

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072c8u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP48 package outline	115
Figure 50.	Recommended footprint for LQFP48 package	116
Figure 51.	LQFP48 package marking example	117
Figure 52.	UFQFPN48 package outline	118
Figure 53.	Recommended footprint for UFQFPN48 package	119
Figure 54.	UFQFPN48 package marking example	120
Figure 55.	LQFP64 P _D max versus T _A	123

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

	Р	'in nu	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
M2	24	H2	15	11	G7	PA1	I/O	TTa	-	USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	
КЗ	25	F3	16	12	E5	PA2	I/O	ТТа	-	USART2_TX, COMP2_OUT, TIM2_CH3, TIM15_CH1, TSC_G1_IO3	ADC_IN2, COMP2_INM6, WKUP4	
L3	26	G3	17	13	E4	PA3	I/O	ТТа	-	USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	
D3	27	C2	18	-	-	VSS	S	-	-	Ground		
H3	28	D2	19	-	-	VDD	S	-	-	Digital power supply		
М3	29	H3	20	14	G6	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	
K4	30	F4	21	15	F5	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	
L4	31	G4	22	16	F4	PA6	I/O	ТТа	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6	
M4	32	H4	23	17	F3	PA7	I/O	ТТа	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7	

Table 13. STM32F072x8/xB pin definitions (continued)

Pin name	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2	USART3_CK	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3	USART3_RTS	-
PB2	-	-	-	TSC_G3_IO4	-	-
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1	-	-
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2	-	TIM17_BKIN
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3	-	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4	USART4_CTS	-
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC	CAN_RX	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	CAN_TX	SPI2_NSS, I2S2_W
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC	USART3_TX	SPI2_SCK, I2S2_CF
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1	USART3_RX	-
PB12	SPI2_NSS, I2S2_WS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2	USART3_CK	TIM15_BKIN
PB13	SPI2_SCK, I2S2_CK	-	TIM1_CH1N	TSC_G6_IO3	USART3_CTS	I2C2_SCL
PB14	SPI2_MISO, I2S2_MCK	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4	USART3_RTS	I2C2_SDA
PB15	SPI2_MOSI, I2S2_SD	TIM15_CH2	TIM1_CH3N	TIM15_CH1N	-	-

_ - -- -- -- ----. _

42/128

5

Pin name	AF0	AF1
PE0	TIM16_CH1	EVENTOUT
PE1	TIM17_CH1	EVENTOUT
PE2	TIM3_ETR	TSC_G7_IO1
PE3	TIM3_CH1	TSC_G7_I02
PE4	TIM3_CH2	TSC_G7_IO3
PE5	TIM3_CH3	TSC_G7_IO4
PE6	TIM3_CH4	-
PE7	TIM1_ETR	-
PE8	TIM1_CH1N	-
PE9	TIM1_CH1	-
PE10	TIM1_CH2N	-
PE11	TIM1_CH2	-
PE12	TIM1_CH3N	SPI1_NSS, I2S1_WS
PE13	TIM1_CH3	SPI1_SCK, I2S1_CK
PE14	TIM1_CH4	SPI1_MISO, I2S1_MCK
PE15	TIM1_BKIN	SPI1_MOSI, I2S1_SD

Table 18. Alternate functions selected through GPIOE_AFR registers for port E

Table 19. Alternate functions available on port F

Pin name	AF
PF0	CRS_SYNC
PF1	-
PF2	EVENTOUT
PF3	EVENTOUT
PF6	-
PF9	TIM15_CH1
PF10	TIM15_CH2

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
ΣI _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
ΣI _{IO(PIN)}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	mA
	Total output current sourced by sum of all I/Os supplied by VDDIO2	-40	
	Injected current on B, FT and FTf pins	-5/+0 ⁽⁴⁾	
I _{INJ(PIN)} ⁽³⁾	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

Table 22. Current characteristics

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

A positive injection is induced by V_{IN} > V_{DDIOx} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 59: ADC accuracy*.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 23. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
Т _Ј	Maximum junction temperature	150	°C

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 25* are derived from tests performed under the ambient temperature condition summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate		0	8	
	V _{DD} fall time rate		20	∞	μs/V
	V _{DDA} rise time rate		0	∞	μ5/ ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR} ⁽¹⁾	react threahold	Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
		Rising edge	1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

 Table 26. Embedded reset and power control block characteristics

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{\text{DD}}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 0	Rising edge	2.1	2.18	2.26	V
V _{PVD0}		Falling edge	2	2.08	2.16	V
V	PVD threshold 1	Rising edge	2.19	2.28	2.37	V
V _{PVD1}		Falling edge	2.09	2.18	2.27	V
V	PVD threshold 2	Rising edge	2.28	2.38	2.48	V
V _{PVD2}		Falling edge	2.18	2.28	2.38	V
V	PVD threshold 3	Rising edge	2.38	2.48	2.58	V
V _{PVD3}	PVD Infestiona 3	Falling edge	2.28	2.38	2.48	V

Symbol			V _{DDA} = 2.4 V				V _{DDA} = 3.6 V							
	Para- meter	Conditions (1)	f _{HCLK}	Tun	М	ax @ T _A	(2)	Tun	м	ax @ T	A ⁽²⁾	Unit		
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C			
		HSI48	48 MHz	311	326	334	343	322	337	345	354			
		HSE	48 MHz	152	170 ⁽³⁾	178	182 ⁽³⁾	165	184 ⁽³⁾	196	200 ⁽³⁾			
	current in Run or Sleep mode, code executing from	A Code executing from Figure 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (bypass,	32 MHz	105	121	126	128	113	129	136	138		
			Run or Sleep mode	n or	24 MHz	81.9	95.9	99.5	101	88.7	102	107	108	
					8 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5	
I _{DDA}			bypass, PLL off	1 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5	μA	
			from	48 MHz	223	244	255	260	245	265	279	284		
	Flash memory	HSI clock, PLL on	32 MHz	176	195	203	206	193	212	221	224			
	or RAM	-			24 MHz	154	171	178	181	168	185	192	195	
			HSI clock, PLL off	8 MHz	74.2	83.4	86.4	87.3	83.4	92.5	95.3	96.6		

Table 30. Typical and maximum current consumption from the $\rm V_{\rm DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Symbol	Parameter	6		sumption in node		sumption in mode	Unit
Symbol	Falailletei	^f нсLк	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Onit
		48 MHz	24.1	13.5	14.6	3.5	
		36 MHz	18.3	10.5	11.1	2.9	
		32 MHz	16.5	9.6	10.0	2.7	
	Current	24 MHz	12.9	7.6	7.8	2.2	
	consumption	16 MHz	8.9	5.3	5.5	1.7	mA
I _{DD}	from V _{DD} supply	8 MHz	4.8	3.1	3.1	1.2	ША
	suppiy	4 MHz	3.1	2.1	2.2	1.1	
		2 MHz	2.1	1.6	1.6	1.0	
		1 MHz	1.6	1.3	1.4	1.0	
		500 kHz	1.3	1.2	1.2	1.0	
		48 MHz		16	3.3		
		36 MHz		12	4.3		
		32 MHz		11	1.9		
	Current	24 MHz		87	7.1		
I	consumption	16 MHz		62	2.5		uА
I _{DDA}	from V _{DDA} supply	8 MHz		2	.5		μA
	Suppry	4 MHz		2	.5		
	2 N	2 MHz		2	.5		
		1 MHz		2	.5		
		500 kHz		2	.5		

Table 33. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 35*. The MCU is placed under the following conditions:

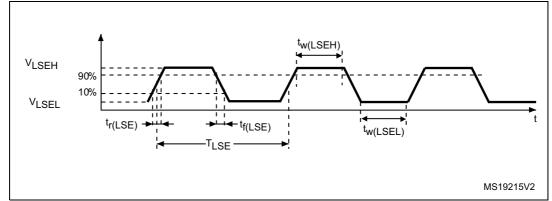
- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 21: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 35.* The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Peripheral		Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	2.2	
	CRC	1.6	
	DMA	5.7	
	Flash memory interface	13.0	
	GPIOA	8.2	
	GPIOB	8.5	
AHB	GPIOC	2.3	µA/MHz
	GPIOD	1.9	
	GPIOE	2.2	
	GPIOF	1.2	
	SRAM	0.9	
	TSC	5.0	
	All AHB peripherals	52.6	

Table 35. Peripheral current consumption

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 16*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V_{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115

Table 38. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Symbol	Description	Func suscer	Unit	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 and PF1 pins	-0	NA	
	Injected current on PC0 pin	-0	+5	
I _{INJ}	Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA	-5	NA	mA
	Injected current on all other FT and FTf pins	-5	NA	
	Injected current on all other TTa, TC and RST pins	-5	+5	

Table 52. I/O current injection susceptibility

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 53* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	TC and TTa I/O -		-	0.3 V _{DDIOx} +0.07 ⁽¹⁾			
	Low level input	FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾		
V _{IL}	voltage	BOOT0	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	V	
		All I/Os except BOOT0 pin		-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-		
		FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-		
V _{IH}	High level input voltage	BOOT0	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	V	
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-		
		TC and TTa I/O	-	200 ⁽¹⁾	-		
V _{hys}	Schmitt trigger hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV	
		BOOT0	-	300 ⁽¹⁾	-		

Table 53. I/O static characteristics

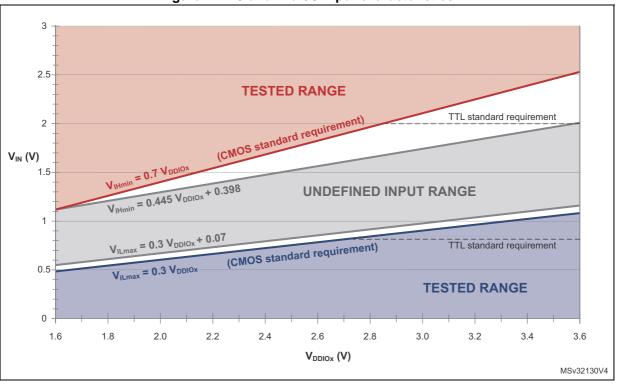
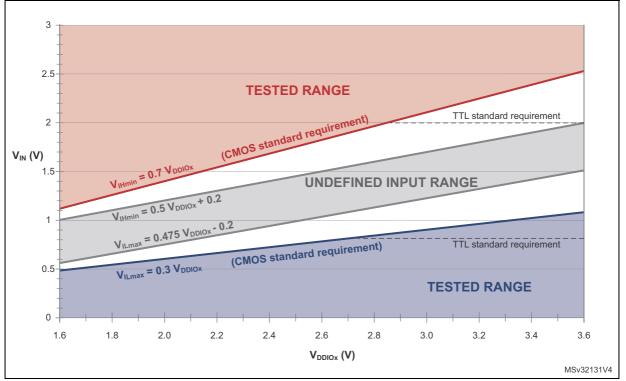
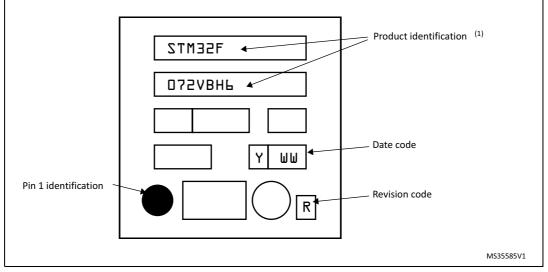
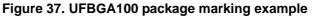



Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

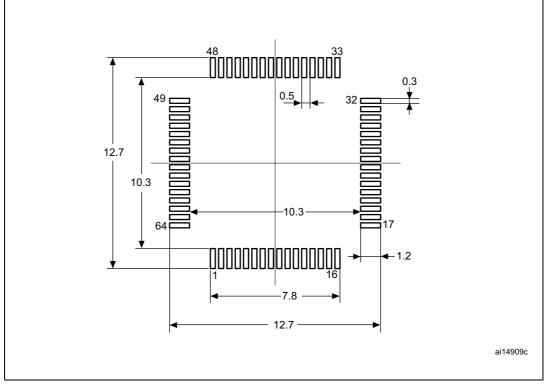



DocID025004 Rev 5

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

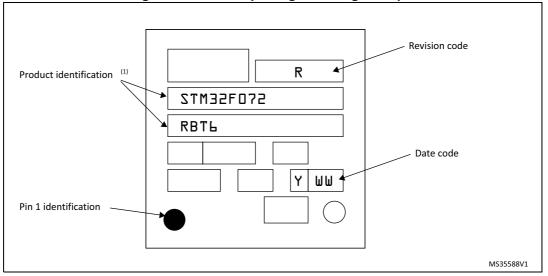
Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Symbol		millimeters			inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Max			
E3	-	7.500	-	-	0.2953	-			
е	-	0.500	-	-	0.0197	-			
К	0°	3.5°	7°	0°	3.5°	7°			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295			
L1	-	1.000	-	-	0.0394	-			
CCC	-	-	0.080	-	-	0.0031			

Table 76. LQFP64 package mechanical data (continued)

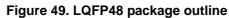
1. Values in inches are converted from mm and rounded to 4 decimal digits.

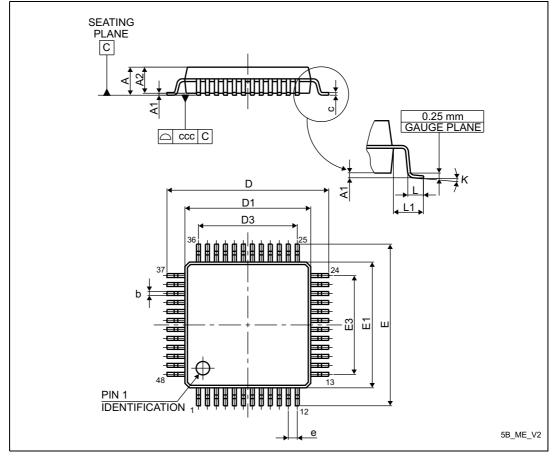

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.




 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.6 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

1. Drawing is not to scale.

7.8 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 24: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	42	
	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	
Θ_{JA}	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	44	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	54	
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	49	

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.8.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

DocID025004 Rev 5

Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- $T_{Jmax} = 100 \text{ °C} + (45 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 6.03 \text{ °C} = 106.03 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 55* to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements.

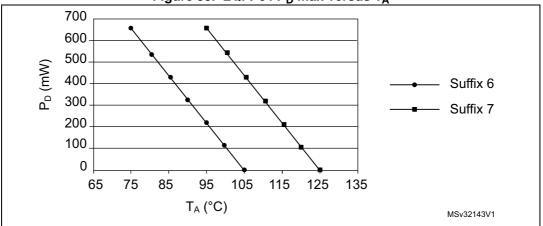


Figure 55. LQFP64 P_D max versus T_A

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 81	. Ordering	information	scheme
----------	------------	-------------	--------

Example:	STM32	F	072	R	8	Т	6 >
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Sub-family							
072 = STM32F072xx							
Pin count							
C = 48/49 pins							
R = 64 pins							
V = 100 pins							
lleer oode memory size							
User code memory size							
8 = 64 Kbyte							
B = 128 Kbyte							
Package							
H = UFBGA							
T = LQFP							
U = UFQFPN							
Y = WLCSP							
Temperature range							
6 = –40 to 85 °C							
7 = –40 to 105 °C							
Options							

xxx = code ID of programmed parts (includes packing type)TR = tape and reel packingblank = tray packing

