



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                        |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 48MHz                                                                  |
| Connectivity               | CANbus, HDMI-CEC, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB |
| Peripherals                | DMA, I <sup>2</sup> S, POR, PWM, WDT                                   |
| Number of I/O              | 37                                                                     |
| Program Memory Size        | 128KB (128K x 8)                                                       |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | -                                                                      |
| RAM Size                   | 16К х 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 3.6V                                                           |
| Data Converters            | A/D 10x12b; D/A 2x12b                                                  |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 48-LQFP                                                                |
| Supplier Device Package    | 48-LQFP (7x7)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072cbt6  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# List of tables

| Table 2.STM32F072x8/xB family device features and peripheral counts11Table 3.Temperature sensor calibration values18Table 4.Internal voltage reference calibration values19Table 5.Capacitive sensing CPIOs available on STM32F072x8/xB devices20Table 6.Number of capacitive sensing channels available21Table 7.Timer feature comparison.21Table 8.Comparison of I <sup>2</sup> C analog and digital filters24Table 9.STM32F072x8/xB (2 inplementation25Table 10.STM32F072x8/xB SPI/i <sup>2</sup> S implementation25Table 11.STM32F072x8/xB SPI/i <sup>2</sup> S implementation26Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/xB pinotinitons33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOE_AFR registers for port C43Table 14.Alternate functions selected through GPIOE_AFR registers for port D43Table 13.Alternate functions available on port F44Table 14.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 23.Current characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Operating conditions55Table 27.Programmable voltage detector charac                                                                                                                                                                                                         | Table 1.  | Device summary                                                                                | 1  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------|----|
| Table 3.       Temperature sensor calibration values.       18         Table 4.       Internal voltage reference calibration values       19         Table 5.       Capacitive sensing GPIOs available on STM32F072x8/xB devices.       20         Table 6.       Number of capacitive sensing channels available       21         Table 7.       Timer feature comparison.       21         Table 8.       Comparison of I <sup>2</sup> C analog and digital filters.       24         Table 9.       STM32F072x8/xB devices.       25         Table 10.       STM32F072x8/xB USART implementation       25         Table 11.       STM32F072x8/xB SPI/ <sup>2</sup> S implementation.       26         Table 13.       STM32F072x8/xB SPI/ <sup>2</sup> S implementation.       26         Table 14.       Alternate functions selected through GPIOA_AFR registers for port A       41         Table 15.       Alternate functions selected through GPIOA_AFR registers for port C       43         Table 16.       Alternate functions selected through GPIOA_AFR registers for port C       43         Table 18.       Alternate functions selected through GPIOA_AFR registers for port C       43         Table 19.       Alternate functions selected through GPIOA_AFR registers for port C       43         Table 10.       STM32F072x8/xB peripheral register boundary addresses       46 <t< td=""><td>Table 2.</td><td>STM32F072x8/xB family device features and peripheral counts</td><td> 11</td></t<> | Table 2.  | STM32F072x8/xB family device features and peripheral counts                                   | 11 |
| Table 4.Internal voltage reference calibration values19Table 5.Capacitive sensing GPIOs available on STM32F072x8/xB devices20Table 6.Number of capacitive sensing channels available20Table 7.Timer feature comparison21Table 8.Comparison of I <sup>2</sup> C analog and digital filters24Table 9.STM32F072x8/xB USART implementation25Table 10.STM32F072x8/xB USART implementation26Table 11.STM32F072x8/xB SPII <sup>2</sup> S implementation26Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/xB SPII <sup>2</sup> S implementation26Table 14.Alternate functions selected through CPIOA_AFR registers for port A41Table 15.Alternate functions selected through CPIOA_AFR registers for port A41Table 16.Alternate functions selected through CPIOA_AFR registers for port D43Table 16.Alternate functions selected through CPIOA_AFR registers for port D43Table 17.Alternate functions selected through CPIOA_AFR registers for port D43Table 18.Alternate functions selected through CPIOA_AFR registers for port D43Table 21.Voltage characteristics52Table 23.Thermal tracteristics52Table 24.General operating conditions53Table 25.Operating conditions53Table 26.Current characteristics54Table 27.Thermal characteristics54Table 28.Thermal characteristics <t< td=""><td>Table 3.</td><td>Temperature sensor calibration values</td><td> 18</td></t<>                                                                                                                     | Table 3.  | Temperature sensor calibration values                                                         | 18 |
| Table 5.       Capacitive sensing CPIOs available on STM32F072x8/xB devices.       20         Table 6.       Number of capacitive sensing channels available       21         on STM32F072x8/xB devices       21         Table 7.       Timer feature comparison .       21         Table 8.       Comparison of 1 <sup>2</sup> C analog and digital filters.       24         Table 9.       STM32F072x8/xB USART implementation       25         Table 10.       STM32F072x8/xB USART implementation       26         Table 11.       STM32F072x8/xB Dir definitions       33         Table 12.       Legend/abbreviations used in the pinout table       33         Table 13.       STM32F072x8/xB pin definitions       33         Table 14.       Alternate functions selected through CPIOA_AFR registers for port A       41         Table 15.       Alternate functions selected through CPIOD_AFR registers for port D       43         Table 18.       Alternate functions selected through CPIOD_AFR registers for port D       43         Table 18.       Alternate functions selected through CPIOE_AFR registers for port E       44         Table 20.       STM32F072x8/xB peripheral register boundary addresses       46         Table 21.       Voltage characteristics       52         Table 22.       Thermal characteristics       52                                                                                                                                                           | Table 4.  | Internal voltage reference calibration values                                                 | 19 |
| Table 6.       Number of capacitive sensing channels available<br>on STM32F072x8/xB devices       21         Table 7.       Timer feature comparison       21         Table 8.       Comparison of I <sup>2</sup> C analog and digital filters       24         Table 9.       STM32F072x8/xB USC analog and digital filters       24         Table 10.       STM32F072x8/xB USART implementation       25         Table 11.       STM32F072x8/xB SPI/I <sup>2</sup> S implementation       26         Table 12.       Legend/abbreviations used in the pinout table       33         Table 13.       Alternate functions selected through GPIOA_AFR registers for port A       41         Table 14.       Alternate functions selected through GPIOA_AFR registers for port B       42         Table 15.       Alternate functions selected through GPIOA_AFR registers for port C       43         Table 16.       Alternate functions selected through GPIOA_AFR registers for port D       43         Table 17.       Alternate functions available on port F       44         Table 20.       STM32F072x8/xB peripheral register boundary addresses       46         Table 21.       Current characteristics       52         Table 22.       Current characteristics       52         Table 23.       Thermal characteristics       52         Table 24.       Forparadin                                                                                                                                       | Table 5.  | Capacitive sensing GPIOs available on STM32F072x8/xB devices                                  | 20 |
| on STM32F072x8/xB devices       21         Table 7.       Timer feature comparison.       21         Table 9.       STM32F072x8/xB I <sup>2</sup> C implementation       25         Table 10.       STM32F072x8/xB USART implementation       25         Table 11.       STM32F072x8/xB USART implementation       25         Table 12.       Legend/abbreviations used in the pinout table       33         Table 13.       STM32F072x8/xB WS Bind entitions       33         Table 14.       Alternate functions selected through GPIOA_AFR registers for port A       41         Table 15.       Alternate functions selected through GPIOD_AFR registers for port C       43         Table 16.       Alternate functions selected through GPIOD_AFR registers for port D       43         Table 17.       Alternate functions available on port F       44         Table 20.       STM32F072x8/xB peripheral register boundary addresses       46         Table 21.       Voltage characteristics       51         Table 22.       Current characteristics       52         Table 23.       Thermal characteristics       52         Table 24.       General operating conditions       53         Table 25.       Operating conditions at power-up / power-down       54         Table 26.       Embedded internal refere                                                                                                                                                                                        | Table 6.  | Number of capacitive sensing channels available                                               |    |
| Table 7.Timer feature comparison.21Table 8.Comparison of I <sup>2</sup> C analog and digital filters24Table 9.STM32F072x8/x8 I <sup>2</sup> C implementation25Table 10.STM32F072x8/x8 USART implementation25Table 11.STM32F072x8/x8 Div I/ <sup>2</sup> S implementation25Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/x8 Div definitions33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOD_AFR registers for port D43Table 16.Alternate functions selected through GPIOE_AFR registers for port D43Table 19.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Operating conditions a power-ourly / power-down53Table 24.Programmable voltage detector characteristics54Table 25.Operating conditions at power-up / power-down54Table 26.Typical and maximum current consumption from VbD supply at VbD = 3.6 V56Table 30.Typical and maximum current consumption from the VbDA supply58Table 31.Typical and maximum current consumption from He VbDA supply50Table 32.Programmable voltage detector characteristics54Table 33.Typical and maximum current consumption from the VbDA supply </td <td></td> <td>on STM32F072x8/xB devices</td> <td> 21</td>                                                                                                       |           | on STM32F072x8/xB devices                                                                     | 21 |
| Table 8.Comparison of $1^2$ C analog and digital filters24Table 9.STM32F072x8/xB ISART implementation25Table 11.STM32F072x8/xB SPI/ $1^2$ S implementation26Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/xB Gendentitons33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOD_AFR registers for port C43Table 16.Alternate functions selected through GPIOD_AFR registers for port D43Table 17.Alternate functions selected through GPIOD_AFR registers for port D43Table 18.Alternate functions selected through GPIOD_AFR registers for port E44Table 19.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Current characteristics52Table 26.Embedded reset and power control block characteristics54Table 27.Typical and maximum current consumption from the V <sub>DDA</sub> supply58Table 30.Typical and maximum current consumption from the V <sub>DDA</sub> supply60Table 31.Typical and maximum current consumption from the V <sub>DDA</sub> supply61Table 33.Typical and maximum current consumption from the V <sub>DDA</sub> supply61Table 34.Dereme                                                                                                                                                           | Table 7.  | Timer feature comparison                                                                      | 21 |
| Table 9.STM32F072x8/x8 $P^2$ implementation25Table 10.STM32F072x8/x8 $P^2$ implementation25Table 11.STM32F072x8/x8 $P^2$ implementation26Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/x8 $P^2$ implementation33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOE_AFR registers for port D43Table 16.Alternate functions selected through GPIOE_AFR registers for port D43Table 17.Alternate functions selected through GPIOE_AFR registers for port D43Table 18.Alternate functions selected through GPIOE_AFR registers for port D43Table 19.Alternate functions available on port F44Table 20.STM32F072x8/x8 peripheral register boundary addresses46Table 21.Voltage characteristics52Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Dypical and maximum current consumption from VDD Supply at VDD = 3.6 V56Table 27.Typical and maximum current consumption from He VDAS supply.60Table 30.Typical and maximum current consumption from He VDAS supply.60Table 31.Typical and maximum current consumption from He VDAS supply.61Table 33.Typical and maximum c                                                                                                                                                                                                      | Table 8.  | Comparison of I <sup>2</sup> C analog and digital filters                                     | 24 |
| Table 10.STM32F072x8/xB SPI/l <sup>2</sup> S implementation25Table 11.Legend/Abbreviations used in the pinout table33Table 12.Legend/Abbreviations used in the pinout table33Table 13.STM32F072x8/xB pin definitions33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOA_AFR registers for port D43Table 16.Alternate functions selected through GPIOE_AFR registers for port D43Table 17.Alternate functions selected through GPIOE_AFR registers for port D43Table 18.Alternate functions selected through GPIOE_AFR registers for port D44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics.54Table 27.Programmable voltage detector characteristics54Table 28.Typical and maximum current consumption from MbD supply at VbD = 3.6 V56Table 29.Typical and maximum current consumption from the VbDA supply.59Table 29.Typical and maximum current consumption from the VbDA supply.60Table 29.Typical and maximum current consumption from the VbDA supply.60Table 31.Suitching output I/O current consumption from the Vb                                                                                                                                                       | Table 9.  | STM32F072x8/xB I <sup>2</sup> C implementation                                                | 25 |
| Table 11.STM32F072x8/xB SPI/I <sup>2</sup> S implementation26Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/xB in definitions33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOE_AFR registers for port B42Table 16.Alternate functions selected through GPIOE_AFR registers for port C43Table 17.Alternate functions selected through GPIOE_AFR registers for port D43Table 18.Alternate functions available on port F44Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 28.Embedded internal reference voltage.55Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from the V <sub>DDA</sub> supply58Table 31.Typical and maximum current consumption from the V <sub>DDA</sub> supply.60Table 33.Typical and maximum current consumption from the V <sub>DAA</sub> supply.61Table 34.Switching output I/O current consumption from the V <sub>DAA</sub> supply.60Table 35.Peripheral crestistics66Table 36.Typical and maximum current consumption from the V <sub>DAA</sub> supply.60Table 37.Typical and maximum current consumption from the V <sub>DAA</sub>                                                                                                                             | Table 10. | STM32F072x8/xB USART implementation                                                           | 25 |
| Table 12.Legend/abbreviations used in the pinout table33Table 13.STM32F072x8/xB pin definitions33Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOC_AFR registers for port C43Table 16.Alternate functions selected through GPIOE_AFR registers for port C43Table 17.Alternate functions selected through GPIOE_AFR registers for port C43Table 18.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics52Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 28.Embedded reset and power control block characteristics54Table 29.Typical and maximum current consumption from $V_{DD}$ supply at $V_{DD}$ = 3.6 V56Table 31.Typical and maximum current consumption from the $V_{DAT}$ supply.60Table 32.Typical and maximum current consumption from the $V_{DAT}$ supply.61Table 33.Typical and maximum current consumption from the $V_{DAT}$ supply.60Table 34.Switching output I/O current consumption from the $V_{BAT}$ supply.60Table 35.Peripheral current consumption from the $V_{DAT}$ supply.66Table 36.Low-power mode wakeup timings                                                                                                                                                                           | Table 11. | STM32F072x8/xB SPI/I <sup>2</sup> S implementation                                            | 26 |
| Table 13.STM32F072x8/xB pin definitions33Table 13.Alternate functions selected through GPIOA_AFR registers for port A41Table 14.Alternate functions selected through GPIOE_AFR registers for port B42Table 16.Alternate functions selected through GPIOE_AFR registers for port D43Table 17.Alternate functions selected through GPIOE_AFR registers for port D43Table 18.Alternate functions selected through GPIOE_AFR registers for port E44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics52Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 28.Embedded reset and power control block characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 VTable 30.Typical and maximum current consumption from the V <sub>DAA</sub> supply.60Table 31.Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal61Table 33.Typical and maximum current consumption from the V <sub>BAT</sub> supply.61Table 34.Switching output I/O current consumption64Table 35.Peripheral current consumption64Table 36.Low-speed external user clock characteristics.66 <tr< td=""><td>Table 12.</td><td>Legend/abbreviations used in the pinout table</td><td> 33</td></tr<>                                | Table 12. | Legend/abbreviations used in the pinout table                                                 | 33 |
| Table 14.Alternate functions selected through GPIOA_AFR registers for port A41Table 15.Alternate functions selected through GPIOE_AFR registers for port B42Table 16.Alternate functions selected through GPIOC_AFR registers for port D43Table 17.Alternate functions selected through GPIOE_AFR registers for port D43Table 18.Alternate functions selected through GPIOE_AFR registers for port D43Table 19.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics52Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions a53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 30.Typical and maximum current consumption from the V <sub>DAA</sub> supply58Table 31.Typical and maximum current consumption from the V <sub>DAA</sub> supply58Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Dwippeed external user clock characteristics67Table 35.Peripheral current consumpt                                                                                                                          | Table 13. | STM32F072x8/xB pin definitions                                                                | 33 |
| Table 15.Alternate functions selected through GPIOB_AFR registers for port B42Table 16.Alternate functions selected through GPIOD_AFR registers for port C43Table 17.Alternate functions selected through GPIOE_AFR registers for port E44Table 18.Alternate functions selected through GPIOE_AFR registers for port E44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics.54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 30.Typical and maximum consumption in Stop and Standby modes59Table 31.Typical and maximum consumption from the V <sub>DAA</sub> supply.60Table 33.Typical current consumption64Table 34.Switching output I/O current consumption from the V <sub>BAT</sub> supply.60Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.Hpispeed external user clock characteristics.67Table 38.Nething output I/O current consumption <t< td=""><td>Table 14.</td><td>Alternate functions selected through GPIOA_AFR registers for port A</td><td> 41</td></t<>                                          | Table 14. | Alternate functions selected through GPIOA_AFR registers for port A                           | 41 |
| Table 16.Alternate functions selected through GPIOC_AFR registers for port C43Table 17.Alternate functions selected through GPIOD_AFR registers for port D43Table 18.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics52Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 28.Embedded reset and power control block characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from VDD supply at VDD = 3.6 V56Table 31.Typical and maximum current consumption from the VDA supply58Table 33.Typical and maximum current consumption from the VBAT supply.60Table 34.Switching output I/O current consumption64Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics.66Table 38.Low-power mode wakeup timings66Table 34.Low-power mode wakeup timings66Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics.66 <td>Table 15.</td> <td>Alternate functions selected through GPIOB_AFR registers for port B</td> <td> 42</td>                                                                                                                                              | Table 15. | Alternate functions selected through GPIOB_AFR registers for port B                           | 42 |
| Table 17.Alternate functions selected through GPIOD_AFR registers for port D43Table 18.Alternate functions selected through GPIOE_AFR registers for port E44Table 19.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 30.Typical and maximum current consumption from the V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 31.Typical and maximum current consumption from the V <sub>DAA</sub> supply58Table 32.Typical and maximum current consumption from the V <sub>BAT</sub> supply.60Table 34.Switching output I/O current consumption from the V <sub>BAT</sub> supply.60Table 35.Peripheral current consumption66Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics.66Table 38.Low-speed external user clock characteristics.67Table 39.HSE oscillator characteristics (f <sub>LSE</sub> = 32.768 kHz)68Table 34.LSE oscillator characteristics.71 <td>Table 16.</td> <td>Alternate functions selected through GPIOC_AFR registers for port C</td> <td> 43</td>                                              | Table 16. | Alternate functions selected through GPIOC_AFR registers for port C                           | 43 |
| Table 18.Alternate functions selected through GPIOE_AFR registers for port E44Table 19.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 31.Typical and maximum current consumption from the V <sub>DA</sub> supply58Table 32.Typical and maximum current consumption from the V <sub>BAT</sub> supply.60Table 33.Typical and maximum current consumption from Hest an memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics72Table 39.HSI coscillator characteristics72Table 39.HSI coscillator characteristics73Table 40.                                                                                                                                                                                               | Table 17. | Alternate functions selected through GPIOD_AFR registers for port D                           | 43 |
| Table 19.Alternate functions available on port F44Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 30.Typical and maximum current consumption from the V <sub>DA</sub> supply58Table 31.Typical and maximum current consumption from the V <sub>BAT</sub> supply.60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption64Table 35.Peripheral current consumption66Table 36.Low-speed external user clock characteristics66Table 37.High-speed external user clock characteristics66Table 38.LSE oscillator characteristics71Table 39.HSE oscillator characteristics72Table 41.HSI oscillator characteristics72Table 42.HSI14 oscillator characteristics73Table 43.HSI48 oscillator characteristic                                                                                                                                                                                                   | Table 18. | Alternate functions selected through GPIOE_AFR registers for port E                           | 44 |
| Table 20.STM32F072x8/xB peripheral register boundary addresses46Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 30.Typical and maximum current consumption from the V <sub>DDA</sub> supply58Table 31.Typical and maximum current consumption from the V <sub>BAT</sub> supply.60Table 32.Typical and maximum current consumption from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics67Table 38.Low-speed external user clock characteristics71Table 39.HSE oscillator characteristics (fLSE = 32.768 kHz)69Table 42.HSI4 oscillator characteristics72Table 43.HSI4 oscillator characteristics72Table 44.LSI oscillator characteristics72Table 43.HSI4 oscillator charact                                                                                                                                                                                                   | Table 19. | Alternate functions available on port F                                                       | 44 |
| Table 21.Voltage characteristics51Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from $V_{DD}$ supply at $V_{DD}$ = 3.6 V56Table 30.Typical and maximum current consumption from the $V_{DDA}$ supply58Table 31.Typical and maximum current consumption from the $V_{DA}$ supply58Table 32.Typical and maximum current consumption from the $V_{BAT}$ supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-speed external user clock characteristics66Table 37.High-speed external user clock characteristics68Table 38.LSE oscillator characteristics (f <sub>LSE</sub> = 32.768 kHz)69Table 43.Suicillator characteristics71Table 44.LSI oscillator characteristics73Table 43.Suicillator characteristics74Table 44.LSI oscillator characteristics74Table 45.HS                                                                                                                                                                                                                                 | Table 20. | STM32F072x8/xB peripheral register boundary addresses                                         | 46 |
| Table 22.Current characteristics52Table 23.Thermal characteristics52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from $V_{DD}$ supply at $V_{DD} = 3.6$ V56Table 30.Typical and maximum current consumption from the $V_{DDA}$ supply58Table 31.Typical and maximum current consumption from the $V_{BAT}$ supply.60Table 32.Typical and maximum current consumption from the $V_{BAT}$ supply.60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics68Table 40.LSE oscillator characteristics68Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.LSI oscillator characteristics72Table 44.LSI oscillator characteristics74Table 45.HSI48 oscillator characteristics74Table 46.Flash memory charact                                                                                                                                                                                                                                           | Table 21. | Voltage characteristics                                                                       | 51 |
| Table 23.Thermal characteristics.52Table 24.General operating conditions53Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics.54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 30.Typical and maximum current consumption from the V <sub>DAA</sub> supply58Table 31.Typical and maximum current consumption from the V <sub>BAT</sub> supply59Table 32.Typical and maximum current consumption from the V <sub>BAT</sub> supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics67Table 38.Low-speed external user clock characteristics68Table 40.LSE oscillator characteristics71Table 41.HSI oscillator characteristics72Table 42.HSI4 oscillator characteristics73Table 43.HSI48 oscillator characteristics74Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 45.PLL characteristics <t< td=""><td>Table 22.</td><td>Current characteristics</td><td> 52</td></t<>                                                                                                                 | Table 22. | Current characteristics                                                                       | 52 |
| Table 24.       General operating conditions       53         Table 25.       Operating conditions at power-up / power-down       54         Table 26.       Embedded reset and power control block characteristics.       54         Table 27.       Programmable voltage detector characteristics.       54         Table 28.       Embedded internal reference voltage.       55         Table 29.       Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V       56         Table 30.       Typical and maximum current consumption from the V <sub>DA</sub> supply       58         Table 31.       Typical and maximum current consumption from the V <sub>BAT</sub> supply       58         Table 32.       Typical and maximum current consumption from the V <sub>BAT</sub> supply       60         Table 33.       Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal       61         Table 34.       Switching output I/O current consumption       63       64         Table 35.       Peripheral current consumption       64       64         Table 36.       Low-power mode wakeup timings       66       66         Table 37.       High-speed external user clock characteristics.       67         Table 38.       Low-speed external user clock characteristics.       67         Table 39.       HSE oscillat                                                                                             | Table 23. | Thermal characteristics.                                                                      | 52 |
| Table 25.Operating conditions at power-up / power-down54Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage55Table 29.Typical and maximum current consumption from $V_{DD}$ supply at $V_{DD}$ = 3.6 V56Table 30.Typical and maximum current consumption from the $V_{DA}$ supply58Table 31.Typical and maximum consumption in Stop and Standby modes59Table 32.Typical and maximum current consumption from the $V_{BAT}$ supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics67Table 39.HSE oscillator characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics71Table 41.HSI oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                              | Table 24. | General operating conditions                                                                  | 53 |
| Table 26.Embedded reset and power control block characteristics54Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from V <sub>DD</sub> supply at V <sub>DD</sub> = 3.6 V56Table 30.Typical and maximum current consumption from the V <sub>DDA</sub> supply58Table 31.Typical and maximum consumption in Stop and Standby modes59Table 32.Typical and maximum current consumption from the V <sub>BAT</sub> supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption63Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics67Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics73Table 45.PLL characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                       | Table 25. | Operating conditions at power-up / power-down                                                 | 54 |
| Table 27.Programmable voltage detector characteristics54Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from VDD supply at VDD = 3.6 V56Table 30.Typical and maximum current consumption from the VDDA supply58Table 31.Typical and maximum current consumption from the VDAA supply58Table 32.Typical and maximum current consumption from the VBAT supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption63Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics67Table 38.Low-speed external user clock characteristics67Table 39.LSE oscillator characteristics68Table 40.LSE oscillator characteristics71Table 41.HSI oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics73Table 45.PLL characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 26. | Embedded reset and power control block characteristics.                                       | 54 |
| Table 28.Embedded internal reference voltage.55Table 29.Typical and maximum current consumption from VDD supply at VDD = 3.6 V56Table 30.Typical and maximum current consumption from the VDDA supply58Table 31.Typical and maximum current consumption in Stop and Standby modes59Table 32.Typical and maximum current consumption from the VBAT supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption63Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics66Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics68Table 41.HSI oscillator characteristics72Table 42.HSI4 oscillator characteristics73Table 43.LSI oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 27. | Programmable voltage detector characteristics                                                 | 54 |
| Table 29.Typical and maximum current consumption from $V_{DD}$ supply at $V_{DD} = 3.6$ V56Table 30.Typical and maximum current consumption from the $V_{DDA}$ supply58Table 31.Typical and maximum consumption in Stop and Standby modes59Table 32.Typical and maximum current consumption from the $V_{BAT}$ supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.LSI oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table 28. | Embedded internal reference voltage                                                           | 55 |
| Table 30.Typical and maximum current consumption from the V <sub>DDA</sub> supply58Table 31.Typical and maximum consumption in Stop and Standby modes59Table 32.Typical and maximum current consumption from the V <sub>BAT</sub> supply60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption63Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics69Table 41.HSI oscillator characteristics72Table 42.HSI48 oscillator characteristics73Table 43.LSI oscillator characteristics74Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 29. | Typical and maximum current consumption from $V_{DD}$ supply at $V_{DD}$ = 3.6 V              | 56 |
| Table 31.Typical and maximum consumption in Stop and Standby modes59Table 32.Typical and maximum current consumption from the VBAT supply.60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption63Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics73Table 43.LSI oscillator characteristics74Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 30. | Typical and maximum current consumption from the V <sub>DDA</sub> supply                      | 58 |
| Table 32.Typical and maximum current consumption from the VBAT supply.60Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.LSI oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 31. | Typical and maximum consumption in Stop and Standby modes                                     | 59 |
| Table 33.Typical current consumption, code executing from Flash memory,<br>running from HSE 8 MHz crystal61Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 32. | Typical and maximum current consumption from the V <sub>BAT</sub> supply                      | 60 |
| Table 34.Switching output I/O current consumption63Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics68Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 33. | Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal | 61 |
| Table 35.Peripheral current consumption64Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics68Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table 34. | Switching output I/O current consumption                                                      | 63 |
| Table 36.Low-power mode wakeup timings66Table 37.High-speed external user clock characteristics66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics (fLSE = 32.768 kHz)69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics73Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 35. | Peripheral current consumption                                                                | 64 |
| Table 37.High-speed external user clock characteristics.66Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics (f <sub>LSE</sub> = 32.768 kHz)69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table 36. | Low-power mode wakeup timings                                                                 | 66 |
| Table 38.Low-speed external user clock characteristics67Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics (f <sub>LSE</sub> = 32.768 kHz)69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics73Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 37. | High-speed external user clock characteristics.                                               | 66 |
| Table 39.HSE oscillator characteristics68Table 40.LSE oscillator characteristics (f <sub>LSE</sub> = 32.768 kHz)69Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 38. | Low-speed external user clock characteristics                                                 | 67 |
| Table 40.LSE oscillator characteristics (f <sub>LSE</sub> = 32.768 kHz)69Table 41.HSI oscillator characteristics.71Table 42.HSI14 oscillator characteristics.72Table 43.HSI48 oscillator characteristics.73Table 44.LSI oscillator characteristics.74Table 45.PLL characteristics.74Table 46.Flash memory characteristics.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 39. | HSE oscillator characteristics                                                                | 68 |
| Table 41.HSI oscillator characteristics71Table 42.HSI14 oscillator characteristics72Table 43.HSI48 oscillator characteristics73Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 40. | LSE oscillator characteristics (f <sub>ISE</sub> = 32.768 kHz)                                | 69 |
| Table 42.HSI14 oscillator characteristics.72Table 43.HSI48 oscillator characteristics.73Table 44.LSI oscillator characteristics.74Table 45.PLL characteristics.74Table 46.Flash memory characteristics.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 41. | HSI oscillator characteristics                                                                | 71 |
| Table 43.HSI48 oscillator characteristics.73Table 44.LSI oscillator characteristics.74Table 45.PLL characteristics.74Table 46.Flash memory characteristics.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 42. | HSI14 oscillator characteristics.                                                             | 72 |
| Table 44.LSI oscillator characteristics74Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 43. | HSI48 oscillator characteristics.                                                             | 73 |
| Table 45.PLL characteristics74Table 46.Flash memory characteristics74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 44. | LSI oscillator characteristics                                                                | 74 |
| Table 46.    Flash memory characteristics    74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 45. | PLL characteristics                                                                           | 74 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 46. | Flash memory characteristics                                                                  | 74 |



# List of figures

| Figure 1.  | Block diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 2.  | Clock tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16       |
| Figure 3.  | UFBGA100 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28       |
| Figure 4.  | LQFP100 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29       |
| Figure 5.  | UFBGA64 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30       |
| Figure 6.  | LQFP64 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31       |
| Figure 7.  | LQFP48 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31       |
| Figure 8.  | UFQFPN48 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32       |
| Figure 9.  | WLCSP49 package pinout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32       |
| Figure 10. | STM32F072xB memory map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45       |
| Figure 11. | Pin loading conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48       |
| Figure 12. | Pin input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48       |
| Figure 13. | Power supply scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49       |
| Figure 14. | Current consumption measurement scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50       |
| Figure 15. | High-speed external clock source AC timing diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       |
| Figure 16. | Low-speed external clock source AC timing diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67       |
| Figure 17  | Typical application with an 8 MHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69       |
| Figure 18  | Typical application with a 32 768 kHz crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70       |
| Figure 19  | HSI oscillator accuracy characterization results for soldered parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71       |
| Figure 20  | HSI14 oscillator accuracy characterization results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72       |
| Figure 21  | HSI48 oscillator accuracy characterization results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73       |
| Figure 22  | TC and TTa I/O input characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80       |
| Figure 22. | Five volt tolerant (FT and FTf) I/O input characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80       |
| Figure 24  | $1/0 \ AC$ characteristics definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83       |
| Figure 24. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0J<br>Q/ |
| Figure 25. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04<br>07 |
| Figure 20. | Typical connection diagram using the ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07<br>07 |
| Figure 27. | 12 bit buffered / pen buffered DAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07       |
| Figure 20. | Maximum V acceler startup time from power down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09       |
| Figure 29. | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 91       |
| Figure 30. | SPI unning diagram - slave mode and CPHA = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95       |
| Figure 31. | SPI uming diagram - slave mode and CPHA = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95       |
| Figure 32. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90       |
| Figure 33. | $1^{-5}$ slave timing diagram (Philips protocol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97       |
| Figure 34. | I-S master timing diagram (Philips protocol).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98       |
| Figure 35. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00       |
| Figure 36. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101      |
| Figure 37. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102      |
| Figure 38. | LQFP100 package outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103      |
| Figure 39. | Recommended footprint for LQFP100 package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104      |
| Figure 40. | LQFP100 package marking example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05       |
| Figure 41. | UFBGA64 package outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06       |
| Figure 42. | Recommended footprint for UFBGA64 package1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07       |
| Figure 43. | UFBGA64 package marking example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08       |
| Figure 44. | LQFP64 package outline 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09       |
| Figure 45. | Recommended footprint for LQFP64 package 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10       |
| Figure 46. | LQFP64 package marking example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11       |
| Figure 47. | WLCSP49 package outline1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12       |
| Figure 48. | WLCSP49 package marking example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14       |



| Figure 49. | LQFP48 package outline                          | 115 |
|------------|-------------------------------------------------|-----|
| Figure 50. | Recommended footprint for LQFP48 package        | 116 |
| Figure 51. | LQFP48 package marking example                  | 117 |
| Figure 52. | UFQFPN48 package outline                        | 118 |
| Figure 53. | Recommended footprint for UFQFPN48 package      | 119 |
| Figure 54. | UFQFPN48 package marking example                | 120 |
| Figure 55. | LQFP64 P <sub>D</sub> max versus T <sub>A</sub> | 123 |



# 1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F072x8/xB microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM<sup>®</sup> Cortex<sup>®</sup>-M0 core, please refer to the Cortex<sup>®</sup>-M0 Technical Reference Manual, available from the www.arm.com website.





| Analog I/O group                         | Number of capacitive sensing channels |             |             |  |  |  |  |  |
|------------------------------------------|---------------------------------------|-------------|-------------|--|--|--|--|--|
|                                          | STM32F072Vx                           | STM32F072Rx | STM32F072Cx |  |  |  |  |  |
| G1                                       | 3                                     | 3           | 3           |  |  |  |  |  |
| G2                                       | 3                                     | 3           | 3           |  |  |  |  |  |
| G3                                       | 3                                     | 3           | 2           |  |  |  |  |  |
| G4                                       | 3                                     | 3           | 3           |  |  |  |  |  |
| G5                                       | 3                                     | 3           | 3           |  |  |  |  |  |
| G6                                       | 3                                     | 3           | 3           |  |  |  |  |  |
| G7                                       | 3                                     | 0           | 0           |  |  |  |  |  |
| G8                                       | 3                                     | 0           | 0           |  |  |  |  |  |
| Number of capacitive<br>sensing channels | 24                                    | 18          | 17          |  |  |  |  |  |

# Table 6. Number of capacitive sensing channels available on STM32F072x8/xB devices

# 3.14 Timers and watchdogs

The STM32F072x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

| Timer<br>type      | Timer          | Counter resolution | Counter<br>type      | Prescaler<br>factor        | DMA<br>request<br>generation | Capture/compare<br>channels | Complementary outputs |
|--------------------|----------------|--------------------|----------------------|----------------------------|------------------------------|-----------------------------|-----------------------|
| Advanced control   | TIM1           | 16-bit             | Up, down,<br>up/down | integer from<br>1 to 65536 | Yes                          | 4                           | 3                     |
|                    | TIM2           | 32-bit             | Up, down,<br>up/down | integer from<br>1 to 65536 | Yes                          | 4                           | -                     |
| General<br>purpose | TIM3           | 16-bit             | Up, down,<br>up/down | integer from<br>1 to 65536 | Yes                          | 4                           | -                     |
|                    | TIM14          | 16-bit             | Up                   | integer from<br>1 to 65536 | No                           | 1                           | -                     |
|                    | TIM15          | 16-bit             | Up                   | integer from<br>1 to 65536 | Yes                          | 2                           | 1                     |
|                    | TIM16<br>TIM17 | 16-bit             | Up                   | integer from<br>1 to 65536 | Yes                          | 1                           | 1                     |
| Basic              | TIM6<br>TIM7   | 16-bit             | Up                   | integer from<br>1 to 65536 | Yes                          | -                           | -                     |

Table 7. Timer feature comparison



#### Pinouts and pin descriptions



Figure 9. WLCSP49 package pinout



1. The above figure shows the package in top view, changing from bottom view in the previous document versions.



| Pin name | AF0        | AF1                 |
|----------|------------|---------------------|
| PC0      | EVENTOUT   | -                   |
| PC1      | EVENTOUT   | -                   |
| PC2      | EVENTOUT   | SPI2_MISO, I2S2_MCK |
| PC3      | EVENTOUT   | SPI2_MOSI, I2S2_SD  |
| PC4      | EVENTOUT   | USART3_TX           |
| PC5      | TSC_G3_IO1 | USART3_RX           |
| PC6      | TIM3_CH1   | -                   |
| PC7      | TIM3_CH2   | -                   |
| PC8      | TIM3_CH3   | -                   |
| PC9      | TIM3_CH4   | -                   |
| PC10     | USART4_TX  | USART3_TX           |
| PC11     | USART4_RX  | USART3_RX           |
| PC12     | USART4_CK  | USART3_CK           |
| PC13     | -          | -                   |
| PC14     | -          | -                   |
| PC15     | -          | -                   |

#### Table 16. Alternate functions selected through GPIOC\_AFR registers for port C

#### Table 17. Alternate functions selected through GPIOD\_AFR registers for port D

| Pin name | AF0        | AF1                 |
|----------|------------|---------------------|
| PD0      | CAN_RX     | SPI2_NSS, I2S2_WS   |
| PD1      | CAN_TX     | SPI2_SCK, I2S2_CK   |
| PD2      | TIM3_ETR   | USART3_RTS          |
| PD3      | USART2_CTS | SPI2_MISO, I2S2_MCK |
| PD4      | USART2_RTS | SPI2_MOSI, I2S2_SD  |
| PD5      | USART2_TX  | -                   |
| PD6      | USART2_RX  | -                   |
| PD7      | USART2_CK  | -                   |
| PD8      | USART3_TX  | -                   |
| PD9      | USART3_RX  | -                   |
| PD10     | USART3_CK  | -                   |
| PD11     | USART3_CTS | -                   |
| PD12     | USART3_RTS | TSC_G8_IO1          |
| PD13     | -          | TSC_G8_IO2          |
| PD14     | -          | TSC_G8_IO3          |
| PD15     | CRS_SYNC   | TSC_G8_IO4          |



# 5 Memory mapping

To the difference of STM32F072xB memory map in *Figure 10*, the two bottom code memory spaces of STM32F072x8 end at 0x0000 FFFF and 0x0800 FFFF, respectively.



Figure 10. STM32F072xB memory map



| Bus | Boundary address          | Size | Peripheral  |
|-----|---------------------------|------|-------------|
|     | 0x4000 7C00 - 0x4000 7FFF | 1 KB | Reserved    |
|     | 0x4000 7800 - 0x4000 7BFF | 1 KB | CEC         |
|     | 0x4000 7400 - 0x4000 77FF | 1 KB | DAC         |
|     | 0x4000 7000 - 0x4000 73FF | 1 KB | PWR         |
|     | 0x4000 6C00 - 0x4000 6FFF | 1 KB | CRS         |
|     | 0x4000 6800 - 0x4000 6BFF | 1 KB | Reserved    |
|     | 0x4000 6400 - 0x4000 67FF | 1 KB | BxCAN       |
|     | 0x4000 6000 - 0x4000 63FF | 1 KB | USB/CAN RAM |
|     | 0x4000 5C00 - 0x4000 5FFF | 1 KB | USB         |
|     | 0x4000 5800 - 0x4000 5BFF | 1 KB | I2C2        |
|     | 0x4000 5400 - 0x4000 57FF | 1 KB | I2C1        |
|     | 0x4000 5000 - 0x4000 53FF | 1 KB | Reserved    |
|     | 0x4000 4C00 - 0x4000 4FFF | 1 KB | USART4      |
|     | 0x4000 4800 - 0x4000 4BFF | 1 KB | USART3      |
|     | 0x4000 4400 - 0x4000 47FF | 1 KB | USART2      |
|     | 0x4000 3C00 - 0x4000 43FF | 2 KB | Reserved    |
|     | 0x4000 3800 - 0x4000 3BFF | 1 KB | SPI2        |
| APB | 0x4000 3400 - 0x4000 37FF | 1 KB | Reserved    |
|     | 0x4000 3000 - 0x4000 33FF | 1 KB | IWDG        |
|     | 0x4000 2C00 - 0x4000 2FFF | 1 KB | WWDG        |
|     | 0x4000 2800 - 0x4000 2BFF | 1 KB | RTC         |
|     | 0x4000 2400 - 0x4000 27FF | 1 KB | Reserved    |
|     | 0x4000 2000 - 0x4000 23FF | 1 KB | TIM14       |
|     | 0x4000 1800 - 0x4000 1FFF | 2 KB | Reserved    |
|     | 0x4000 1400 - 0x4000 17FF | 1 KB | TIM7        |
|     | 0x4000 1000 - 0x4000 13FF | 1 KB | TIM6        |
|     | 0x4000 0800 - 0x4000 0FFF | 2 KB | Reserved    |
|     | 0x4000 0400 - 0x4000 07FF | 1 KB | TIM3        |
|     | 0x4000 0000 - 0x4000 03FF | 1 KB | TIM2        |

Table 20. STM32F072x8/xB peripheral register boundary addresses (continued)



# 6 Electrical characteristics

## 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to  $V_{SS}$ .

### 6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at  $T_A = 25$  °C and  $T_A = T_A max$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean  $\pm 3\sigma$ ).

### 6.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_A = 25$  °C,  $V_{DD} = V_{DDA} = 3.3$  V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean  $\pm 2\sigma$ ).

### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

### 6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

### 6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.





| Sym- Para-<br>bol meter |                                      | Conditions                |                                                              | Typ @V <sub>DD</sub> (V <sub>DD</sub> = V <sub>DDA</sub> ) |       |       |       |       | Max <sup>(1)</sup> |                           |                           |                            |                    |  |
|-------------------------|--------------------------------------|---------------------------|--------------------------------------------------------------|------------------------------------------------------------|-------|-------|-------|-------|--------------------|---------------------------|---------------------------|----------------------------|--------------------|--|
|                         |                                      |                           |                                                              | 2.0 V                                                      | 2.4 V | 2.7 V | 3.0 V | 3.3 V | 3.6 V              | T <sub>A</sub> =<br>25 °C | T <sub>A</sub> =<br>85 °C | T <sub>A</sub> =<br>105 °C | Unit               |  |
|                         | Supply current in                    | Reg<br>mod<br>osc         | gulator in run<br>de, all<br>illators OFF                    | 15.4                                                       | 15.5  | 15.6  | 15.7  | 15.8  | 15.9               | 23 <sup>(2)</sup>         | 49                        | 68 <sup>(2)</sup>          |                    |  |
| I <sub>DD</sub>         | Stop<br>mode                         | Reg<br>pow<br>osc         | Regulator in low-<br>power mode, all<br>oscillators OFF      |                                                            | 3.3   | 3.4   | 3.5   | 3.6   | 3.7                | 8 <sup>(2)</sup>          | 33                        | 51 <sup>(2)</sup>          |                    |  |
|                         | Supply current in                    | LSI<br>ON                 | ON and IWDG                                                  | 0.8                                                        | 1.0   | 1.1   | 1.2   | 1.3   | 1.4                | -                         | -                         | -                          |                    |  |
|                         | Standby<br>mode                      | LSI<br>OFI                | OFF and IWDG<br>=                                            | 0.6                                                        | 0.7   | 0.9   | 0.9   | 1.0   | 1.1                | 2.1 <sup>(2)</sup>        | 2.6                       | 3.1 <sup>(2)</sup>         |                    |  |
|                         | Supply<br>current in<br>Stop<br>mode | Supply                    | z                                                            | Regulator in<br>run mode, all<br>oscillators<br>OFF        | 2.1   | 2.2   | 2.3   | 2.5   | 2.6                | 2.8                       | 3.5 <sup>(2)</sup>        | 3.6                        | 4.6 <sup>(2)</sup> |  |
|                         |                                      | <sub>A</sub> monitoring O | Regulator in<br>low-power<br>mode, all<br>oscillators<br>OFF | 2.1                                                        | 2.2   | 2.3   | 2.5   | 2.6   | 2.8                | 3.5 <sup>(2)</sup>        | 3.6                       | 4.6 <sup>(2)</sup>         | μA                 |  |
|                         | Supply 2<br>current in               | V <sub>DC</sub>           | LSI ON and<br>IWDG ON                                        | 2.5                                                        | 2.7   | 2.8   | 3.0   | 3.2   | 3.5                | -                         | -                         | -                          |                    |  |
|                         | Standby<br>mode                      |                           | LSI OFF and<br>IWDG OFF                                      | 1.9                                                        | 2.1   | 2.2   | 2.3   | 2.5   | 2.6                | 3.5 <sup>(2)</sup>        | 3.6                       | 4.6 <sup>(2)</sup>         |                    |  |
| IDDA                    | Supply<br>current in<br>Stop<br>mode | Supply                    | H.                                                           | Regulator in<br>run mode, all<br>oscillators<br>OFF        | 1.3   | 1.3   | 1.4   | 1.4   | 1.5                | 1.5                       | -                         | -                          | -                  |  |
|                         |                                      | A monitoring Ol           | Regulator in<br>low-power<br>mode, all<br>oscillators<br>OFF | 1.3                                                        | 1.3   | 1.4   | 1.4   | 1.5   | 1.5                | -                         | -                         | -                          |                    |  |
|                         | Supply current in                    | V <sub>DD</sub>           | LSI ON and<br>IWDG ON                                        | 1.7                                                        | 1.8   | 1.9   | 2.0   | 2.1   | 2.2                | -                         | -                         | -                          |                    |  |
|                         | Standby<br>mode                      |                           | LSI OFF and<br>IWDG OFF                                      | 1.2                                                        | 1.2   | 1.2   | 1.3   | 1.3   | 1.4                | -                         | -                         | -                          |                    |  |

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of  $I_{DD}$  and  $I_{DDA}$ ).



#### STM32F072x8 STM32F072xB

| Symbol | Parameter               | Conditions <sup>(1)</sup>                                                 | I/O toggling<br>frequency (f <sub>SW</sub> ) | Тур   | Unit |
|--------|-------------------------|---------------------------------------------------------------------------|----------------------------------------------|-------|------|
|        |                         |                                                                           | 4 MHz                                        | 0.07  |      |
|        |                         |                                                                           | 8 MHz                                        | 0.15  |      |
|        |                         | $C = C_{INT}$                                                             | 16 MHz                                       | 0.31  |      |
|        |                         |                                                                           | 24 MHz                                       | 0.53  |      |
|        |                         |                                                                           | 48 MHz                                       | 0.92  |      |
|        |                         |                                                                           | 4 MHz                                        | 0.18  |      |
|        |                         | V <sub>DDIOx</sub> = 3.3 V                                                | 8 MHz                                        | 0.37  |      |
|        |                         | C <sub>EXT</sub> = 0 pF                                                   | 16 MHz                                       | 0.76  |      |
|        |                         | $C = C_{INT} + C_{EXT} + C_{S}$                                           | 24 MHz                                       | 1.39  |      |
|        |                         |                                                                           | 48 MHz                                       | 2.188 |      |
|        |                         |                                                                           | 4 MHz                                        | 0.32  |      |
|        | I/O current consumption | $V_{DDIOx} = 3.3 V$<br>$C_{EXT} = 10 pF$<br>$C = C_{INT} + C_{EXT} + C_S$ | 8 MHz                                        | 0.64  | mA   |
|        |                         |                                                                           | 16 MHz                                       | 1.25  |      |
|        |                         |                                                                           | 24 MHz                                       | 2.23  |      |
| low    |                         |                                                                           | 48 MHz                                       | 4.442 |      |
| .200   |                         | $V_{DDIOx} = 3.3 V$<br>$C_{EXT} = 22 pF$<br>$C = C_{INT} + C_{EXT} + C_S$ | 4 MHz                                        | 0.49  |      |
|        |                         |                                                                           | 8 MHz                                        | 0.94  |      |
|        |                         |                                                                           | 16 MHz                                       | 2.38  |      |
|        |                         |                                                                           | 24 MHz                                       | 3.99  |      |
|        |                         |                                                                           | 4 MHz                                        | 0.64  |      |
|        |                         | $V_{\text{DDIOX}} = 3.3 \text{ V}$                                        |                                              | 8 MHz | 1.25 |
|        |                         | $C = C_{INT} + C_{EXT} + C_S$                                             | 16 MHz                                       | 3.24  |      |
|        |                         |                                                                           | 24 MHz                                       | 5.02  |      |
|        |                         | V <sub>DDIOx</sub> = 3.3 V                                                | 4 MHz                                        | 0.81  |      |
|        |                         | $C_{EXT} = 47 \text{ pF}$                                                 | 8 MHz                                        | 1.7   |      |
|        |                         | $C = C_{INT} + C_{EXT} + C_{S}$<br>$C = C_{int}$                          | 16 MHz                                       | 3.67  | 1    |
|        |                         | V <sub>DDIOx</sub> = 2.4 V                                                | 4 MHz                                        | 0.66  |      |
|        |                         | $C_{EXT} = 47 \text{ pF}$                                                 | 8 MHz                                        | 1.43  |      |
|        |                         | $C = C_{INT} + C_{EXT} + C_{S}$                                           | 16 MHz                                       | 2.45  |      |
|        |                         | $C = C_{int}$                                                             | 24 MHz                                       | 4.97  |      |

Table 34. Switching output I/O current consumption

1. C<sub>S</sub> = 7 pF (estimated value).



#### High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol              | Parameter                   | Conditions <sup>(1)</sup>                                   | Min <sup>(2)</sup> | Тур | Max <sup>(2)</sup> | Unit |
|---------------------|-----------------------------|-------------------------------------------------------------|--------------------|-----|--------------------|------|
| f <sub>OSC_IN</sub> | Oscillator frequency        | -                                                           | 4                  | 8   | 32                 | MHz  |
| R <sub>F</sub>      | Feedback resistor           | -                                                           | -                  | 200 | -                  | kΩ   |
|                     |                             | During startup <sup>(3)</sup>                               | -                  | -   | 8.5                |      |
|                     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 10 pF@8 MHz  | -                  | 0.4 | -                  |      |
|                     | HSE current consumption     | V <sub>DD</sub> = 3.3 V,<br>Rm = 45 Ω,<br>CL = 10 pF@8 MHz  | -                  | 0.5 | -                  |      |
| I <sub>DD</sub>     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 5 pF@32 MHz  | -                  | 0.8 | -                  | mA   |
|                     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 10 pF@32 MHz | -                  | 1   | -                  |      |
|                     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 20 pF@32 MHz | -                  | 1.5 | -                  |      |
| 9 <sub>m</sub>      | Oscillator transconductance | Startup                                                     | 10                 | -   | -                  | mA/V |
| $t_{SU(HSE)}^{(4)}$ | Startup time                | $V_{DD}$ is stabilized                                      | -                  | 2   | -                  | ms   |

| Table 3 | 39. HSE | oscillator | characteristics |
|---------|---------|------------|-----------------|
|         |         |            |                 |

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the  $t_{\mbox{SU(HSE)}}$  startup time

4. t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*).  $C_{L1}$  and  $C_{L2}$  are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing  $C_{L1}$  and  $C_{L2}$ .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.



### High-speed internal (HSI) RC oscillator

| Parameter                           | Conditions                                                                                                                                                                                        | Min                                                                                                                                                                                                                                                                                                                                            | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Мах                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Frequency                           | -                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| HSI user trimming step              | -                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Duty cycle                          | -                                                                                                                                                                                                 | 45 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                     | T <sub>A</sub> = -40 to 105°C                                                                                                                                                                     | -2.8 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.8 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                     | T <sub>A</sub> = -10 to 85°C                                                                                                                                                                      | -1.9 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.3 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Accuracy of the HSI oscillator      | T <sub>A</sub> = 0 to 85°C                                                                                                                                                                        | -1.9 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                     | $T_A = 0$ to $70^{\circ}C$                                                                                                                                                                        | -1.3 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                     | $T_A = 0$ to 55°C                                                                                                                                                                                 | -1 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                     | $T_{A} = 25^{\circ}C^{(4)}$                                                                                                                                                                       | -1                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| HSI oscillator startup time         | -                                                                                                                                                                                                 | 1 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| HSI oscillator power<br>consumption | -                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                     | Parameter         Frequency         HSI user trimming step         Duty cycle         Accuracy of the HSI oscillator         HSI oscillator startup time         HSI oscillator power consumption | ParameterConditionsFrequency-HSI user trimming step-Duty cycle-Accuracy of the HSI<br>oscillator $T_A = -40 \text{ to } 105^{\circ}C$ $T_A = -10 \text{ to } 85^{\circ}C$ $T_A = 0 \text{ to } 70^{\circ}C$ $T_A = 0 \text{ to } 55^{\circ}C$ $T_A = 0 \text{ to } 55^{\circ}C$ $T_A = 25^{\circ}C^{(4)}$ HSI oscillator power<br>consumption- | $\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min \\ \hline Frequency & - & - \\ \hline HSI user trimming step & - & - \\ \hline Duty cycle & - & 45^{(2)} \\ \hline T_A = -40 \ to \ 105^\circ C & -2.8^{(3)} \\ \hline T_A = -10 \ to \ 85^\circ C & -1.9^{(3)} \\ \hline T_A = 0 \ to \ 85^\circ C & -1.9^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} \\ \hline T_A = 25^\circ C^{(4)} & -1 \\ \hline HSI \ oscillator \ power \\ consumption & - & 1^{(2)} \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min & Typ \\ \hline Frequency & - & - & 8 \\ \hline HSI user trimming step & - & - & - \\ \hline Duty cycle & - & 45^{(2)} & - \\ \hline Duty cycle & - & 45^{(2)} & - \\ \hline T_A = -40 to 105^\circ C & -2.8^{(3)} & - \\ \hline T_A = -10 to 85^\circ C & -1.9^{(3)} & - \\ \hline T_A = 0 to 85^\circ C & -1.9^{(3)} & - \\ \hline T_A = 0 to 70^\circ C & -1.3^{(3)} & - \\ \hline T_A = 0 to 55^\circ C & -1^{(3)} & - \\ \hline T_A = 0 to 55^\circ C & -1^{(3)} & - \\ \hline T_A = 25^\circ C^{(4)} & -1 & - \\ \hline HSI oscillator power & - & 1^{(2)} & - \\ \hline HSI oscillator power & - & - & 80 \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c c } \hline Parameter & Conditions & Min & Typ & Max \\ \hline Frequency & - & - & 8 & - \\ \hline HSI user trimming step & - & - & 1(^2) \\ \hline Duty cycle & - & 45^{(2)} & - & 55^{(2)} \\ \hline T_A = -40 \ to \ 105^\circ C & -2.8^{(3)} & - & 3.8^{(3)} \\ \hline T_A = -10 \ to \ 85^\circ C & -1.9^{(3)} & - & 2.3^{(3)} \\ \hline T_A = 0 \ to \ 85^\circ C & -1.9^{(3)} & - & 2^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} & - & 2^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} & - & 2^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} & - & 1 \\ \hline HSI \ oscillator \ startup \ time & - & 1^{(2)} & - & 1 \\ \hline HSI \ oscillator \ power \ consumption & - & 80 & 100^{(2)} \\ \hline \end{tabular}$ |  |  |  |  |

#### Table 41. HSI oscillator characteristics<sup>(1)</sup>

1.  $V_{DDA}$  = 3.3 V,  $T_A$  = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.



#### Figure 19. HSI oscillator accuracy characterization results for soldered parts



#### Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

#### Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

#### **Electromagnetic Interference (EMI)**

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

| Symbol           | Parameter  | Conditions                                                                           | Monitored        | Max vs. [f <sub>HSE</sub> /f <sub>HCLK</sub> ] | Unit |  |
|------------------|------------|--------------------------------------------------------------------------------------|------------------|------------------------------------------------|------|--|
| Gymbol           |            | Conditions                                                                           | frequency band   | 8/48 MHz                                       |      |  |
| S <sub>EMI</sub> | Peak level | $V_{DD}$ = 3.6 V, $T_A$ = 25 °C,<br>LQFP100 package<br>compliant with<br>IEC 61967-2 | 0.1 to 30 MHz    | -2                                             |      |  |
|                  |            |                                                                                      | 30 to 130 MHz    | 27                                             | dBµV |  |
|                  |            |                                                                                      | 130 MHz to 1 GHz | 17                                             |      |  |
|                  |            |                                                                                      | EMI Level        | 4                                              | -    |  |

#### Table 49. EMI characteristics

### 6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

#### **Electrostatic discharge (ESD)**

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts  $\times$  (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.



# 6.3.17 DAC electrical specifications

| Symbol                           | Parameter                                                                                                   | Min | Тур | Max                     | Unit | Comments                                                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|-----|-----|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------|
| V <sub>DDA</sub>                 | Analog supply voltage for<br>DAC ON                                                                         | 2.4 | -   | 3.6                     | V    | -                                                                                                                              |
| <b>D</b> (1)                     | Resistive load with buffer                                                                                  | 5   | -   | -                       | kΩ   | Load connected to V <sub>SSA</sub>                                                                                             |
| ►LOAD` ′                         | ON                                                                                                          | 25  | -   | -                       | kΩ   | Load connected to V <sub>DDA</sub>                                                                                             |
| R <sub>O</sub> <sup>(1)</sup>    | Impedance output with<br>buffer OFF                                                                         | -   | -   | 15                      | kΩ   | When the buffer is OFF, the Minimum resistive load between DAC_OUT and V <sub>SS</sub> to have a 1% accuracy is 1.5 M $\Omega$ |
| C <sub>LOAD</sub> <sup>(1)</sup> | Capacitive load                                                                                             | -   | -   | 50                      | pF   | Maximum capacitive load at DAC_OUT pin (when the buffer is ON).                                                                |
| DAC_OUT<br>min <sup>(1)</sup>    | Lower DAC_OUT voltage with buffer ON                                                                        | 0.2 | -   | -                       | V    | It gives the maximum output<br>excursion of the DAC.<br>It corresponds to 12-bit input                                         |
| DAC_OUT<br>max <sup>(1)</sup>    | Higher DAC_OUT voltage with buffer ON                                                                       | -   | -   | V <sub>DDA</sub> – 0.2  | V    | $V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$<br>(0xEAB) at $V_{DDA} = 2.4 V$                                             |
| DAC_OUT<br>min <sup>(1)</sup>    | Lower DAC_OUT voltage with buffer OFF                                                                       | -   | 0.5 | -                       | mV   | It gives the maximum output                                                                                                    |
| DAC_OUT<br>max <sup>(1)</sup>    | Higher DAC_OUT voltage<br>with buffer OFF                                                                   | I   | -   | V <sub>DDA</sub> – 1LSB | V    | excursion of the DAC.                                                                                                          |
| I (1)                            | DAC DC current                                                                                              | -   | -   | 600                     | μA   | With no load, middle code<br>(0x800) on the input                                                                              |
| 'DDA'                            | mode <sup>(2)</sup>                                                                                         | I   | -   | 700                     | μA   | With no load, worst code<br>(0xF1C) on the input                                                                               |
| DNL <sup>(3)</sup>               | Differential non linearity<br>Difference between two                                                        | -   | -   | ±0.5                    | LSB  | Given for the DAC in 10-bit configuration                                                                                      |
| Ditte                            | consecutive code-1LSB)                                                                                      | -   | -   | ±2                      | LSB  | Given for the DAC in 12-bit configuration                                                                                      |
|                                  | Integral non linearity<br>(difference between                                                               | -   | -   | ±1                      | LSB  | Given for the DAC in 10-bit configuration                                                                                      |
| INL <sup>(3)</sup>               | and the value at Code i<br>and the value at Code i on a<br>line drawn between Code 0<br>and last Code 1023) | -   | -   | ±4                      | LSB  | Given for the DAC in 12-bit configuration                                                                                      |
|                                  | Offset error                                                                                                | -   | -   | ±10                     | mV   | -                                                                                                                              |
| Offset <sup>(3)</sup>            | (difference between<br>measured value at Code                                                               | -   | -   | ±3                      | LSB  | Given for the DAC in 10-bit at V <sub>DDA</sub> = 3.6 V                                                                        |
|                                  | (0x800) and the ideal value<br>= V <sub>DDA</sub> /2)                                                       | -   | -   | ±12                     | LSB  | Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$                                                                               |

| Table | 60. | DAC | characteristics  |
|-------|-----|-----|------------------|
| Table | 00. | DAO | character istics |



## 6.3.18 Comparator characteristics

| Symbol                   | Parameter                                                         | Conditio                                   | Min <sup>(1)</sup>       | Тур | Max <sup>(1)</sup> | Unit        |     |
|--------------------------|-------------------------------------------------------------------|--------------------------------------------|--------------------------|-----|--------------------|-------------|-----|
| V <sub>DDA</sub>         | Analog supply voltage                                             | -                                          | V <sub>DD</sub>          | -   | 3.6                | V           |     |
| V <sub>IN</sub>          | Comparator input voltage range                                    | -                                          | 0                        | -   | V <sub>DDA</sub>   | -           |     |
| V <sub>SC</sub>          | V <sub>REFINT</sub> scaler offset<br>voltage                      | -                                          | -                        | ±5  | ±10                | mV          |     |
| ts sc                    | V <sub>REFINT</sub> scaler startup                                | First V <sub>REFINT</sub> scaler activ     | vation after device      | -   | -                  | 1000<br>(2) | ms  |
| 0_00                     | time from power down                                              | Next activations                           |                          | -   | -                  | 0.2         |     |
| t <sub>START</sub>       | Comparator startup time                                           | Startup time to reach pro<br>specification | -                        | -   | 60                 | μs          |     |
|                          |                                                                   | Ultra-low power mode                       |                          |     | 2                  | 4.5         | μs  |
|                          | Propagation delay for<br>200 mV step with<br>100 mV overdrive     | Low power mode                             |                          |     | 0.7                | 1.5         |     |
|                          |                                                                   | Medium power mode                          | -                        | 0.3 | 0.6                |             |     |
|                          |                                                                   | Lligh aroud mode                           | V <sub>DDA</sub> ≥2.7 V  | -   | 50                 | 100         | 20  |
| t_                       |                                                                   | nigh speed mode                            | V <sub>DDA</sub> < 2.7 V | -   | 100                | 240         | 115 |
| ۲D                       | Propagation delay for<br>full range step with<br>100 mV overdrive | Ultra-low power mode                       | -                        | 2   | 7                  | μs          |     |
|                          |                                                                   | Low power mode                             | -                        | 0.7 | 2.1                |             |     |
|                          |                                                                   | Medium power mode                          | -                        | 0.3 | 1.2                |             |     |
|                          |                                                                   | High speed mode                            | V <sub>DDA</sub> ≥ 2.7 V | -   | 90                 | 180         | ne  |
|                          |                                                                   | nigh speed mode                            | V <sub>DDA</sub> < 2.7 V | -   | 110                | 300         | 115 |
| V <sub>offset</sub>      | Comparator offset error                                           | -                                          | -                        | ±4  | ±10                | mV          |     |
| dV <sub>offset</sub> /dT | Offset error temperature coefficient                              | -                                          | -                        | 18  | -                  | µV/°C       |     |
|                          |                                                                   | Ultra-low power mode                       | -                        | 1.2 | 1.5                |             |     |
|                          | COMP current consumption                                          | Low power mode                             |                          |     | 3                  | 5           | ıΔ  |
| IDD(COMP)                |                                                                   | Medium power mode                          |                          | -   | 10                 | 15          | μΛ  |
|                          |                                                                   | High speed mode                            |                          | -   | 75                 | 100         |     |

#### Table 61. Comparator characteristics



#### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.



![](_page_18_Figure_6.jpeg)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

![](_page_18_Picture_10.jpeg)

#### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

![](_page_19_Figure_5.jpeg)

![](_page_19_Figure_6.jpeg)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

| Symbol | millimeters |       |       | inches <sup>(1)</sup> |        |        |  |
|--------|-------------|-------|-------|-----------------------|--------|--------|--|
|        | Min         | Тур   | Мах   | Min                   | Тур    | Мах    |  |
| А      | -           | -     | 1.600 | -                     | -      | 0.0630 |  |
| A1     | 0.050       | -     | 0.150 | 0.0020                | -      | 0.0059 |  |
| A2     | 1.350       | 1.400 | 1.450 | 0.0531                | 0.0551 | 0.0571 |  |
| b      | 0.170       | 0.220 | 0.270 | 0.0067                | 0.0087 | 0.0106 |  |
| с      | 0.090       | -     | 0.200 | 0.0035                | -      | 0.0079 |  |
| D      | 8.800       | 9.000 | 9.200 | 0.3465                | 0.3543 | 0.3622 |  |
| D1     | 6.800       | 7.000 | 7.200 | 0.2677                | 0.2756 | 0.2835 |  |
| D3     | -           | 5.500 | -     | -                     | 0.2165 | -      |  |
| E      | 8.800       | 9.000 | 9.200 | 0.3465                | 0.3543 | 0.3622 |  |
| E1     | 6.800       | 7.000 | 7.200 | 0.2677                | 0.2756 | 0.2835 |  |
| E3     | -           | 5.500 | -     | -                     | 0.2165 | -      |  |
| е      | -           | 0.500 | -     | -                     | 0.0197 | -      |  |
| L      | 0.450       | 0.600 | 0.750 | 0.0177                | 0.0236 | 0.0295 |  |
| L1     | -           | 1.000 | -     | -                     | 0.0394 | -      |  |
| k      | 0°          | 3.5°  | 7°    | 0°                    | 3.5°   | 7°     |  |
| CCC    | -           | -     | 0.080 | -                     | -      | 0.0031 |  |

Table 78. LQFP48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

![](_page_20_Figure_5.jpeg)

![](_page_20_Figure_6.jpeg)

1. Dimensions are expressed in millimeters.

![](_page_20_Picture_9.jpeg)