

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details		
Product Status	Active	
Core Processor	ARM® Cortex®-M0	
Core Size	32-Bit Single-Core	
Speed	48MHz	
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB	
Peripherals	DMA, I ² S, POR, PWM, WDT	
Number of I/O	37	
Program Memory Size	128KB (128K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	16K x 8	
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V	
Data Converters	A/D 10x12b; D/A 2x12b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	48-UFQFN Exposed Pad	
Supplier Device Package	48-UFQFPN (7x7)	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072cbu6	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.14.6	SysTick timer	23	
3.15	Real-ti	me clock (RTC) and backup registers	23	
3.16	Inter-ir	Inter-integrated circuit interface (I ² C) 2		
3.17	Univer	Universal synchronous/asynchronous receiver/transmitter (USART) 2		
3.18	Serial	Serial peripheral interface (SPI) / Inter-integrated sound interface (I^2S) . 2		
3.19	•	efinition multimedia interface (HDMI) - consumer	26	
3.20		ller area network (CAN)		
3.21		sal serial bus (USB)		
3.22		recovery system (CRS)		
3.23	Serial	wire debug port (SW-DP)	27	
Pino	uts and	pin descriptions	28	
Mem	ory ma	pping	45	
Elec	trical cł	naracteristics	48	
6.1	Param	eter conditions	48	
	6.1.1	Minimum and maximum values	48	
	6.1.2	Typical values	48	
	6.1.3	Typical curves	48	
	6.1.4	Loading capacitor	48	
	6.1.5	Pin input voltage	48	
	6.1.6	Power supply scheme	49	
	6.1.7	Current consumption measurement	50	
6.2	Absolu	Ite maximum ratings	51	
6.3	Opera	ting conditions	53	
	6.3.1	General operating conditions	53	
	6.3.2	Operating conditions at power-up / power-down	54	
	6.3.3	Embedded reset and power control block characteristics	54	
	6.3.4	Embedded reference voltage	55	
	6.3.5	Supply current characteristics	55	
	6.3.6	Wakeup time from low-power mode	66	
	6.3.7	External clock source characteristics	66	
	6.3.8	Internal clock source characteristics	70	
	6.3.9	PLL characteristics	74	

4

5

6

		6.3.10	Memory characteristics74
		6.3.11	EMC characteristics
		6.3.12	Electrical sensitivity characteristics
		6.3.13	I/O current injection characteristics77
		6.3.14	I/O port characteristics
		6.3.15	NRST pin characteristics
		6.3.16	12-bit ADC characteristics
		6.3.17	DAC electrical specifications
		6.3.18	Comparator characteristics90
		6.3.19	Temperature sensor characteristics 92
		6.3.20	V _{BAT} monitoring characteristics
		6.3.21	Timer characteristics
		6.3.22	Communication interfaces
7	Pack	kage info	ormation
	7.1	UFBGA	100 package information 100
	7.2	LQFP1	00 package information
	7.3	UFBGA	64 package information 106
	7.4	LQFP6	4 package information
	7.5	WLCSF	P49 package information112
	7.6	LQFP4	8 package information
	7.7	UFQFF	N48 package information118
	7.8	Therma	al characteristics
		7.8.1	Reference document
		7.8.2	Selecting the product temperature range
8	Orde	ering info	ormation
9	Revi	sion his	tory

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.14.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

3.15 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.

verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

Table 9. STM32F072x8/xB	I ² C implementation
-------------------------	---------------------------------

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	Х
Independent clock	Х	-
SMBus	Х	-
Wakeup from STOP	Х	-

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	х
Synchronous mode	Х	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection	Х	-
Driver Enable	Х	Х

Table 10. STM3	2F072x8/xB USAR	T implementation	(continued)	
			(

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.

Table 11. STM32F072x8/xB SPI/I ² S im	plementation
--	--------------

SPI features ⁽¹⁾	SPI1 and SPI2
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

1. X = supported.

3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory

Na	me	Abbreviation	Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function dur after reset is the same as the actual pin name			
		S	Supply pin
Pin	type	I	Input-only pin
		I/O	Input / output pin
		FT	5 V-tolerant I/O
		FTf	5 V-tolerant I/O, FM+ capable
I/O otr	ucture	TTa	3.3 V-tolerant I/O directly connected to ADC
1/0 50	ucture	TC	Standard 3.3 V I/O
		В	Dedicated BOOT0 pin
		RST	Bidirectional reset pin with embedded weak pull-up resistor
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.	
Pin functions	Alternate functions	Functions selected through GPIOx_AFR registers	
	Additional functions	Functions directly selected/enabled through peripheral registers	

Table 12. Legend/abbreviations used in the	oinout table
	on our cabie

Table 13. STM32F072x8/xB pin definitions

	Р	'in nu	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	تب ر		Alternate functions	Additional functions	
B2	1	-	-	-	-	PE2	I/O	FT	-	TSC_G7_IO1, TIM3_ETR	-	
A1	2	-	-	-	-	PE3	I/O	FT	-	TSC_G7_IO2, TIM3_CH1	-	
B1	3	-	-	-	-	PE4	I/O	FT	-	TSC_G7_IO3, TIM3_CH2	-	
C2	4	-	-	-	-	PE5	I/O) FT - TSC_G7_IO4, TIM3_CH3		-		
D2	5	-	-	-	-	PE6	I/O	FT	-	TIM3_CH4	WKUP3, RTC_TAMP3	
E2	6	B2	1	1	B7	VBAT	S	-	-	Backup power supply		

6.1.6 Power supply scheme

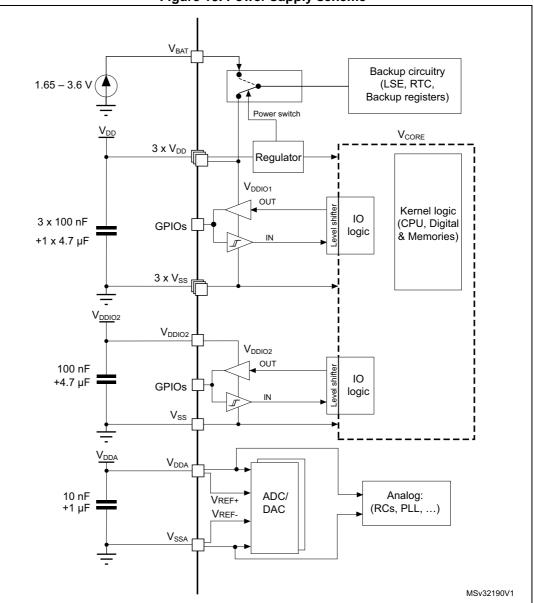


Figure 13. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

er				All	peripher	als enab			periphe	rals disa	abled														
Symbol	Parameter	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	Conditions	f _{HCLK}		M	lax @ T _A	(2)		Max @ T _A ⁽²⁾			Unit
Sy	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C														
		HSI48	48 MHz	23.1	25.4	25.8	26.6	12.8	13.5	13.7	13.9														
			48 MHz	23.0	25.3 ⁽³⁾	25.7	26.5 ⁽³⁾	12.6	13.3 ⁽³⁾	13.5	13.8 ⁽³⁾														
	Supply current in Run mode, code executing from RAM	HSE bypass, PLL on	32 MHz	15.4	17.3	17.8	18.3	7.96	8.92	9.17	9.73														
	upply current in Run mode code executing from RAM		24 MHz	11.4	12.9	13.5	13.7	6.48	8.04	8.23	8.41														
	n Ru g froi	HSE bypass,	8 MHz	4.21	4.6	4.89	5.25	2.07	2.3	2.35	2.94														
	ent i utinç	PLL off	1 MHz	0.78	0.9	0.92	1.15	0.36	0.48	0.59	0.82														
	curr exec		48 MHz	23.1	24.5	25.0	25.2	12.6	13.7	13.9	14.0														
	pply ode (HSI clock, PLL on	32 MHz	15.4	17.4	17.7	18.2	8.05	8.85	9.16	9.94														
	Sul		24 MHz	11.5	13.0	13.6	13.9	6.49	8.06	8.21	8.47														
		HSI clock, PLL off	8 MHz	4.34	4.75	5.03	5.41	2.11	2.36	2.38	2.98														
I _{DD}		HSI48	48 MHz	15.1	16.6	16.8	17.5	3.08	3.43	3.56	3.61	mA													
			48 MHz	15.0	16.5 ⁽³⁾	16.7	17.3 ⁽³⁾	2.93	3.28 ⁽³⁾	3.41	3.46 ⁽³⁾														
	node	HSE bypass, PLL on	32 MHz	9.9	11.4	11.6	11.9	2.0	2.24	2.32	2.49														
	ep n		24 MHz	7.43	8.17	8.71	8.82	1.63	1.82	1.88	1.9														
	l Sle	HSE bypass,	8 MHz	2.83	3.09	3.26	3.66	0.76	0.88	0.91	0.93														
	ent ir	PLL off	1 MHz	0.42	0.54	0.55	0.67	0.28	0.39	0.41	0.43														
	Supply current in Sleep mode		48 MHz	15.0	17.2	17.3	17.9	3.04	3.37	3.41	3.46														
	ply .	HSI clock, PLL on	32 MHz	9.93	11.3	11.6	11.7	2.11	2.35	2.44	2.65														
	ldnS		24 MHz	7.53	8.45	8.87	8.95	1.64	1.83	1.9	1.93														
		HSI clock, PLL off	8 MHz	2.95	3.24	3.41	3.8	0.8	0.92	0.94	0.97														

Table 29. Typical and maximum	current consumption from V _{Dr}	_D supply at V _{DD} = 3.6 V (continued)

1. USB is kept disabled as this IP functions only with a 48 MHz clock.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

STM32F072x8 STM32F072xB

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			4 MHz	0.07	
		V _{DDIOx} = 3.3 V	8 MHz	0.15	
		C =C _{INT}	16 MHz	0.31	
			24 MHz	0.53	
			48 MHz	0.92	
			4 MHz	0.18	
		V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39	
			48 MHz	2.188	
			4 MHz	0.32	
		$V_{\text{DDIOx}} = 3.3 \text{ V}$ $C_{\text{EXT}} = 10 \text{ pF}$ $C = C_{\text{INT}} + C_{\text{EXT}} + C_{\text{S}}$	8 MHz	0.64	mA
			16 MHz	1.25	
			24 MHz	2.23	
I _{SW}	I/O current		48 MHz	4.442	
ISW	consumption		4 MHz	0.49	110 (
		$V_{DDIOX} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.94	
			16 MHz	2.38	
			24 MHz	3.99	
			4 MHz	0.64	
		$V_{\text{DDIOx}} = 3.3 \text{ V}$	8 MHz	1.25	
		C_{EXT} = 33 pF C = C _{INT} + C _{EXT} + C _S	16 MHz	3.24	
			24 MHz	5.02	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		C _{EXT} = 47 pF	8 MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_S$ $C = C_{int}$	16 MHz	3.67	
		V _{DDIOx} = 2.4 V	4 MHz	0.66	
		0 _{DDIOx} = 2.4 0 C _{EXT} = 47 pF	8 MHz	1.43	-
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45	
		C = C _{int}	24 MHz	4.97	

Table 34. Switching output I/O current consumption

1. C_S = 7 pF (estimated value).

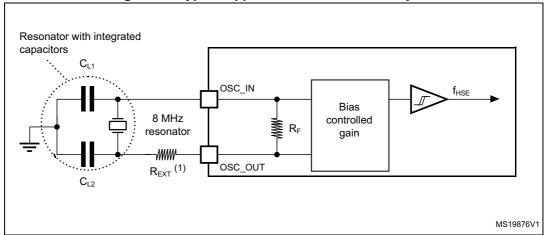


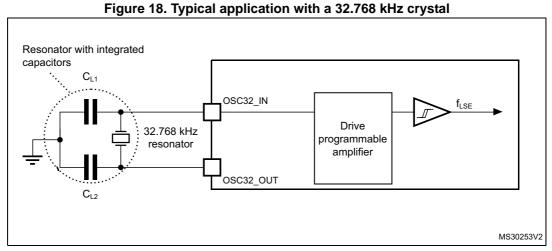
Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		low drive capability	-	0.5	0.9	
	LSE current consumption	medium-low drive capability	-	-	1	
IDD		medium-high drive capability	-	-	1.3	μA
		high drive capability	-	-	1.6	
		low drive capability	5	-	-	
	Oscillator	medium-low drive capability	8	-	-	
9 _m	transconductance	medium-high drive capability	15	-	-	µA/V
		high drive capability	25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S


1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2 \text{ V}$	-	125	ns	
vO	t _{r(IO)out}	Output rise time		-	125	115	
×0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz	
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
	t _{f(IO)out}	Output fall time	C_L = 50 pF, $V_{DDIOx} \ge 2 V$	-	25	ns	
OSPEEDRy [1:0] value ⁽¹⁾	t _{r(IO)out}	Output rise time		-	25	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz	
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	62.5	ns	
	t _{r(IO)out}	Output rise time		- 2 - 125 - 125 - 1 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 10 - 25 - 25 - 4	115		
	f (o) (C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	
			C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	30	MHz	
	'max(IO)out		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	20		
			C_L = 50 pF, V_{DDIOx} < 2 V	-	10		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5		
11	town	Output fall time	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	8		
	۲f(IO)out		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12		
			C_L = 50 pF, V_{DDIOx} < 2 V	-	25	1	
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	ns	
	ture	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
	t _{r(IO)out}		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12		
			$C_L = 50 \text{ pF}, V_{DDIOx} < 2 \text{ V}$	-	25		

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

6.3.17 DAC electrical specifications

Iable 60. DAC characteristics									
Symbol	Parameter	Min	Тур	Мах	Unit	Comments			
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-			
R _{LOAD} ⁽¹⁾	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}			
LOAD '	ON	25	-	-	kΩ	Load connected to V _{DDA}			
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω			
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).			
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at			
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$ (0xEAB) at $V_{DDA} = 2.4 V$			
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output			
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} – 1LSB	V	excursion of the DAC.			
I _{DDA} ⁽¹⁾	DAC DC current consumption in quiescent	-	-	600	μA	With no load, middle code (0x800) on the input			
'DDA	mode ⁽²⁾	-	-	700	μA	With no load, worst code (0xF1C) on the input			
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration			
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration			
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration			
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration			
	Offset error	-	-	±10	mV	-			
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V_{DDA} = 3.6 V			
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{DDA} = 3.6 V			

Table	60.	DAC	characteristics
i albio		0/10	0110100101101100

6.3.18 Comparator characteristics

Symbol	Parameter	Conditi	ons	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-			-	3.6	V
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	-	
V _{SC}	V _{REFINT} scaler offset voltage	-		-	±5	±10	mV
t _{s_sc}	V _{REFINT} scaler startup time from power down	First V _{REFINT} scaler acti power on	vation after device	-	-	1000 (2)	ms
		Next activations		-	-	0.2	
t _{START}	Comparator startup time	Startup time to reach pro specification	opagation delay	-	-	60	μs
		Ultra-low power mode		-	2	4.5	
	Propagation delay for 200 mV step with 100 mV overdrive	Low power mode	-	0.7	1.5	μs	
		Medium power mode	-	0.3	0.6		
		High speed mode	V _{DDA} ≥ 2.7 V	-	50	100	20
+		nigh speed mode	-	100	240	ns	
t _D		Ultra-low power mode	-	2	7		
	Propagation delay for	Low power mode	-	0.7	2.1	μs	
	full range step with	Medium power mode		-	0.3	1.2	
	100 mV overdrive	High speed mode	V _{DDA} ≥ 2.7 V	-	90	180	ns
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	115
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	µV/°C
		Ultra-low power mode		-	1.2	1.5	
	COMP current	Low power mode		-	3	5	
I _{DD(COMP)}	consumption	Medium power mode		-	10	15	μA
		High speed mode		-	75	100	

Table 61. Comparator characteristics

Tab		min/max timeout periou		
Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.1	409.6	
/8	1	0.2	819.2	
/16	2	0.4	1638.4	
/32	3	0.8	3276.8	ms
/64	4	1.6	6553.6	
/128	5	3.2	13107.2	
/256	6 or 7	6.4	26214.4	

Table 65. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

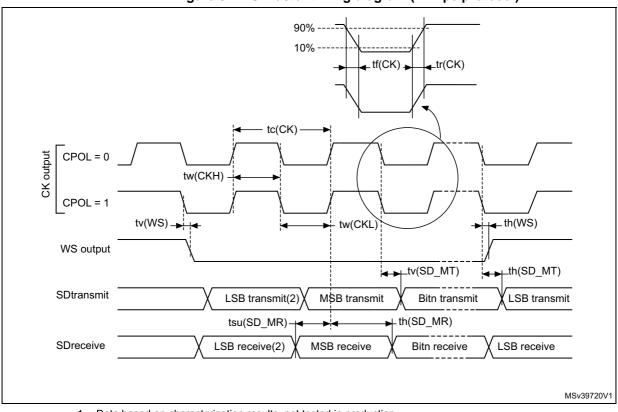
Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	ms
8	3	0.6826	43.6906	

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

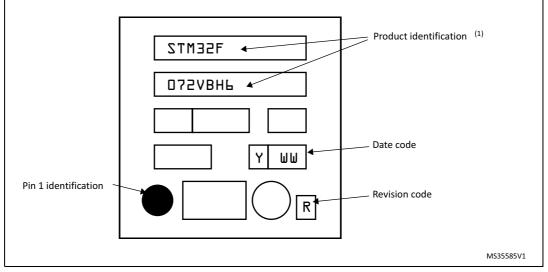

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

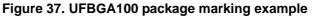
The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Figure 34. I²S master timing diagram (Philips protocol)


- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

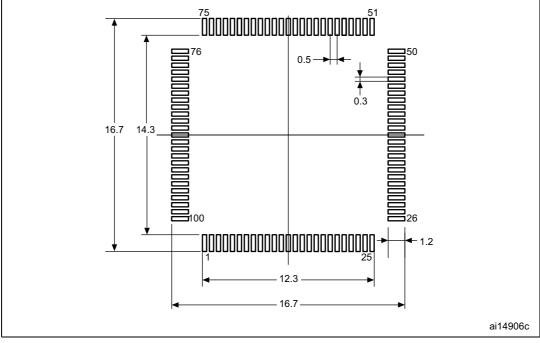


Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.



Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 73. LQPF100 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.242	3.277	3.312	0.1276	0.1290	0.1304
Е	3.074	3.109	3.144	0.1210	0.1224	0.1238
е	-	0.400	-	-	0.0157	-
e1	-	2.400	-	-	0.0945	-
e2	-	2.400	-	-	0.0945	-
F	-	0.4385	-	-	0.0173	-
G	-	0.3545	-	-	0.0140	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 77. WLCSP49 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F072x8/xB at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax}= 175 + 272 = 447 mW

Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum temperature $T_{Amax} = 100$ °C (measured according to JESD51-2), $I_{DDmax} = 20$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V $P_{INTmax} = 20$ mA × 3.5 V= 70 mW $P_{IOmax} = 20 \times 8$ mA × 0.4 V = 64 mW This gives: $P_{INTmax} = 70$ mW and $P_{IOmax} = 64$ mW: $P_{Dmax} = 70 + 64 = 134$ mW

Thus: P_{Dmax} = 134 mW

DocID025004 Rev 5

