

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Processore200z3Core Size32-Bit Single-CoreSpeed60MHzConnectivityCANbus, EBI/EMI, LINbus, SCI, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O80Program Memory Size1MB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)	Details	
Core Size32-Bit Single-CoreSpeed60MHzConnectivityCANbus, EBI/EMI, LINbus, SCI, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O80Program Memory SizeIMB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)Converter Package100 + 00 + 00 + 00 + 00 + 00 + 00 + 00	Product Status	Active
Speed60MHzConnectivityCANbus, EBI/EMI, LINbus, SCI, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O80Program Memory Size1MB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)Number of LAB A A A A A A A A A A A A A A A A A A	Core Processor	e200z3
ConnectivityCANbus, EBI/EMI, LINbus, SCI, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O80Program Memory Size1MB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)	Core Size	32-Bit Single-Core
PeripheralsDMA, POR, PWM, WDTNumber of I/O80Program Memory Size1MB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)	Speed	60MHz
Number of I/O80Program Memory Size1MB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)	Connectivity	CANbus, EBI/EMI, LINbus, SCI, SPI, UART/USART
Program Memory Size1MB (1M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP (24x24)	Peripherals	DMA, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFPSupplier Device Package176-LQFP (24x24)	Number of I/O	80
EEPROM Size-RAM Size64K × 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFPSupplier Device Package176-LQFP (24x24)	Program Memory Size	1MB (1M × 8)
RAM Size64K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFPSupplier Device Package176-LQFP (24x24)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)4.5V ~ 5.25VData ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFPSupplier Device Package176-LQFP (24x24)	EEPROM Size	-
Data ConvertersA/D 34x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFPSupplier Device Package176-LQFP (24x24)	RAM Size	64K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case176-LQFPSupplier Device Package176-LQFP (24x24)	Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.25V
Operating Temperature -40°C ~ 125°C (TA) Mounting Type Surface Mount Package / Case 176-LQFP Supplier Device Package 176-LQFP (24x24)	Data Converters	A/D 34x12b
Mounting Type Surface Mount Package / Case 176-LQFP Supplier Device Package 176-LQFP (24x24)	Oscillator Type	Internal
Package / Case 176-LQFP Supplier Device Package 176-LQFP (24x24)	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package 176-LQFP (24x24)	Mounting Type	Surface Mount
	Package / Case	176-LQFP
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5633mf2mlu60	Supplier Device Package	176-LQFP (24x24)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5633mf2mlu60

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Addendum List for Revision 9

Table 1. MPC5634M Rev 9 Addendum

Location	Description
Section 4.11, "Temperature Sensor Electrical Characteristics", Page 81	In "Temperature Sensor Electrical Characteristics" table, update the Min and Max value of "Accuracy" parameter to -20°C and +20°C, respectively.

2 Revision History

Table 2 provides a revision history for this datasheet addendum document.

Table 2. Revision History Table

Rev. Number	Substantive Changes	Date of Release
1.0	Initial release.	12/2014

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2014 Freescale Semiconductor, Inc.

Document Number: MPC5634M_AD Rev. 1.0 01/2015

Overview

The flash memory provides the following features:

- Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword reads are supported. Only aligned word and doubleword writes are supported.
- Fetch Accelerator
 - Architected to optimize the performance of the flash with the CPU to provide single cycle random access to the flash up to 80 MHz system clock speed
 - Configurable read buffering and line prefetch support
 - Four line read buffers (128 bits wide) and a prefetch controller
- · Hardware and software configurable read and write access protections on a per-master basis
- Interface to the flash array controller is pipelined with a depth of one, allowing overlapped accesses to proceed in parallel for interleaved or pipelined flash array designs
- Configurable access timing allowing use in a wide range of system frequencies
- Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) allowing use for emulation of other memory types
- Software programmable block program/erase restriction control
- Erase of selected block(s)
- Read page size of 128 bits (four words)
- ECC with single-bit correction, double-bit detection
- Program page size of 64 bits (two words)
- ECC single-bit error corrections are visible to software
- Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC
- Embedded hardware program and erase algorithm
- Erase suspend
- Shadow information stored in non-volatile shadow block
- Independent program/erase of the shadow block

2.2.10 SRAM

The MPC5634M SRAM module provides a general-purpose up to 94 KB memory block. The SRAM controller includes these features:

- · Supports read/write accesses mapped to the SRAM memory from any master
- 32 KB or 24 KB block powered by separate supply for standby operation
- Byte, halfword, word and doubleword addressable
- ECC performs single-bit correction, double-bit detection on 32-bit data element

2.2.11 BAM

The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale and is identical for all MPC5634M MCUs. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM supports different modes of booting. They are:

- Booting from internal flash memory
- Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then executed)
- Booting from external memory on calibration bus

The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5634M hardware accordingly. The BAM provides the following features:

• Sets up MMU to cover all resources and mapping all physical address to logical addresses with minimum address translation

Overview

- SCK to PCS delay
- Delay between frames
- Programmable serial frame size of 4 to 16 bits, expandable with software control
- Continuously held chip select capability
- 6 Peripheral Chip Selects, expandable to 64 with external demultiplexer
- Deglitching support for up to 32 Peripheral Chip Selects with external demultiplexer
- DMA support for adding entries to TX FIFO and removing entries from RX FIFO:
 - TX FIFO is not full (TFFF)
 - RX FIFO is not empty (RFDF)
- 6 Interrupt conditions:
 - End of queue reached (EOQF)
 - TX FIFO is not full (TFFF)
 - Transfer of current frame complete (TCF)
 - Attempt to transmit with an empty Transmit FIFO (TFUF)
 - RX FIFO is not empty (RFDF)
 - FIFO Underrun (slave only and SPI mode, the slave is asked to transfer data when the TxFIFO is empty)
 - FIFO Overrun (serial frame received while RX FIFO is full)
- Modified transfer formats for communication with slower peripheral devices
- Continuous Serial Communications Clock (SCK)
- Power savings via support for Stop Mode
- Enhanced DSI logic to implement a 32-bit Timed Serial Bus (TSB) configuration, supporting the Microsecond Channel downstream frame format

The DSPIs also support these features unique to the DSI and CSI configurations:

- 2 sources of the serialized data:
 - eTPU_A and eMIOS output channels
 - Memory-mapped register in the DSPI
- Destinations for the deserialized data:
 - eTPU_A and eMIOS input channels
 - SIU External Interrupt Request inputs
 - Memory-mapped register in the DSPI
- Deserialized data is provided as Parallel Output signals and as bits in a memory-mapped register
- Transfer initiation conditions:
 - Continuous
 - Edge sensitive hardware trigger
 - Change in data
- · Pin serialization/deserialization with interleaved SPI frames for control and diagnostics
- Continuous serial communications clock
- Support for parallel and serial chaining of up to four DSPI blocks

2.2.16 eSCI

The enhanced serial communications interface (eSCI) allows asynchronous serial communications with peripheral devices and other MCUs. It includes special support to interface to Local Interconnect Network (LIN) slave devices. The eSCI block provides the following features:

- Full-duplex operation
- Standard mark/space non-return-to-zero (NRZ) format

- Independent interrupt source for each channel
- Counter can be stopped in debug mode

2.2.19 Software Watchdog Timer (SWT)

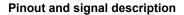
The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or interrupt request when the correct software key is not written within the required time window.

The following features are implemented:

- 32-bit modulus counter
- Clocked by system clock or crystal clock
- Optional programmable watchdog window mode
- Can optionally cause system reset or interrupt request on timeout
- · Reset by writing a software key to memory mapped register
- Enabled out of reset
- Configuration is protected by a software key or a write-once register

2.2.20 Debug features

2.2.20.1 Nexus port controller


The NPC (Nexus Port Controller) block provides real-time development support capabilities for the MPC5634MPower Architecture-based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NPC block is an integration of several individual Nexus blocks that are selected to provide the development support interface for MPC5634M. The NPC block interfaces to the host processor (e200z335), eTPU, and internal buses to provide development support as per the IEEE-ISTO 5001-2003 standard. The development support provided includes program trace and run-time access to the MCUs internal memory map and access to the Power Architecture and eTPU internal registers during halt. The Nexus interface also supports a JTAG only mode using only the JTAG pins. MPC5634Min the production 144 LQFP supports a 3.3 V reduced (4-bit wide) Auxiliary port. These Nexus port pins can also be used as 5 V I/O signals to increase usable I/O count of the device. When using this Nexus port as IO, Nexus trace is still possible using VertiCal calibration. In the VertiCal calibration package, the full 12-bit Auxiliary port is available.

NOTE

In the VertiCal package, the full Nexus Auxiliary port shares balls with the addresses of the calibration bus. Therefore multiplexed address/data bus mode must be used for the calibration bus when using full width Nexus trace in VertiCal assembly.

The following features are implemented:

- 5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)
 - Always available in production package
 - Supports both JTAG Boundary Scan and debug modes
 - 3.3 V interface
 - Supports Nexus class 1 features
 - Supports Nexus class 3 read/write feature
- 9-pin Reduced Port interface in 144 LQFP production package
 - Alternate function as IO
 - 5 V (in GPIO or alternate function mode), 3.3 V (in Nexus mode) interface

3 Pinout and signal description

This section contains the pinouts for all production packages for the MPC5634M family of devices. Please note the following:

- Pins labeled "NC" are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage.
- Pins labeled "NIC" have no internal connection.

3.1 144 LQFP pinout

Figure 2 shows the pinout for the 144-pin LQFP.

1		
	_	

Table 2. MPC563xM signal properties (continued)

		Pad					Francisco (Oto to	Pin No.		
Name	Function ¹	Config. Register (PCR) ²	PCR PA Field ³	l/O Type	Voltage ⁴ / Pad Type	Reset State ⁵	Function / State — After Reset ⁶	144 LQFP	176 LQFP	208 MAPB GA
AN[13] MA[1] ETPU_A[21] SDO	Single Ended Analog Input Mux Address ETPU_A Ch. eQADC Serial Data Out	PCR[216]	011 010 100 000	 0 0	VDDEH7	I /	AN[13] / –	118	147	B12
AN[14] MA[2] ETPU_A[27] SDI	Single Ended Analog Input Mux Address ETPU_A Ch. eQADC Serial Data In	PCR[217]	011 010 100 000	 0 	VDDEH7	I /	AN[14] / –	117	146	C12
AN[15] FCK ETPU_A[29]	Single Ended Analog Input eQADC Free Running Clock ETPU_A Ch.	PCR[218]	011 010 000	 0 0	VDDEH7	I /	AN[15] / –	116	145	C13
AN[16]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] /	3	3	C6
AN[17]	Single Ended Analog Input	—	—	I	VDDA	I / —	AN[x] /	2	2	C4
AN[18]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] /	1	1	D5
AN[21]	Single Ended Analog Input	—	—	I	VDDA	I / —	AN[x] /	144	173	B4
AN[22]	Single Ended Analog Input	—	—	I	VDDA	I / —	AN[x] /	132	161	B8
AN[23]	Single Ended Analog Input	—	—	I	VDDA	l / —	AN[x] /	131	160	C9
AN[24]	Single Ended Analog Input	—	—	I	VDDA	I / —	AN[x] /	130	159	D8
AN[25]	Single Ended Analog Input	—	—	I	VDDA	I / —	AN[x] /	129	158	B9
AN[27]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] /	128	157	A10
AN[28]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] /	127	156	B10
AN[30]	Single Ended Analog Input	—	—	I	VDDA	I / —	AN[x] /	126	155	D9
AN[31]	Single Ended Analog Input	—	—	I	VDDA	l / —	AN[x] /	125	154	D10
AN[32]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] / -	124	153	C10
AN[33]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] / -	123	152	C11
AN[34]	Single Ended Analog Input	—	—	I	VDDA	I / –	AN[x] / -	122	151	C5
AN[35]	Single Ended Analog Input	—	—	I	VDDA	l / –	AN[x] / -	121	150	D11
AN[36]	Single Ended Analog Input	—	—	I	VDDA	I / –	AN[x] / -	—	174 ⁷	F4 ⁸
AN[37]	Single Ended Analog Input	_	_	Ι	VDDA	l / –	AN[x] / –	_	175 ⁷	E3 ⁸

49

- ⁹ The GPIO functions on GPIO[206] and GPIO[207] can be selected as trigger functions in the SIU for the ADC by making the proper selections in the SIU_ETISR and SIU_ISEL3 registers in the SIU.
- ¹⁰ Some signals in this section are available only on calibration package.
- ¹¹ These pins are only available in the 496 CSP/MAPBGA calibration/development package.
- ¹² On the calibration package, the Nexus function on this pin is enabled when the NEXUSCFG pin is high and Nexus is configured to full port mode. On the 176-pin and 208-pin packages, the Nexus function on this pin is enabled permanently. Do not connect the Nexus MDO or MSEO pins directly to a power supply or ground.
- ¹³ In the calibration package, the I/O segment containing this pin is called VDDE12.
- ¹⁴ 208-ball BGA package only
- ¹⁵ When configured as Nexus (208-pin package or calibration package with NEXUSCFG=1), and JCOMP is asserted during reset, MDO[0] is driven high until the crystal oscillator becomes stable, at which time it is then negated.
- ¹⁶ The function of this pin is Nexus when NEXUSCFG is high.
- ¹⁷ High when the pin is configured to Nexus, low otherwise.
- ¹⁸ O/Low for the calibration with NEXUSCFG=0; I/Up otherwise.
- ¹⁹ ALT_ADDR/Low for the calibration package with NEXUSCFG=0; EVTI/Up otherwise.
- ²⁰ In 176-pin and 208-pin packages, the Nexus function is disabled and the pin/ball has the secondary function
- ²¹ This signal is not available in the 176-pin and 208-pin packages.
- ²² The primary function is not selected via the PA field when the pin is a Nexus signal. Instead, it is activated by the Nexus controller.
- ²³ TDI and TDO are required for JTAG operation.
- ²⁴ The primary function is not selected via the PA field when the pin is a JTAG signal. Instead, it is activated by the JTAG controller.
- ²⁵ The function and state of the CAN_A and eSCI_A pins after execution of the BAM program is determined by the BOOTCFG1 pin.
- ²⁶ Connect an external 10K pull-up resistor to the SCI_A_RX pin to ensure that the pin is driven high during CAN serial boot.
- ²⁷ For pins AN[0:7], during and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when the system clock propagates through the device.
- ²⁸ ETPUA[24:29] are input and output. The input muxing is controlled by SIU_ISEL8 register.
- ²⁹ eTPU_A[25] is an output only function.
- ³⁰ Only the output channels of eTPU[8:9] are connected to pins.
- ³¹ The function after reset of the XTAL pin is determined by the value of the signal on the PLLCFG[1] pin. When bypass mode is chosen XTAL has no function and should be grounded.
- ³² The function after reset of the EXTAL_EXTCLK pin is determined by the value of the signal on the PLLCFG[1] pin. If the EXTCLK function is chosen, the valid operating voltage for the pin is 1.62 V to 3.6 V. If the EXTAL function is chosen, the valid operating voltage is 3.3 V.
- ³³ VSSPLL and VSSREG are connected to the same pin.
- ³⁴ This pin is shared by two pads: VDDA_AN, using pad_vdde_hv, and VDDA_DIG, using pad_vdde_int_hv.
- ³⁵ This pin is shared by two pads: VSSA_AN, using pad_vsse_hv, and VSSA_DIG, using pad_vsse_int_hv.
- ³⁶ VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however they should be considered as the same signal in this document.
- ³⁷ LVDS pins will not work at 3.3 V.
- ³⁸ The VDDEH6 segment may be powered from 3.0 V to 5.0 V for mux address or SSI functions, but must meet the VDDA specifications of 4.5 V to 5.25 V for analog input function.

- ⁸ Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.
- ⁹ Internal structures hold the input voltage less than the maximum voltage on all pads powered by V_{DDEH} supplies, if the maximum injection current specification is met (2 mA for all pins) and V_{DDEH} is within the operating voltage specifications.
- ¹⁰ Internal structures hold the input voltage less than the maximum voltage on all pads powered by V_{DDE} supplies, if the maximum injection current specification is met (2 mA for all pins) and V_{DDE} is within the operating voltage specifications.
- ¹¹ Total injection current for all pins (including both digital and analog) must not exceed 25 mA.
- ¹² Total injection current for all analog input pins must not exceed 15 mA.
- ¹³ Lifetime operation at these specification limits is not guaranteed.
- ¹⁴ Solder profile per CDF-AEC-Q100.
- ¹⁵ Moisture sensitivity per JEDEC test method A112.

4.3 Thermal characteristics

Symbo	ol	С	Parameter	Conditions	Value	Unit
R_{\thetaJA}	CC	D	Junction-to-Ambient, Natural Convection ¹	Single layer board – 1s	43	°C/W
R_{\thetaJA}	CC	D	Junction-to-Ambient, Natural Convection ²	Four layer board – 2s2p	35	°C/W
R _{0JMA}	CC	D	Junction-to-Ambient (@200 ft/min) ²	Single layer board –1s	34	°C/W
R _{0JMA}	CC	D	Junction-to-Ambient (@200 ft/min) ²	Four layer board – 2s2p	29	°C/W
$R_{\theta JB}$	CC	D	Junction-to-Board ²		22	°C/W
R _{0JCtop}	CC	D	Junction-to-Case (Top) ³		8	°C/W
Ψ _{JT}	CC	D	Junction-to-Package Top, Natural Convection ⁴		2	°C/W

Table 8. Thermal characteristics for 144-pin LQFP

¹ Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

² Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.

³ Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

⁴ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

NP

Electrical characteristics

• B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

4.4 Electromagnetic Interference (EMI) characteristics

Symbol	Parameter	Conditions	f _{OSC} /f _{BUS}	Frequency	Level (Typ)	Unit
Radiated	V _{EME}	Device	Oscillator	150 kHz – 50 MHz	26	dBμV
Emissions		Configuration, test conditions and EM	Frequency = 8 MHz;	50–150 MHz	24	
		testing per standard	Oscillator 150 kHz – 50 MHz Frequency = 8 50–150 MHz MHz; 50–500 MHz Id System Bus Iy Frequency = 80	24		
		IEC61967-2; Supply Voltage = 5.0V DC,		500–1000 MHz	21	
		Ambient Temperature = 25°C, Worst-case Orientation	Frequency Modulation Oscillator Frequency = 8 MHz; System Bus	IEC Level	К	_
				150 kHz – 50 MHz	20	dBμV
				50–150 MHz	19	
				150–500 MHz	14	
				500–1000 MHz	7	
				IEC Level	L	_

Table 11. EMI testing specifications¹

¹ IEC Classification Level: L = 24dBuV; K = 30dBuV.

4.5 Electromagnetic static discharge (ESD) characteristics

Symbol		Parameter	Conditions	Value	Unit
—	SR	ESD for Human Body Model (HBM)	—	2000	V
R1	SR	HBM circuit description	—	1500	Ω
С	SR		_	100	pF
—	SR	ESD for field induced charge Model (FCDM)	All pins	500	V
			Corner pins	750	
—	SR	Number of pulses per pin	Positive pulses (HBM)	1	—
			Negative pulses (HBM)	1	—
—	SR	Number of pulses	_	1	_

Table 12. ESD ratings^{1,2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² Device failure is defined as: "If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature."

ID	Name		С	Parameter	Min	Тур	Max	Unit	Notes
5b		CC	Ρ	Nominal 3.3 V supply internal regulator DC output voltage variation after power-on reset	Vdd33 – 7.5%	Vdd33	Vdd33 + 7%	V	With internal load up to ldd3p3
5c	—	СС	D	Voltage regulator 3.3 V output impedance at maximum DC load	_	_	2	Ω	
5d	ldd3p3	СС	Ρ	Voltage regulator 3.3 V maximum DC output current	80	—	_	mA	
5e	Vdd33 ILim ⁶	СС	С	Voltage regulator 3.3 V DC current limit	—	130	—	mA	
6	Lvi3p3	CC	С	Nominal LVI for rising 3.3 V supply ⁵	_	3.090	_	V	The Lvi3p3 specs are also valid for the Vddeh LVI
6a	—	СС	С	Variation of LVI for rising 3.3 V supply at power-on reset ⁵	Lvi3p3–6%	Lvi3p3	Lvi3p3+6%	V	See note ⁷
6b	_	СС	С	Variation of LVI for rising 3.3 V supply after power-on reset ⁵	Lvi3p3–3%	Lvi3p3	Lvi3p3+3%	V	See note 7
6c	—	CC	С	Trimming step LVI 3.3 V ⁵	_	20	_	mV	
6d	Lvi3p3_h	СС	С	LVI 3.3 V hysteresis ⁵	_	60	_	mV	
7	Por3.3V_r	CC	С	Nominal POR for rising 3.3 V supply	_	2.07	_	V	The 3.3V POR specs are also valid for the Vddeh POR
7a	_	СС	С	Variation of POR for rising 3.3 V supply	Por3.3V_r– 35%	Por3.3V_r	Por3.3V_r+ 35%	V	
7b	Por3.3V_f	СС	С	Nominal POR for falling 3.3 V supply	—	1.95	—	V	
7c	_	СС	С	Variation of POR for falling 3.3 V supply	Por3.3V_f- 35%	Por3.3V_f	Por3.3V_f+ 35%	V	
8	Lvi5p0	СС	С	Nominal LVI for rising 5 V VDDREG supply ⁵	—	4.290	—	V	
8a	_	СС	С	Variation of LVI for rising 5 V VDDREG supply at power-on reset ⁵	Lvi5p0–6%	Lvi5p0	Lvi5p0+6%	V	
8b	_	СС	С	Variation of LVI for rising 5 V VDDREG supply power-on reset ⁵	Lvi5p0–3%	Lvi5p0	Lvi5p0+3%	V	
8c	—	СС	С	Trimming step LVI 5 V ⁵	—	20	—	mV	

Sympol		с	Deremeter	Conditions	Value ²			
Symbol		C	Parameter	Conditions	min	typ	max	Unit
I _{DDH1}	CC	D	Operating current	V _{DDEH1}	_	-	See note ²³	mA
I _{DDH6} I _{DDH7}		D	V _{DDE} ²³ supplies @ 80 MHz	V _{DDEH6}	_	-		
I _{DD7}		D		V _{DDEH7}	_	_		
I _{DDH9} I _{DD12}		D		V _{DDE7}	_	-		
		D		V _{DDEH9}	_	-		
		D		V _{DDE12}	_	—		
I _{ACT_S}	CC	С	Slow/medium I/O weak	3.0 V – 3.6 V	15	—	95	μA
		Ρ	pull up/down current ²⁴	4.75 V – 5.25 V	35	_	200	
I _{ACT_F}	CT_F CC D Fast I/O weak pull up/down current ²⁴		Fast I/O weak pull up/down current ²⁴	1.62 V – 1.98 V	36	—	120	μA
		D		2.25 V – 2.75 V	34	_	139	
	D			3.0 V – 3.6 V	42	_	158	
I _{ACT_MV_PU}	CC	С	Multi-voltage pad weak pullup current	V _{DDEH} = 3.0–3.6 V ¹⁰ , pad_multv_hv, all process corners, high swing mode only	10	_	75	μΑ
		Ρ		4.75 V – 5.25 V	25	_	200	
I _{ACT_MV_PD}	СС	С	Multivoltage pad weak pulldown current	V _{DDEH} = 3.0–3.6 V ¹⁰ , pad_multv_hv, all process corners, high swing mode only	10	_	60	μA
		Ρ		4.75 V – 5.25 V	25	-	200	
I _{INACT_D}	СС	Р	I/O input leakage current ²⁵	—	-2.5	_	2.5	μA
I _{IC}	СС	Т	DC injection current (per pin)	—	-1.0	_	1.0	mA
I _{INACT_A}	CC	Ρ	Analog input current, channel off, AN[0:7], AN38, AN39 ²⁶	—	-250	_	250	nA
		Ρ	Analog input current, channel off, all other analog pins (ANx) ²⁶	—	-150	-	150	

Symbol		с	Parameter	Conditions		Value ²		Unit
			Farameter	Conditions	min	typ	max	
CL	CC	D	Load capacitance (fast I/O) ²⁷	DSC(PCR[8:9]) = 0b00	—	_	10	pF
		D	-	DSC(PCR[8:9]) = 0b01		_	20	
		D		DSC(PCR[8:9]) = 0b10	—	_	30	
		D		DSC(PCR[8:9]) = 0b11	—	_	50	
C _{IN}	СС	D	Input capacitance (digital pins)	—	—	_	7	pF
C _{IN_A}	CC	D	Input capacitance (analog pins)	_	_	_	10	pF
C _{IN_M}	CC	D	Input capacitance (digital and analog pins ²⁸)	_	—	-	12	pF
R _{PUPD200K}	CC	Ρ	Weak Pull-Up/Down Resistance ^{29,30} 200 kΩ Option	—	130	_	280	kΩ
R _{PUPDMATCH}	CC	С	200KΩ Option		-2.5		2.5	%
R _{PUPD100K}	CC	Ρ	Weak Pull-Up/Down Resistance ^{29,30} 100 kΩ Option	_	65	_	140	kΩ
R _{PUPDMATCH}	CC	С	100KΩ Option		-2.5		2.5	%
R _{PUPD5K}	CC	D	Weak Pull-Up/Down Resistance ²⁹ 5 kΩ Option	5 V ± 5% supply	1.4	_	7.5	kΩ
$T_A (T_L \text{ to } T_H)$	SR	SR — Operating temperature — range - ambient (packaged)		-40.0	—	125.0	°C	
—	SR	-	Slew rate on power supply pins	_	—	-	50	V/ms

Table 22. DC electrical specifications	¹ (continued)
--	--------------------------

¹ These specifications are design targets and subject to change per device characterization.

² TBD: To Be Defined.

- 3 V_{DDE} must be lower than V_{RC33}, otherwise there is additional leakage on pins supplied by V_{DDE}.
- ⁴ These specifications apply when V_{RC33} is supplied externally, after disabling the internal regulator ($V_{DDREG} = 0$).
- ⁵ ADC is functional with 4 V \leq V_{DDA} \leq 4.75 V but with derated accuracy. This means the ADC will continue to function at full speed with no bad behavior, but the accuracy will be degraded.
- ⁶ Internal structures hold the input voltage less than V_{DDA} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.

⁷ The V_{DDF} supply is connected to V_{DD} in the package substrate. This specification applies to calibration package devices only.

4.16.4 eMIOS timing

Table 39. eMIOS timing¹

\$	¥	Symbol C			Characteristic	Min. Value	Max. Value	Unit
	1	t _{MIPW}	CC	D	eMIOS Input Pulse Width	4	_	t _{CYC}
2	2	t _{MOPW}	CC	D	eMIOS Output Pulse Width	1	_	t _{CYC}

¹ eMIOS timing specified at f_{SYS} = 80 MHz, V_{DD} = 1.14 V to 1.32 V, V_{DDEH} = 4.5 V to 5.25 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.

4.16.5 DSPI timing

					40.0	MHz	60 1	60 MHz		80 MHz			
#	Symi	Symbol		ymbol		Characteristic	401				00 1011 12		Unit
	,				Min.	Max.	Min.	Max.	Min.	Max.			
1	t _{SCK}	CC	D	SCK Cycle Time ^{3,4}	48.8 ns	5.8 ms	28.4 ns	3.5 ms	24.4 ns	2.9 ms	_		
2	t _{csc}	СС	D	PCS to SCK Delay ⁵	46	—	26	—	22		ns		
3	t _{ASC}	CC	D	After SCK Delay ⁶	45	_	25		21	_	ns		
4	t _{SDC}	CC	D	SCK Duty Cycle	(½t _{SC})– 2	(½t _{SC})+ 2	(½t _{SC})– 2	(½t _{SC})+ 2	(½t _{SC})– 2	$\binom{1/2}{2} t_{SC} + 2$	ns		
5	t _A	CC	D	Slave Access Time (SS active to SOUT driven)	_	25	—	25	_	25	ns		
6	t _{DIS}	CC	D	Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid)	—	25	—	25	—	25	ns		
7	t _{PCSC}	CC	D	PCSx to PCSS time	4	_	4	_	4	—	ns		
8	t _{PASC}	CC	D	PCSS to PCSx time	5	_	5		5	—	ns		
9	t _{SUI}	СС	Data Setup Time for Inputs										
			D	Master (MTFE = 0)	20	_	20	—	20	—	ns		
			D	Slave	2	—	2	—	2	—			
			D	Master (MTFE = 1, CPHA = 0) ⁷	-4	—	6		8	_			
			D	Master (MTFE = 1, CPHA = 1)	20	—	20	—	20	—			

Table 40. DSPI timing^{1,2}

#	Sum	hal	с	Characteristic	40	MHz	60 MHz		80 MHz		Unit
#	Symbol			Characteristic	Min.	Max.	Min.	Max.	Min.	Max.	Omt
10	t _{HI}	CC			Da	ita Hold Tii	me for Inp	uts			
			D	Master (MTFE = 0)	-4		-4		-4	_	ns
			D	Slave	7	—	7	—	7	_	
			D	Master (MTFE = 1, CPHA = 0) ⁷	45	—	25	_	21	_	
			D	Master (MTFE = 1, CPHA = 1)	-4	_	-4		-4	_	
11	t _{SUO}	CC			Dat	a Valid (aff	ter SCK e	dge)			
			D	Master (MTFE = 0)	—	6	—	6	—	6	ns
			D	Slave	—	25	—	25	—	25	
			D	Master (MTFE = 1, CPHA=0)	—	45	_	25	_	21	
			D	Master (MTFE = 1, CPHA=1)	—	6	_	6	_	6	
12	t _{HO}	CC		Data Hold Time for Outputs							•
			D	Master (MTFE = 0)	-5	—	-5	—	-5	_	ns
			D	Slave	5.5	_	5.5		5.5		
			D	Master (MTFE = 1, CPHA = 0)	8	—	4	—	3	—	
			D	Master (MTFE = 1, CPHA = 1)	-5	—	-5	—	-5		

Table 40. DSPI timing^{1,2} (continued)

¹ All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types of S or SH have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0–5.25 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11.

² Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 62 MHz parts allow for a 60 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.

³ The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two MPC5634M devices communicating over a DSPI link.

⁴ The actual minimum SCK cycle time is limited by pad performance.

⁵ The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].

⁶ The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].

⁷ This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.

4.16.6 eQADC SSI timing

	CLOAD = 25pF on all outputs. Pad drive strength set to maximum.								
#	# Symbol		С	Rating Min		Тур	Max	Unit	
1	f _{FCK}	СС	D	FCK Frequency ^{2, 3}	1/17 f _{SYS_CLK}		1/2 f _{SYS_CLK}	Hertz	
1	t _{FCK}	CC	D	FCK Period (t _{FCK} = 1/ f _{FCK})	2 t _{SYS_CLK}		17t _{SYS_CLK}	seconds	
2	t _{FCKHT}	СС	D	Clock (FCK) High Time	$t_{\text{SYS}_\text{CLK}} - 6.5$		_{9*} t _{SYS_CLK} + 6.5	ns	
3	t _{FCKLT}	СС	D	Clock (FCK) Low Time	$t_{\text{SYS}_\text{CLK}} - 6.5$		_{8*} t _{SYS_CLK} + 6.5	ns	
4	t _{SDS_LL}	СС	D	SDS Lead/Lag Time	-7.5		+7.5	ns	
5	t _{SDO_LL}	СС	D	SDO Lead/Lag Time	-7.5		+7.5	ns	
6	t _{DVFE}	СС	D	Data Valid from FCK Falling Edge $(t_{FCKLT+}t_{SDO_LL})$	1			ns	
7	t _{EQ_SU}	CC	D	eQADC Data Setup Time (Inputs)	22			ns	
8	t _{EQ_HO}	CC	D	eQADC Data Hold Time (Inputs)	1			ns	

Table 41. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)¹

¹ SS timing specified at f_{SYS} = 80 MHz, V_{DD} = 1.14 V to 1.32 V, V_{DDEH} = 4.5 V to 5.25 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.

² Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.

³ FCK duty is not 50% when it is generated through the division of the system clock by an odd number.

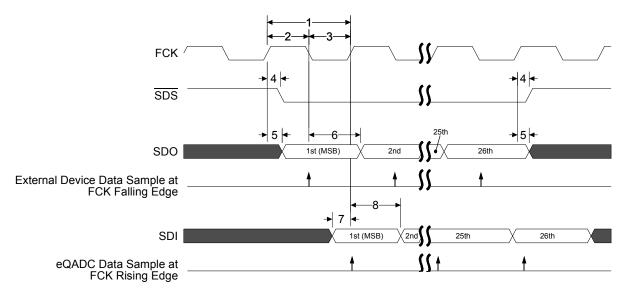


Figure 29. eQADC SSI timing

5.1.2 176 LQFP

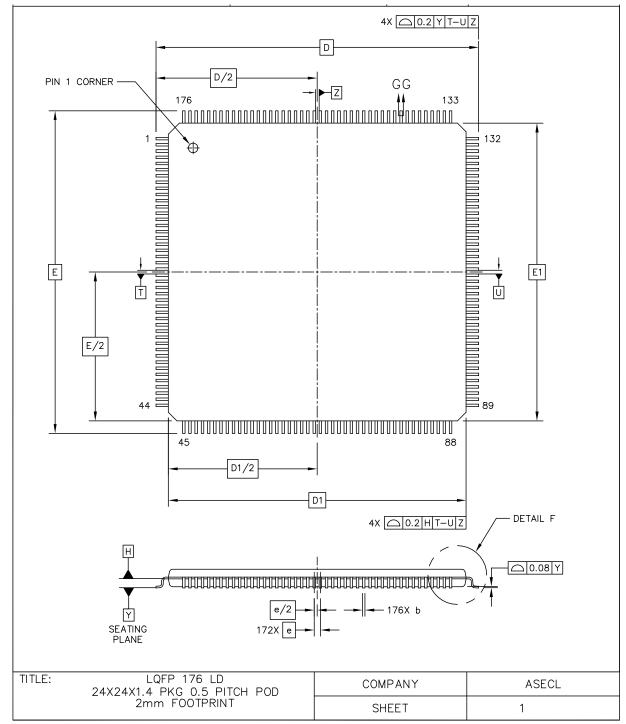


Figure 33. 176 LQFP package mechanical drawing (part 1)

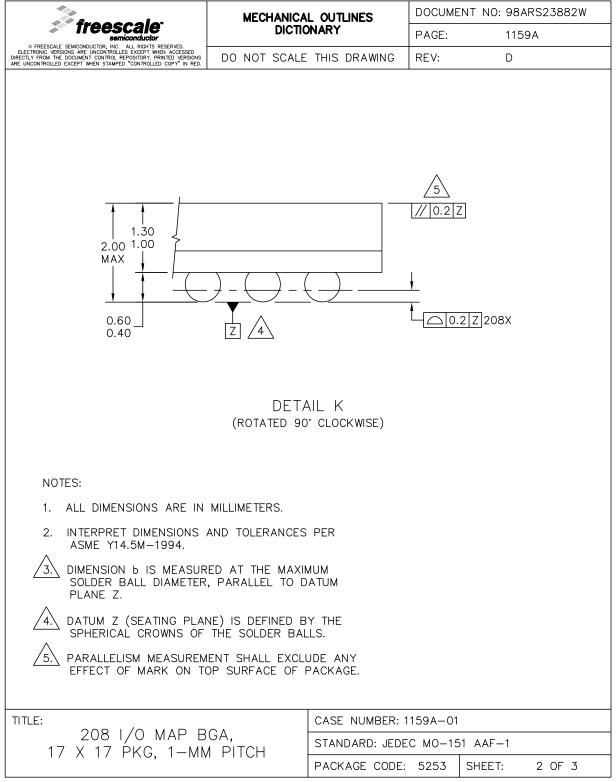


Figure 37. 208 MAPBGA package mechanical drawing (part 2)

Document revision history

Revision	Date	Description of Changes
Rev.4	12/2009	208-pin MAPBGA ballmap for the MPC5633M (1024 KB flash memory) has changed.
		Power Management Control (PMC) and Power On Reset (POR) electrical specifications updated
		Temperature sensor data added
		Specifications now indicate how each controller characteristic parameter is guaranteed.
		I/O pad current specifications updated
		I/O Pad VRC33 current specifications updated
		PAD AC characteristics updated
		VGA gain specifications added to eQADC electrical characteristics
		 DC electrical specifications updated: Footnote added to RPUPD100K and RPUPD200K: When the pull-up and pull-down of the same nominal 200 KΩ or 100 KΩ value are both enabled, assuming no interference from other devices, the resulting pad voltage will be 0.5*VDDE ± 2.5% I_{OL} condition added to V_{OL_LS}. I_{OH} condition added to V_{OH_LS}. Minimum V_{OH_LS} is 2.3 V (was 2.7 V). Separate I_{DDPLL} removed from I_{DD} spec because we can only measure I_{DD} + I_{DDPLL}. I_{DD} now documented as I_{DD} + I_{DDPLL}. Footnote added detailing runtime configuration used to measure I_{DD} + I_{DDPLL}. Specifications for I_{DDSTBY} and I_{DDSTBY150} reformatted to make more clear. V_{STBY} is now specified by two ranges. The area in between those ranges is indeterminate
		 indeterminate. LVDS pad specifications updated: Min value for V_{OD} at SRC=0b01 is 90 mV (was 120); and 160 mV (was 180) at SRC = 0b10
		 Changes to Signal Properties table: VDDE7 removed as voltage segment from Calibration bus pins. Calibration bus pins are powered by VDDE12 only. GPIO[139] and GPIO[87] pins changed to Medium pads Some signal names have changed on 176-pin QFP package pinout: "CAL_x" signals renamed to "ALT_x".
		 Changes to Pad Types table: Column heading changed from "Voltage" to "Supply Voltage" MultiV pad high swing mode voltage changed to 3.0 V - 5.25 V (was 4.5 V - 5.25 V) MultiV pad low swing mode voltage changed to 4.5 V - 5.25 V (was 3.0 V - 3.6 V)
		Signal details table added
		Power/ground segmentation table added
		100-pin package is no longer available

Table 43. Revision history (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5634M Rev. 9 05/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and

Power.org logos and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2008-2012. All rights reserved.

