph Chip Select GPIO	PCR[143]	10 01 00	I/O O I/O	VDDEH1a Medium	– / WKPCFG	– / WKPCFG		16	23	F2
eTPU_A[30] DSPI_C_PCS[3] eTPU_A[11] GPIO[144]	eTPU_A Ch. DSPI_C Periph Chip Select eTPU_A Ch. GPIO	PCR[144]	011 010 001 000	I/O O O I/O	VDDEH1a Medium	– / WKPCFG	– / WKPCFG		15	22	E1
eTPU_A[31] DSPI_C_PCS[4] eTPU_A[13] GPIO[145]	eTPU_A Ch. DSPI_C Periph Chip Select eTPU_A Ch. GPIO	PCR[145]	011 010 001 000	I/O O O I/O	VDDEH1a Medium	– / WKPCFG	– / WKPCFG		14	21	E2
				eMI	os						
eMIOS[0] eTPU_A[0] eTPU_A[25] ²⁹ GPIO[179]	eMIOS Ch. eTPU_A Ch. eTPU_A Ch. GPIO	PCR[179]	001 010 100 000	I/O O O I/O	VDDEH1b Slow	-/WKPCFG	– / WKPCFG		54	63	T4
eMIOS[1] eTPU_A[1] GPIO[180]	eMIOS Ch. eTPU_A Ch. GPIO	PCR[180]	01 10 00	I/O O I/O	VDDEH1b Slow	– / WKPCFG	-/WKPCFG		_	64 ⁷	Т5 ⁸
eMIOS[2] eTPU_A[2] GPIO[181]	eMIOS Ch. eTPU_A Ch. GPIO	PCR[181]	01 10 00	I/O O I/O	VDDEH1b Slow	– / WKPCFG	– / WKPCFG		55	65	N7
eMIOS[4] eTPU_A[4] GPIO[183]	eMIOS Ch. eTPU_A Ch. GPIO	PCR[183]	01 10 00	I/O O I/O	VDDEH6a Slow	– / WKPCFG	– / WKPCFG		56	67	R5
eMIOS[8] eTPU_A[8] ³⁰ SCI_B_TX GPIO[187]	eMIOS Ch. eTPU_A Ch. eSCI_B Transmit GPIO	PCR[187]	001 010 100 000	I/O O O I/O	VDDEH6a Slow	– / WKPCFG	– / WKPCFG		57	70	P8

Fre	
esca	
le Se	
mico	
nduc	
ť	

Г

MPC5634M Microcontroller Data Sheet, Rev. 9

Т	able 2. Mi	PC563xN	l signa	al properties	s (continued	d)

		Pad	PCR PA	I/O	Voltage ⁴ /	E	Function / State	Pin No.			
Name	Function ¹	Register (PCR) ²	Field ³	Туре	Pad Type	Reset State ⁵	After Reset ⁶	144 LQFI	176 P LQFP	208 MAPB GA	
eMIOS[9] eTPU_A[9] ³⁰ SCI_B_RX GPIO[188]	eMIOS Ch. eTPU_A Ch. eSCI_B Receive GPIO	PCR[188]	001 010 100 000	I/O O I I/O	VDDEH6a Slow	-/WKPCFG	– / WKPCFG	58	71	R7	
eMIOS[10] GPIO[189]	eMIOS Ch. GPIO	PCR[189]	01 00	I/O I/O	VDDEH6a Slow	– / WKPCFG	– / WKPCFG	60	73	N8	
eMIOS[11] GPIO[190]	eMIOS Ch. GPIO	PCR[190]	01 00	I/O I/O	VDDEH6a Slow	– / WKPCFG	– / WKPCFG	62	75	R8	
eMIOS[12] DSPI_C_SOUT eTPU_A[27] GPIO[191]	eMIOS Ch. DSPI C Data Output eTPU_A Ch. GPIO	PCR[191]	001 010 100 000	I/O O O I/O	VDDEH6a Medium	-/WKPCFG	– / WKPCFG	63	76	N10	
eMIOS[13] GPIO[192]	eMIOS Ch. GPIO	PCR[192]	01 00	I/O I/O	VDDEH6a	-/WKPCFG	– / WKPCFG	-	77 ⁷	Т8 ⁸	
eMIOS[14] IRQ[0] eTPU_A[29] GPIO[193]	eMIOS Ch. External Interrupt Request eTPU_A Ch. GPIO	PCR[193]	001 010 100 000	0 0 /0	VDDEH6a Slow	-/WKPCFG	– / WKPCFG	64	78	R9	
eMIOS[15] IRQ[1] GPIO[194]	eMIOS Ch. External Interrupt Request GPIO	PCR[194]	01 10 00	0 /0	VDDEH6a Slow	-/WKPCFG	– / WKPCFG	—	79 ⁷	Т9 ⁸	
eMIOS[23] GPIO[202]	eMIOS Ch. GPIO	PCR[202]	01 00	I/O I/O	VDDEH6a Slow	– / WKPCFG	– / WKPCFG	65	80	R11	
	•	•	С	lock Sy	nthesizer					·	
XTAL	Crystal Oscillator Output	—	—	0	VDDEH6a	O / –	XTAL ³¹ / –	76	93	P16	
EXTAL EXTCLK	Crystal Oscillator Input External Clock Input	_	-	I	VDDEH6a	l / –	EXTAL ³² / –	75	92	N16	
CLKOUT	System Clock Output	PCR[229]	-	0	VDDE5 Fast	CLKOUT / Enabled	CLKOUT / Enabled	-	-	T14	
			I	Power /	Ground						
VDDPLL	PLL Supply Voltage	—	-	I	VDDPLL (1.2V)	l / –	—	74	91	R16	
VSSPLL ³³	PLL Ground	—	_	I	VSSPLL	I / —	—	77	94	M16	

Pinout and signal description

46

50

- ³⁹ VDDEH6A and VDDEH6B are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however they should be considered as the same signal in this document.
- ⁴⁰ If using JTAG or Nexus, the I/O segment that contains the JTAG and Nexus pins must be powered by a 5 V supply. The 3.3 V Nexus/JTAG signals are derived from the 5 volt power supply.
- ⁴¹ In the calibration package this signal is named VDDE12.

Pad Type	Name	Supply Voltage
Slow	pad_ssr_hv	3.0 V – 5.25 V
Medium	pad_msr_hv	3.0 V – 5.25 V
Fast	pad_fc	3.0 V – 3.6 V
Multi∨	pad_multv_hv	3.0 V – 5.25 V (high swing mode) 4.5 V – 5.25 V (low swing mode)
Analog	pad_ae_hv	0.0 – 5.25 V
LVDS	pad_lo_lv	_

Table 3. Pad types

Symbol		С	Parameter	Conditions	Value	Unit
R_{\thetaJA}	CC	D	Junction-to-Ambient, Natural Convection ²	Single layer board - 1s	38	°C/W
$R_{\theta JA}$	CC	D	Junction-to-Ambient, Natural Convection ²	Four layer board - 2s2p	31	°C/W
R _{θJMA}	CC	D	Junction-to-Moving-Air, Ambient ²	@200 ft./min., single layer board - 1s	30	°C/W
R _{θJMA}	CC	D	Junction-to-Moving-Air, Ambient ²	@200 ft./min., four layer board - 2s2p	25	°C/W
$R_{\theta JB}$	CC	D	Junction-to-Board ³		20	°C/W
R _{0JCtop}	CC	D	Junction-to-Case ⁴		5	°C/W
Ψ _{JT}	CC	D	Junction-to-Package Top, Natural Convection ⁵		2	°C/W

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

³ Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

⁴ Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

⁵ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Symbol		С	Parameter	Conditions	Value	Unit
R_{\thetaJA}	CC	D	Junction-to-ambient, natural convection ^{2,3}	One layer board - 1s	39	°C/W
R _{0JMA}	CC	D	Junction-to-ambient natural convection ^{2,4}	Four layer board - 2s2p	24	°C/W
R _{0JA}	CC	D	Junction-to-ambient (@200 ft/min) ^{2,4}	Single layer board	31	°C/W
R _{0JMA}	CC	D	Junction-to-ambient (@200 ft/min) ^{2,4}	Four layer board 2s2p	20	°C/W
$R_{\theta JB}$	CC	D	Junction-to-board ⁵	Four layer board - 2s2p	13	°C/W
$R_{ ext{ heta}JC}$	CC	D	Junction-to-case ⁶		6	°C/W
Ψ_{JT}	CC	D	Junction-to-package top natural convection ⁷		2	°C/W

Table 10. Thermal characteristics for 208-pin MAPBGA¹

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

³ Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

- ⁴ Per JEDEC JESD51-6 with the board horizontal.
- ⁵ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁶ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

Electrical characteristics

4.6.2 Recommended power transistors

The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON SemiconductorTM BCP68T1 or NJD2873 as well as Philips SemiconductorTM BCP68. The collector of the external transistor is preferably connected to the same voltage supply source as the output stage of the regulator.

Symbol	Parameter	Value	Unit
h _{FE} (β)	DC current gain (Beta)	60 – 550	_
P _D	Absolute minimum power dissipation	>1.0 (1.5 preferred)	W
I _{CMaxDC}	Minimum peak collector current	1.0	А
VCE _{SAT}	Collector-to-emitter saturation voltage	200–600 ¹	mV
V _{BE}	Base-to-emitter voltage	0.4–1.0	V

¹ Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCE_{SAT}

4.7 Power up/down sequencing

There is no power sequencing required among power sources during power up and power down, in order to operate within specification but use of the following sequence is strongly recommended when the internal regulator is bypassed:

 $5 \text{ V} \rightarrow 3.3 \text{ V}$ and 1.2 V

This is also the normal sequence when the internal regulator is enabled.

Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc., the state of the I/O pins during power up/down varies according to table Table 20 for all pins with fast pads and Table 21 for all pins with medium, slow and multi-voltage pads.¹

V _{DDE}	V _{RC33}	V _{DD}	Fast (pad_fc)
LOW	Х	Х	LOW
V _{DDE}	LOW	Х	HIGH
V _{DDE}	V _{RC33}	LOW	HIGH IMPEDANCE
V _{DDE}	V _{RC33}	V _{DD}	FUNCTIONAL

Table 20. Power sequence pin states for fast pads

Table 21.	Power sec	nuence pin	states fo	r medium.	slow and	multi-voltad	e pads
	1 01101 000		01010010	- moarann,		manti vontag	paao

V _{DDEH}	V _{DD}	Medium (pad_msr_hv) Slow (pad_ssr_hv) Multi-voltage (pad_multv_hv)
LOW	Х	LOW
V _{DDEH}	LOW	HIGH IMPEDANCE
V _{DDEH}	V _{DD}	FUNCTIONAL

^{1.}If an external 3.3V external regulator is used to supply current to the 1.2V pass transistor and this supply also supplies current for the other 3.3V supplies, then the 5V supply must always be greater than or equal to the external 3.3V supply.

- ⁸ V_{FLASH} is only available in the calibration package.
- ⁹ Regulator is functional, with derated performance, with supply voltage down to 4.0 V.
- ¹⁰ Multi-voltage pads (type pad_multv_hv) must be supplied with a power supply between 4.75 V and 5.25 V.
- ¹¹ The slew rate (SRC) setting must be 0b11 when in low-swing mode.
- ¹² While in low-swing mode there are no restrictions in transitioning to high-swing mode.
- ¹³ Pin in low-swing mode can accept a 5 V input.
- ¹⁴ Values are pending characterization.
- ¹⁵ Pin in low-swing mode can accept a 5 V input.
- ¹⁶ Characterization based capability:
 - IOH_S = {6, 11.6} mA and IOL_S = {9.2, 17.7} mA for {slow, medium} I/O with VDDEH=4.5 V;
 - IOH_S = {2.8, 5.4} mA and IOL_S = {4.2, 8.1} mA for {slow, medium} I/O with VDDEH=3.0 V
- ¹⁷ Characterization based capability:

IOH_F = {12, 20, 30, 40} mA and IOL_F = {24, 40, 50, 65} mA for {00, 01,10, 11} drive mode with VDDE=3.0 V; IOH_F = {7, 13, 18, 25} mA and IOL_F = {18, 30, 35, 50} mA for {00, 01, 10, 11} drive mode with VDDE=2.25 V; IOH_F = {3, 7, 10, 15} mA and IOL_F = {12, 20, 27, 35} mA for {00, 01, 10, 11} drive mode with VDDE=1.62 V ¹⁸ All VOL/VOH values 100% tested with ± 2 mA load.

- ¹⁹ Run mode as follows:
 - System clock = 40/60/80 MHz + FM 2% Code executed from flash memory ADC0 at 16 MHz with DMA enabled ADC1 at 8 MHz eMIOS pads toggle in PWM mode with a rate between 100 kHz and 500 kHz eTPU pads toggle in PWM mode with a rate between 10 kHz and 500 kHz CAN configured for a bit rate of 500 kHz
 - DSPI configured in master mode with a bit rate of 2 MHz
 - eSCI transmission configured with a bit rate of 100 kHz
- ²⁰ Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive code, 4 x ADC conversion every 10 ms, 2 × PWM channels at 1 kHz, all other modules stopped.
- ²¹ Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules stopped.
- ²² When using the internal regulator only, a bypass capacitor should be connected to this pin. External circuits should not be powered by the internal regulator. The internal regulator can be used as a reference for an external debugger.
- ²³ Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. See Table 23 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.
- 24 Absolute value of current, measured at $\mathrm{V_{IL}}$ and $\mathrm{V_{IH}}$
- ²⁵ Weak pull up/down inactive. Measured at V_{DDE} = 3.6 V and V_{DDEH} = 5.25 V. Applies to pad types: fast (pad_fc).
- ²⁶ Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 °C, in the ambient temperature range of 50 to 125 °C. Applies to pad types: pad a and pad ae.
- ²⁷ Applies to CLKOUT, external bus pins, and Nexus pins.
- ²⁸ Applies to the FCK, SDI, SDO, and SDS pins.
- ²⁹ This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics.
- ³⁰ When the pull-up and pull-down of the same nominal 200 KΩ or 100 KΩ value are both enabled, assuming no interference from external devices, the resulting pad voltage will be $0.5*V_{DDE} \pm 2.5\%$

Electrical characteristics

12	Diff Skew Itphla-tplhbl or Itplhb-tphlal	T _{SKEW}	CC	D				0.5	ns	
Termination										
13	Trans. Line (differential Zo)		CC	D		95	100	105	Ω	
14	Temperature		CC	D		-40		150	°C	

Table 26. DSPI LVDS pad specification ^{1, 2} (continued)

¹ These are typical values that are estimated from simulation.

² These specifications are subject to change per device characterization.

³ Preliminary target values. Actual specifications to be determined.

4.10 Oscillator and PLLMRFM electrical characteristics

Table 27. PLLMRFM electrical specifications¹

 $(V_{DDPLL} = 1.14 \text{ V to } 1.32 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V}, T_A = T_L \text{ to } T_H)$

Symbol		_	D	ramotor	Conditions	Va	Unit		
Symbo	"	C	F C	arameter	Conditions	min	max		
f _{ref_crystal}	f _{ref_crystal} CC D PLL reference frequency range ²				Crystal reference	4	20	MHz	
^f ref_ext		С			External reference	4	80		
f _{pll_in}	CC	Ρ	Phase detector in (after pre-divider	nput frequency range)	-	4	16	MHz	
f _{vco}	CC	Ρ	VCO frequency r	range ³	—	256	512	MHz	
f _{sys}	CC	С	On-chip PLL free	luency ²	—	16	80	MHz	
f _{sys}	СС	Т	System frequence	y in bypass mode ⁴	Crystal reference	4	20	MHz	
		Ρ			External reference	0	80		
t _{CYC}	СС	D	System clock pe	riod	—	—	1 / f _{sys}	ns	
f _{LORL}	СС	D	Loss of reference	e frequency window ⁵	Lower limit	1.6	3.7	MHz	
[†] LORH		D			Upper limit	24	56		
f _{SCM}	CC	Р	Self-clocked mod	de frequency ^{6,7}	—	1.2	75	MHz	
C _{JITTER}	CC	Т	CLKOUT period jitter ^{8,9,10,11}	Peak-to-peak (clock edge to clock edge)	f _{SYS} maximum	-5	5	% f _{CLKO} UT	
		Т		Long-term jitter (avg. over 2 ms interval)		-6	6	ns	
t _{cst}	CC	Т	Crystal start-up t	ime ^{12, 13}	—	—	10	ms	
V _{IHEXT}	CC	Т	EXTAL input high voltage		Crystal Mode ¹⁴ , $0.8 \le Vxtal \le 1.5V^{15}$	Vxtal + 0.4	_	V	
		Т			External Reference ^{14,}	V _{RC33} /2 + 0.4	V _{RC33}		

Pad Type			Output Delay (ns) ^{2,3} Low-to-High / High-to-Low		Rise/Fall E	dge (ns) ^{3,4}	Drive Load (pF)	SRC/DSC
			Min	Мах	Min	Мах		MSB,LSB
	CC	D		2.5/2.5		1.2/1.2	10	00
Fast	CC	D		2.5/2.5		1.2/1.2	20	01
1 431	CC	D		2.5/2.5		1.2/1.2	30	10
	CC	D		2.5/2.5		1.2/1.2	50	11 ⁸
pad_i_hv ¹²	CC	D	0.5/0.5	3/3	0.4/0.4	1.5/1.5	0.5	N/A
pull_hv	CC	D	NA	6000		5000/5000	50	N/A

Table 34. Pad AC specifications (3.3 V)¹ (continued)

¹ These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at f_{SYS} = 80 MHz, V_{DD} = 1.14 V to 1.32 V, V_{DDE} = 3 V to 3.6 V, V_{DDEH} = 3 V to 3.6 V, T_A = T_L to T_H.

² This parameter is supplied for reference and is not guaranteed by design and not tested.

³ Delay and rise/fall are measured to 20% or 80% of the respective signal.

⁴ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁵ In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output pads

⁶ Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.

⁷ Output delay is shown in Figure 8. Add a maximum of one system clock to the output delay for delay with respect to system clock.

⁸ Can be used on the tester

⁹ This drive select value is not supported. If selected, it will be approximately equal to 11.

¹⁰ Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.

¹¹ Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.

¹² Stand alone input buffer. Also has weak pull-up/pull-down.

Pad Type			Output Delay (ns) ^{1,2} Low-to-High / High-to-Low		Rise/Fall Edge (ns) ³		Drive Load (pF)	SRC/DSC	
			Min	Мах	Min	Max		MSB,LSB	
	CC	D		3.0/3.0	2.0/1.5		10	00	
Fast	CC	D		3.0/3.0	2.0/1.5		20	01	
1 431	CC	D		3.0/3.0	2.0/1.5		30	10	
	CC	D		3.0/3.0	2.0/1.5		50	11 ⁴	

Table 35. Pad AC specifications (1.8 V)

¹ This parameter is supplied for reference and is not guaranteed by design and not tested.

 $^2\,$ Delay and rise/fall are measured to 20% or 80% of the respective signal.

³ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁴ Can be used on the tester.

Electrical characteristics

Figure 16. CLKOUT timing

Figure 17. Synchronous output timing

Packages

Figure 34. 176 LQFP package mechanical drawing (part 2)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5634M Rev. 9 05/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and

Power.org logos and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2008-2012. All rights reserved.

