

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1517jbd48e

Email: info@E-XFL.COM

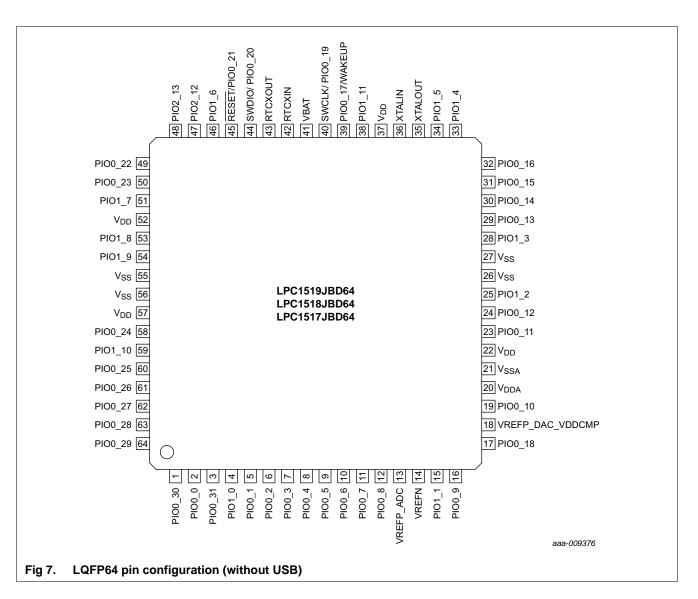
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Single power supply 2.4 V to 3.6 V.
- Temperature range –40 °C to +105 °C.
- Available as LQFP100, LQFP64, and LQFP48 packages.

3. Applications

- Motor control
- Motion drives
- Digital power supplies
- Industrial and medical
- Solar inverters
- Home appliances
- Building and factory automation

4. Ordering information


Table 1. Ordering information

Type number	Package							
	Name	Description	Version					
LPC1549JBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1					
LPC1549JBD64	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					
LPC1549JBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2					
LPC1548JBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1					
LPC1548JBD64	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					
LPC1547JBD64	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					
LPC1547JBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2					
LPC1519JBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1					
LPC1519JBD64	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					
LPC1518JBD100	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1					
LPC1518JBD64	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					
LPC1517JBD64	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					
LPC1517JBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2					

NXP Semiconductors

LPC15xx

32-bit ARM Cortex-M3 microcontroller

8.9 Nested Vectored Interrupt controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

8.9.1 Features

- Nested Vectored Interrupt Controller that is an integral part of the ARM Cortex-M3.
- Tightly coupled interrupt controller provides low interrupt latency.
- Controls system exceptions and peripheral interrupts.
- The NVIC supports 47 vectored interrupts.
- Eight programmable interrupt priority levels with hardware priority level masking.
- Software interrupt generation using the ARM exceptions SVCall and PendSV.
- Support for NMI.
- ARM Cortex-M3 Vector table offset register VTOR implemented.

8.9.2 Interrupt sources

Typically, each peripheral device has one interrupt line connected to the NVIC but can have several interrupt flags. Individual interrupt flags can also represent more than one interrupt source.

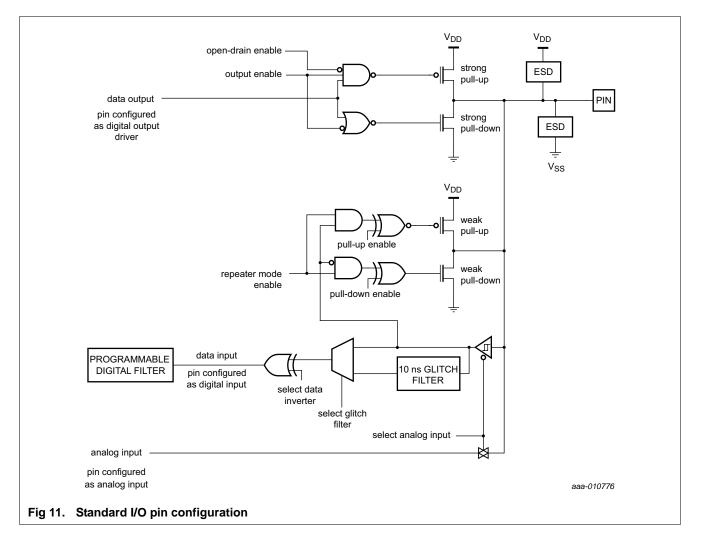
8.10 IOCON block

The IOCON block configures the electrical properties of the pins such as pull-up and pull-down resistors, hysteresis, open-drain modes and input filters.

Remark: The pin function and whether the pin operates in digital or analog mode are entirely under the control of the switch matrix.

Enabling an analog function through the switch matrix disables the digital pad. However, the internal pull-up and pull-down resistors as well as the pin hysteresis must be disabled to obtain an accurate reading of the analog input.

8.10.1 Features


- Programmable pull-up, pull-down, or repeater mode.
- All pins (except PIO0_22 and PIO0_23) are pulled up to 3.3 V (V_{DD} = 3.3 V) if their pull-up resistor is enabled.
- Programmable pseudo open-drain mode.
- Programmable (on/off) 10 ns glitch filter on 36 pins (PIO0_0 to PIO0_17, PIO0_25 to PIO0_31, PIO1_0 to PIO1_10). The glitch filter is turned on by default.
- Programmable hysteresis.
- Programmable input inverter.
- Digital filter with programmable filter constant on all pins.

8.10.2 Standard I/O pad configuration

Figure 11 shows the possible pin modes for standard I/O pins with analog input function:

32-bit ARM Cortex-M3 microcontroller

- Digital output driver with configurable open-drain output
- Digital input: Weak pull-up resistor (PMOS device) enabled/disabled
- Digital input: Weak pull-down resistor (NMOS device) enabled/disabled
- Digital input: Repeater mode enabled/disabled
- Digital input: Input digital filter configurable on all pins
- Digital input: Input glitch filter enabled/disabled on select pins
- Analog input

8.11 Switch Matrix (SWM)

The switch matrix controls the function of each digital or mixed analog/digital pin in a highly flexible way by allowing to connect many functions like the USART, SPI, SCT, and I2C functions to any pin that is not power or ground. These functions are called movable functions and are listed in <u>Table 4</u>.

Functions that need specialized pads like the ADC or analog comparator inputs can be enabled or disabled through the switch matrix. These functions are called fixed-pin functions and cannot move to other pins. The fixed-pin functions are listed in <u>Table 3</u>. If a fixed-pin function is disabled, any other movable function can be assigned to this pin.

8.12 Fast General-Purpose parallel I/O (GPIO)

Device pins that are not connected to a specific peripheral function through the switch matrix are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation.

LPC15xx use accelerated GPIO functions.

- An entire port value can be written in one instruction.
- Mask, set, and clear operations are supported for the entire port.

8.12.1 Features

- Bit level port registers allow a single instruction to set and clear any number of bits in one write operation.
- Direction control of individual bits.

8.13 Pin interrupt/pattern match engine (PINT)

The pin interrupt block configures up to eight pins from the digital pins on ports 1 and 2 for providing eight external interrupts connected to the NVIC. The input multiplexer block is used to select the pins.

The pattern match engine can be used, in conjunction with software, to create complex state machines based on pin inputs.

Any digital pin on ports 0 and 1 can be configured through the SYSCON block as input to the pin interrupt or pattern match engine. The registers that control the pin interrupt or pattern match engine are located on the IO+ bus for fast single-cycle access.

8.13.1 Features

- Pin interrupts
 - Up to eight pins can be selected from all digital pins on ports 0 and 1 as edge- or level-sensitive interrupt requests. Each request creates a separate interrupt in the NVIC.
 - Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.
 - Level-sensitive interrupt pins can be HIGH- or LOW-active.
 - Pin interrupts can wake up the part from sleep mode, deep-sleep mode, and power-down mode.
- Pin interrupt pattern match engine
 - Up to 8 pins can be selected from all digital pins on ports 0 and 1 to contribute to a boolean expression. The boolean expression consists of specified levels and/or transitions on various combinations of these pins.
 - Each minterm (product term) comprising the specified boolean expression can generate its own, dedicated interrupt request.
 - Any occurrence of a pattern match can be programmed to also generate an RXEV notification to the ARM CPU.
 - The pattern match engine does not facilitate wake-up.

8.18 USART0/1/2

Remark: All USART functions are movable functions and are assigned to pins through the switch matrix. Do not connect USART functions to the open-drain pins PIO0_22 and PIO0_23.

Interrupts generated by the USART peripherals can wake up the part from Deep-sleep and power-down modes if the USART is in synchronous mode, the 32 kHz mode is enabled, or the CTS interrupt is enabled.

8.18.1 Features

- Maximum bit rates of 4.5 Mbit/s in asynchronous mode, 15 Mbit/s in synchronous mode master mode, and 18 Mbit/s in synchronous slave mode.
- 7, 8, or 9 data bits and 1 or 2 stop bits.
- Synchronous mode with master or slave operation. Includes data phase selection and continuous clock option.
- Multiprocessor/multidrop (9-bit) mode with software address compare.
- RS-485 transceiver output enable.
- Autobaud mode for automatic baud rate detection
- Parity generation and checking: odd, even, or none.
- Software selectable oversampling from 5 to 16 clocks in asynchronous mode.
- One transmit and one receive data buffer.
- RTS/CTS for hardware signaling for automatic flow control. Software flow control can be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an RTS output.
- · Received data and status can optionally be read from a single register
- Break generation and detection.
- Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.
- Built-in Baud Rate Generator with auto-baud function.
- A fractional rate divider is shared among all USARTs.
- Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS detect, and receiver sample noise detected.
- Loopback mode for testing of data and flow control.
- In synchronous slave mode, wakes up the part from deep-sleep and power-down modes.
- Special operating mode allows operation at up to 9600 baud using the 32 kHz RTC oscillator as the UART clock. This mode can be used while the device is in Deep-sleep or Power-down mode and can wake-up the device when a character is received.
- USART transmit and receive functions work with the system DMA controller.

8.19 SPI0/1

All SPI functions are movable functions and are assigned to pins through the switch matrix. Do not connect SPI functions to the open-drain pins PIO0_22 and PIO0_23.

LPC15XX

© NXP Semiconductors N.V. 2015. All rights reserved.

 When the ADC is accurately calibrated, the internal voltage reference can be used to measure the power supply voltage. This requires calibration by recording the ADC code of the internal voltage reference at different power supply levels yielding a different ADC code value for each supply voltage level. In a particular application, the internal voltage reference can be measured and the actual power supply voltage can be determined from the stored calibration values. The calibration values can be stored in the EEPROM for easy access.

After power-up, the internal voltage reference must be allowed to settle to its stable value before it can be used as an ADC reference voltage input.

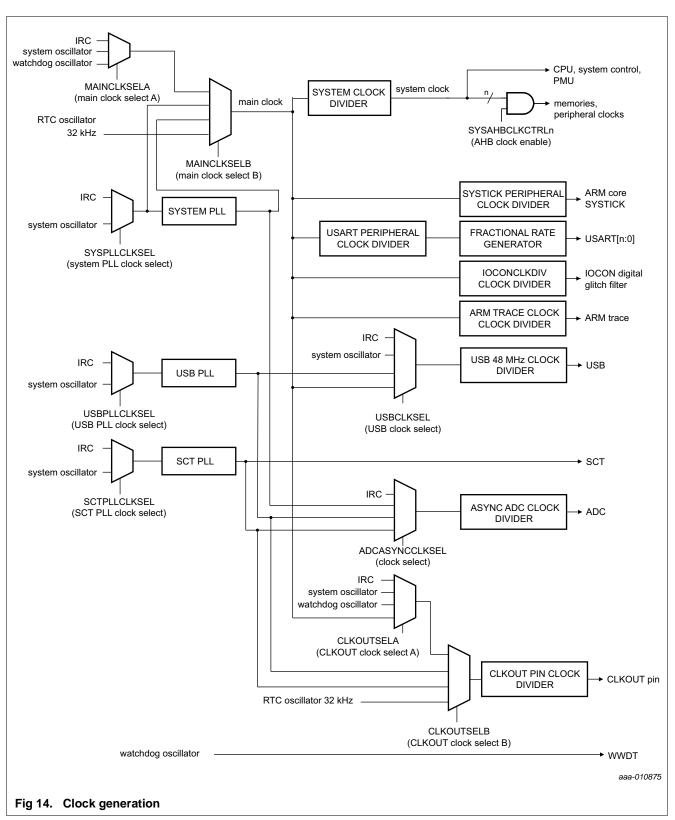
For an accurate measurement of the internal voltage reference by the ADC, the ADC must be configured in single-channel burst mode. The last value of a nine-conversion (or more) burst provides an accurate result.

8.29 Multi-Rate Timer (MRT)

The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each channel can be programmed with an independent time interval, and each channel operates independently from the other channels.

8.29.1 Features

- 24-bit interrupt timer
- Four channels independently counting down from individually set values
- Repeat and one-shot interrupt modes


8.30 Windowed WatchDog Timer (WWDT)

The watchdog timer resets the controller if software fails to periodically service it within a programmable time window.

8.30.1 Features

- Internally resets chip if not periodically reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable.
- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect feed sequence causes reset or interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.
- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The WWDT is clocked by the dedicated watchdog oscillator (WDOsc) running at a fixed frequency.

32-bit ARM Cortex-M3 microcontroller

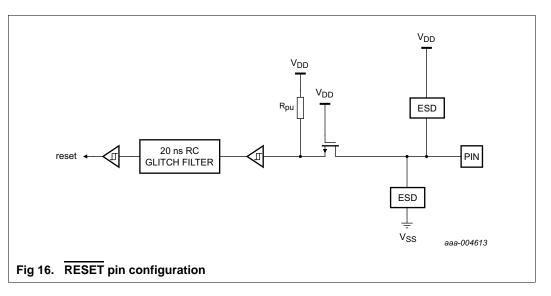
8.34 Clock generation

LPC15XX

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

8.41 System control


8.41.1 Reset

Reset has four sources on the LPC15xx: the RESET pin, the Watchdog reset, power-on reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage attains a usable level, starts the IRC and initializes the flash controller.

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

In Deep power-down mode, an external pull-up resistor is required on the RESET pin.

The RESET pin is operational in active, sleep, deep-sleep, and power-down modes if the RESET function is selected through the switch matrix for pin PIO0_21 (this is the default). A LOW-going pulse as short as 50 ns executes the reset and thereby wakes up the part to its active state. The RESET pin is not functional in Deep power-down mode and must be pulled HIGH externally while the part is in Deep power-down mode.

8.41.2 Brownout detection

The LPC15xx includes brown-out detection (BOD) with two levels for monitoring the voltage on the V_{DD} pin. If this voltage falls below one of two selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a dedicated status register. Two threshold levels can be selected to cause a forced reset of the chip.

8.41.3 Code security (Code Read Protection - CRP)

CRP provides different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. Programming a specific pattern into a dedicated flash location invokes CRP. IAP commands are not affected by the CRP.

LPC15XX

50 of 107

8.42 Emulation and debugging

Debug functions are integrated into the ARM Cortex-M3. Serial wire debug functions are supported in addition to a standard JTAG boundary scan. The ARM Cortex-M3 is configured to support up to four breakpoints and two watch points.

The $\overline{\text{RESET}}$ pin selects between the JTAG boundary scan ($\overline{\text{RESET}}$ = LOW) and the ARM SWD debug ($\overline{\text{RESET}}$ = HIGH). The ARM SWD debug port is disabled while the LPC15xx is in reset.

To perform boundary scan testing, follow these steps:

- 1. Erase any user code residing in flash.
- 2. Power up the part with the RESET pin pulled HIGH externally.
- 3. Wait for at least 250 μ s.
- 4. Pull the RESET pin LOW externally.
- 5. Perform boundary scan operations.
- 6. Once the boundary scan operations are completed, assert the TRST pin to enable the SWD debug mode, and release the RESET pin (pull HIGH).

Remark: The JTAG interface cannot be used for debug purposes.

9. Limiting values

Table 9.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage (3.3 V)	[2]	-0.5	V _{DDA}	V
V _{DDA}	analog supply voltage		-0.5	+4.6	V
V _{ref}	reference voltage	on pin VREFP_DAC_VDDCMP	-0.5	V _{DDA}	V
		on pin VREFP_ADC	-0.5	V _{DDA}	V
V _{BAT}	battery supply voltage		-0.5	+4.6	V
V _I ir	input voltage	5 V tolerant I/O pins; only valid [3][4] when the V _{DD(IO)} supply voltage is present	-0.5	+5.5	V
		on I2C open-drain pins [5] PIO0_22, PIO0_23	-0.5	+5.5	V
		3 V tolerant I/O pin without6over-voltage protection. Appliesto PIO0_12.	-0.5	V _{DDA}	V
		USB_DM, USB_DP pins	-0.5	V _{DD} + 0.5	V
V _{IA}	analog input voltage	[7][8] [9]	-0.5	+4.6	V
V _{i(xtal)}	crystal input voltage	[2]	-0.5	+2.5	V
V _{i(rtcx)}	32 kHz oscillator input voltage	[2]	-0.5	+4.6	V
I _{DD}	supply current	per supply pin	-	100	mA
I _{SS}	ground current	per ground pin	-	100	mA

Table 9. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
I _{latch}	I/O latch-up current	$-(0.5V_{DD}) < V_{I} < (1.5V_{DD});$ T _j < 125 °C	-	100	mA
T _{stg}	storage temperature	[1]	<u>0]</u> –65	+150	°C
T _{j(max)}	maximum junction temperature		-	+150	°C
P _{tot(pack)}	total power dissipation (per package)	based on package heat transfer, not device power consumption	-	1.5	W
V _{esd}	electrostatic discharge voltage	human body model; all pins	1] _	5	kV

[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

[2] Maximum/minimum voltage above the maximum operating voltage (see <u>Table 11</u>) and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.

[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_22 and PIO0_23 and except the 3 V tolerant pin PIO0_12.

[4] Including the voltage on outputs in 3-state mode.

[5] $V_{DD(IO)}$ present or not present. Compliant with the I²C-bus standard. 5.5 V can be applied to this pin when $V_{DD(IO)}$ is powered down.

[6] Applies to 3 V tolerant pin PIO0_12.

[7] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated exposure to elevated voltages at 4.6 V must be less than 10⁶ s total over the lifetime of the device. Applying an elevated voltage to the ADC inputs for a long time affects the reliability of the device and reduces its lifetime.

[8] If the comparator is configured with the common mode input $V_{IC} = V_{DD}$, the other comparator input can be up to 0.2 V above or below V_{DD} without affecting the hysteresis range of the comparator function.

[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.

[10] Dependent on package type.

[11] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.

10. Thermal characteristics

The average chip junction temperature, T_j (°C), can be calculated using the following equation:

$$T_j = T_{amb} + (P_D \times R_{th(j-a)}) \tag{1}$$

- T_{amb} = ambient temperature (°C),
- R_{th(i-a)} = the package junction-to-ambient thermal resistance (°C/W)
- P_D = sum of internal and I/O power dissipation

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
-	e output pin configured a	s digital pin (PIO0_24); see Figure 17					
IIL		V _I = 0 V; on-chip pull-up resistor disabled		-	0.5	10 <u>[14]</u>	nA
I _{IH}	HIGH-level input current	V _I = V _{DD} ; on-chip pull-down resistor disabled		-	0.5	10 <u>[14]</u>	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD}$; on-chip pull-up/down resistors disabled		-	0.5	10 <u>[14]</u>	nA
VI	input voltage	$V_{DD} \ge 2.4 V$	[16] [18]	0	-	5.0	V
		$V_{DD} = 0 V$		0	-	3.6	V
Vo	output voltage	output active		0	-	V_{DD}	V
V _{IH}	HIGH-level input voltage			0.7V _{DD}	-	-	V
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage	2.4 V <= V _{DD} < 3.0 V		0.30	-	-	V
		3.0 V <= V _{DD} <= 3.6 V		0.35	-	-	V
V _{OH}	HIGH-level output voltage	I _{OH} = 20 mA; 2.7 V <= V _{DD} < 3.6 V		$V_{DD}-0.4$	-	-	V
		I _{OH} = 12 mA; 2.4 V <= V _{DD} < 2.7 V		$V_{DD} - 0.4$	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD} - 0.4 V$; 2.7 V <= V _{DD} < 3.6 V		20	-	-	mA
		$V_{OH} = V_{DD} - 0.4 V$; 2.4 V <= V_{DD} < 2.7 V		12	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		4	-	-	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD}$	[19]	-	-	50	mA
I _{pd}	pull-down current	V ₁ = 5 V	[20]	10	50	150	μΑ
I _{pu}	pull-up current	$V_{I} = 0 V$	[20]	-10	-50	-85	μΑ
		$V_{DD} < V_{I} < 5 V$		0	0	0	μA
l²C-bus pi	ns (PIO0_22 and PIO0_23	B); see <u>Figure 17</u>					
V _{IH}	HIGH-level input voltage			0.7V _{DD}	-	-	V
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage			-	$0.05V_{DD}$	-	V
I _{OL}	LOW-level output current	V _{OL} = 0.4 V; I ² C-bus pins configured as standard mode pins		3.5	-	-	mA
	- 1			1	1		1

Table 11. Static characteristics ... continued $T_{amb} = -40$ °C to +105 °C, unless otherwise specified.

14. Application information

14.1 ADC usage notes

The following guidelines show how to increase the performance of the ADC in a noisy environment beyond the ADC specifications listed in <u>Table 24</u>:

- The ADC input trace must be short and as close as possible to the LPC15xx chip.
- The ADC input traces must be shielded from fast switching digital signals and noisy power supply lines.
- If the ADC and the digital core share the same power supply, the power supply line must be adequately filtered.
- To improve the ADC performance in a very noisy environment, put the device in Sleep mode during the ADC conversion.

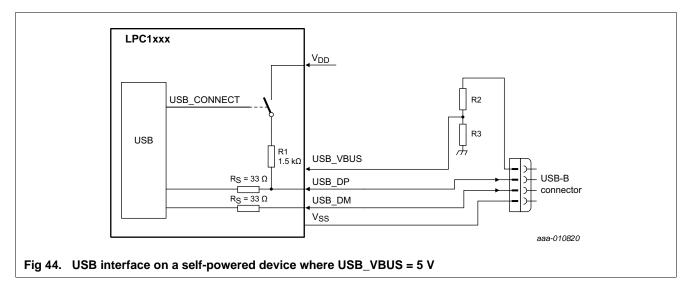
14.2 Suggested USB interface solutions

The USB device can be connected to the USB as self-powered device (see <u>Figure 44</u>) or bus-powered device (see <u>Figure 45</u>).

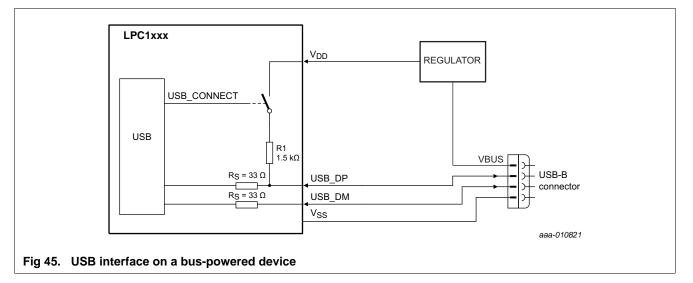
On the LPC15xx, the PIO0_3/USB_VBUS pin is 5 V tolerant only when V_{DD} is applied and at operating voltage level. Therefore, if the USB_VBUS function is connected to the USB connector and the device is self-powered, the USB_VBUS pin must be protected for situations when $V_{DD} = 0$ V.

If V_{DD} is always greater than 0 V while VBUS = 5 V, the USB_VBUS pin can be connected directly to the VBUS pin on the USB connector.

For systems where V_{DD} can be 0 V and VBUS is directly applied to the VBUS pin, precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum allowable voltage on the USB_VBUS pin in this case.


One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be greater than $0.7V_{DD}$ to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

For the following operating conditions


 $VBUS_{max} = 5.25 V$ $V_{DD} = 3.6 V,$

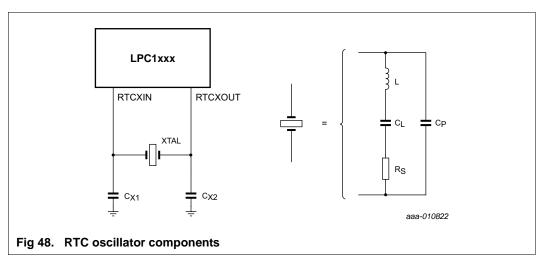
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.

32-bit ARM Cortex-M3 microcontroller

For a bus-powered device, the VBUS signal does not need to be connected to the USB_VBUS pin (see Figure 45). The USB_CONNECT function can additionally be enabled internally by setting the DCON bit in the DEVCMDSTAT register to prevent the USB from timing out when there is a significant delay between power-up and handling USB traffic. External circuitry is not required for the USB_CONNECT functionality.

Remark: When a bus-powered circuit as shown in <u>Figure 45</u> is used or, for a self-powered device, when the VBUS pin is not connected, configure the PIO0_3/USB_VBUS pin for GPIO (PIO0_3) in the IOCON block. This ties the VBUS signal HIGH internally.

14.2.1 USB Low-speed operation


The USB device controller can be used in low-speed mode supporting 1.5 Mbit/s data exchange with a USB host controller.

Remark: To operate in low-speed mode, change the board connections as follows:

- 1. Connect USB_DP to the D- pin of the connector.
- 2. Connect USB_DM to the D+ pin of the connector.

14.5 RTC oscillator component selection

The 32 kHz crystal must be connected to the part via the RTCXIN and RTCXOUT pins as shown in Figure 48. If the RTC is not used, the RTCXIN pin can be grounded.

Select C_{x1} and C_{x2} based on the external 32 kHz crystal used in the application circuitry. The pad capacitance C_P of the RTCXIN and RTCXOUT pad is 3 pF. If the external crystal's load capacitance is C_L , the optimal C_{x1} and C_{x2} can be selected as:

$$C_{x1} = C_{x2} = 2 \ x \ C_L - C_P$$

14.6 Connecting power, clocks, and debug functions

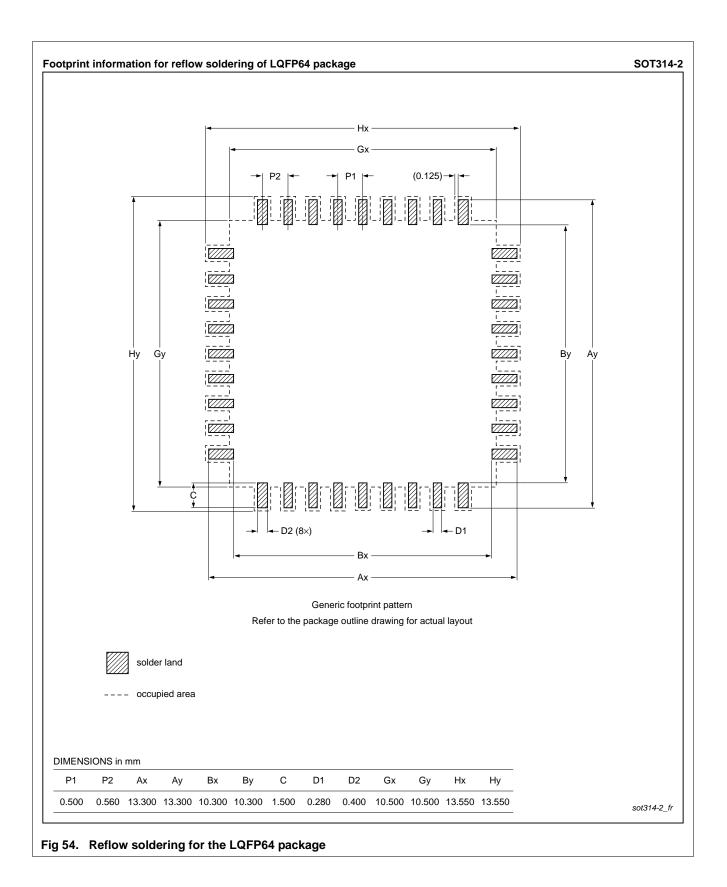
Figure 49 shows the basic board connections used to power the LPC15xx, connect the external crystal and the 32 kHz oscillator for the RTC, and provide debug capabilities via the serial wire port.

LPC15XX

91 of 107

14.9 ElectroMagnetic Compatibility (EMC)

Radiated emission measurements according to the IEC61967-2 standard using the TEM-cell method are shown for part LPC1549JBD100.


 Table 36.
 ElectroMagnetic Compatibility (EMC) for part LPC1549 (TEM-cell method)

 $V_{DD} = 3.3 V; T_{amb} = 25 °C.$

Parameter	Frequency band	System clock =						Unit
		12 MHz	24 MHz	36 MHz	48 MHz	60 MHz	72 MHz	
Input clock:	IRC (12 MHz)							
maximum	1 MHz to 30 MHz	-5	-1	-5	-4	-3	0	dBμV
peak level	30 MHz to 150 MHz	-1	+3	+6	+8	+11	+14	dBμV
	150 MHz to 1 GHz	-1	+2	+5	+10	+9	+11	dBμV
IEC level ^[1]	-	0	0	0	N	N	М	-
Input clock:	crystal oscillator (12 N	Hz)		I	I		I	
maximum peak level	1 MHz to 30 MHz	-2	0	-5	-2	-2	2	dBμV
	30 MHz to 150 MHz	0	+3	+6	+8	+12	+14	dBμV
	150 MHz to 1 GHz	-1	+3	+5	+10	+10	+11	dBμV
IEC level ^[1]	-	0	0	0	Ν	N	М	-

[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

17. References

- [1] LPC15xx User manual UM10736: http://www.nxp.com/documents/user_manual/UM10736.pdf
- [2] LPC15xx Errata sheet: http://www.nxp.com/documents/errata_sheet/ES_LPC15XX.pdf
- [3] Technical note ADC design guidelines: http://www.nxp.com/documents/technical_note/TN00009.pdf

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2015. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

8.41.1	Reset	
8.41.2	Brownout detection	50
8.41.3	Code security (Code Read Protection - CRP)	50
8.42	Emulation and debugging	52
9	Limiting values	52
10	Thermal characteristics	53
11	Static characteristics	55
11.1	Power consumption	60
11.2	CoreMark data	
11.3	Peripheral power consumption	65
11.4	Electrical pin characteristics	66
12	Dynamic characteristics	
12.1	Flash/EEPROM memory	70
12.2	External clock for the oscillator in slave mode	70
12.3	Internal oscillators	71
12.4	I/O pins	
12.5	l ² C-bus	
12.6	SPI interfaces	
12.7	USART interface	
12.8	SCTimer/PWM output timing	
13	Characteristics of analog peripherals	
14	Application information.	
14.1	ADC usage notes	
14.2	Suggested USB interface solutions	
14.2.1	USB Low-speed operation	87
14.3	XTAL input and crystal oscillator component	
	selection	88
14.4	XTAL Printed-Circuit Board (PCB) layout	~~
14.5	RTC oscillator component selection	91
14.6	Connecting power, clocks, and debug	91
14.7	functions	
14.7	Pin states in different power modes	
14.9	ElectroMagnetic Compatibility (EMC)	95
15	Package outline	
16	Soldering	
17	References	
18		102
	2	
19	Legal information	104
19.1	Data sheet status	104
19.2	Definitions.	104
19.3		104
19.4	Trademarks	105
20	Contact information	105
21	Contents	106

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2015.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 April 2015 Document identifier: LPC15XX