

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072rbh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{DDIO2} = 1.65 to 3.6 V: external power supply for marked I/Os. V_{DDIO2} is provided externally through the VDDIO2 pin. The V_{DDIO2} voltage level is completely independent from V_{DD} or V_{DDA}, but it must not be provided without a valid supply on V_{DD}. The V_{DDIO2} supply is monitored and compared with the internal reference voltage (V_{REFINT}). When the V_{DDIO2} is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{\text{POR/PDR}}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD}

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F072x8/xB devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		Capacitive sensing signal name n 5 TSC_G5_IO1 I 5 TSC_G5_IO2 I 5 TSC_G5_IO3 I 6 TSC_G6_IO1 I 6 TSC_G6_IO1 I 7 TSC_G6_IO2 I 7 TSC_G6_IO3 I 7 TSC_G6_IO4 I 7 TSC_G6_IO4 I 7 TSC_G6_IO4 I 7 TSC_G6_IO3 I 7 TSC_G7_IO1 I 7 TSC_G7_IO2 I 7 TSC_G8_IO1 I 7 TSC_G8_IO3 I	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	Group Capacitive sensing signal name Pin name TSC_G5_I01 PB3 TSC_G5_I02 PB4 TSC_G5_I03 PB6 TSC_G5_I04 PB7 TSC_G6_I01 PB11 TSC_G6_I02 PB12 TSC_G6_I03 PB13 TSC_G6_I03 PB14 TSC_G6_I04 PB14 TSC_G6_I03 PB13 TSC_G6_I04 PB14 TSC_G6_I03 PB14 TSC_G7_I01 PE2 TSC_G7_I02 PE3 TSC_G7_I03 PE4 TSC_G8_I01 PD12 TSC_G8_I02 PD13 TSC_G8_I03 PD14 TSC_G8_I04 PD15	PB6
	TSC_G1_IO4	PA3			
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2 TSC_G TSC_G TSC_G	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE2	
3	TSC_G3_IO2	PB0	7	oup signal name name signal name name name TSC_G5_IO1 PE TSC_G5_IO2 PE TSC_G5_IO3 PE TSC_G5_IO4 PE TSC_G6_IO1 PE TSC_G6_IO2 PE TSC_G6_IO2 PE TSC_G6_IO3 PE TSC_G6_IO3 PE TSC_G6_IO4 PE TSC_G6_IO3 PE TSC_G6_IO4 PE TSC_G6_IO4 PE TSC_G7_IO1 PE TSC_G7_IO2 PE TSC_G7_IO3 PE TSC_G8_IO1 PE TSC_G8_IO2 PE TSC_G8_IO3 PE TSC_G8_IO4 PE	PE3
5	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
1	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
-	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA12		TSC_G5_IO1 P TSC_G5_IO2 P TSC_G5_IO3 P TSC_G5_IO3 P TSC_G5_IO4 P TSC_G6_IO1 PE TSC_G6_IO2 PE TSC_G6_IO3 PE TSC_G6_IO3 PE TSC_G6_IO3 PE TSC_G6_IO4 PE TSC_G6_IO4 PE TSC_G6_IO3 PE TSC_G6_IO4 PE TSC_G6_IO4 PE TSC_G7_IO1 P TSC_G7_IO3 P TSC_G8_IO1 PE TSC_G8_IO2 PE TSC_G8_IO3 PE TSC_G8_IO4 PE	PD15

Table 5. Capacitive sensing GPIOs available on STM32F072x8/xB devices

DocID025004 Rev 5

	P	'in nu	mber	s						Pin functio	ns
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
C1	7	A2	2	2	D5	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
D1	8	A1	3	3	C7	PC14- OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN
E1	9	B1	4	4	C6	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT
F2	10	-	-	-	-	PF9	I/O	FT	-	TIM15_CH1	-
G2	11		-	-	-	PF10	I/O	FT	-	TIM15_CH2	-
F1	12	C1	5	5	D7	PF0-OSC_IN (PF0)	I/O	FT	-	CRS_SYNC	OSC_IN
G1	13	D1	6	6	D6	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT
H2	14	E1	7	7	E7	NRST	I/O	RST	-	Device reset input / inter (active low	rnal reset output /)
H1	15	E3	8	-	-	PC0	I/O	TTa	-	EVENTOUT	ADC_IN10
J2	16	E2	9	-	-	PC1	I/O	TTa	-	EVENTOUT	ADC_IN11
J3	17	F2	10	-	-	PC2	I/O	TTa	-	SPI2_MISO, I2S2_MCK, EVENTOUT	ADC_IN12
K2	18	G1	11	-	-	PC3	I/O	TTa	-	SPI2_MOSI, I2S2_SD, EVENTOUT	ADC_IN13
J1	19	-	-	-	-	PF2	I/O	FT	-	EVENTOUT	WKUP8
K1	20	F1	12	8	E6	VSSA	S	-	-	Analog grou	ind
M1	21	H1	13	9	F7	VDDA	S	-	-	Analog power supply	
L1	22	-	-	-	-	PF3	I/O	FT	-	EVENTOUT	
L2	23	G2	14	10	F6	PA0	I/O	TTa	-	USART2_CTS, TIM2_CH1_ETR, COMP1_OUT, TSC_G1_IO1, USART4_TX	RTC_ TAMP2, WKUP1, ADC_IN0, COMP1_INM6

Table 13. STM32F072x8/xB pin definitions (continued)

	P	Pin nu	mber	S						Pin functio	ns
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
G12	50	E5	32	24	F2	VDD	S	-	-	Digital power s	upply
L12	51	H8	33	25	E2	PB12	I/O	FT	_	TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT	-
K12	52	G8	34	26	G1	PB13	I/O	FTf	-	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3	-
K11	53	F8	35	27	F1	PB14	I/O	FTf	-	SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	-
K10	54	F7	36	28	E1	PB15	I/O	FT	-	SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM15_CH1N, TIM15_CH2	WKUP7, RTC_REFIN
K9	55	-	-	-	-	PD8	I/O	FT	-	USART3_TX	-
K8	56	-	-	-	-	PD9	I/O	FT	-	USART3_RX	-
J12	57	-	-	-	-	PD10	I/O	FT	-	USART3_CK	-
J11	58	-	-	-	-	PD11	I/O	FT	-	USART3_CTS	-
J10	59	-	-	-	-	PD12	I/O	FT	-	USART3_RTS, TSC_G8_IO1	-
H12	60	-	-	-	-	PD13	I/O	FT	-	TSC_G8_IO2	-
H11	61	-	-	-	-	PD14	I/O	FT	-	TSC_G8_IO3	-
H10	62	-	-	-	-	PD15	I/O	FT	-	TSC_G8_IO4, CRS_SYNC	-
E12	63	F6	37	-	-	PC6	I/O	FT	(3)	TIM3_CH1	-
E11	64	E7	38	-	-	PC7	I/O	FT	(3)	TIM3_CH2	-
E10	65	E8	39	-	-	PC8	I/O	FT	(3)	TIM3_CH3	-
D12	66	D8	40	-	-	PC9	I/O	FT	(3)	TIM3_CH4	-

Table 13. STM32F072x8/xB pin definitions (continued)

Table 15. Alternate functions selected through GPIOB_AFR registers for port B										
Pin name	AF0	AF1	AF2	AF3	AF4	AF5				
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2	USART3_CK	-				
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3	USART3_RTS	-				
PB2	-	-	-	TSC_G3_IO4	-	-				
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1	-	-				
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2	-	TIM17_BKIN				
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-				
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3	-	-				
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4	USART4_CTS	-				
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC	CAN_RX	-				
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	CAN_TX	SPI2_NSS, I2S2_WS				
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC	USART3_TX	SPI2_SCK, I2S2_CK				
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1	USART3_RX	-				
PB12	SPI2_NSS, I2S2_WS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2	USART3_CK	TIM15_BKIN				
PB13	SPI2_SCK, I2S2_CK	-	TIM1_CH1N	TSC_G6_IO3	USART3_CTS	I2C2_SCL				
PB14	SPI2_MISO, I2S2_MCK	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4	USART3_RTS	I2C2_SDA				
PB15	SPI2_MOSI, I2S2_SD	TIM15_CH2	TIM1_CH3N	TIM15_CH1N	-	-				

_ - -- -- -- ----. _

42/128

5

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit			
f _{HCLK}	Internal AHB clock frequency	-	0	48	Mu-			
f _{PCLK}	Internal APB clock frequency	-	0	48	IVITIZ			
V _{DD}	Standard operating voltage	-	2.0	3.6	V			
V _{DDIO2}	I/O supply voltage	Must not be supplied if V_{DD} is not present	1.65	3.6	V			
V _{DDA}	Analog operating voltage (ADC and DAC not used)	Must have a potential equal	V_{DD}	3.6	V			
	Analog operating voltage (ADC and DAC used)	to or higher than V _{DD}	2.4	3.6	v			
V _{BAT}	Backup operating voltage	-	1.65	3.6	V			
		TC and RST I/O	-0.3	V _{DDIOx} +0.3				
V		TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾	3 ⁽¹⁾ V			
VIN		FT and FTf I/O	-0.3	5.5 ⁽¹⁾				
		BOOT0	0	5.5				
		-	364					
		LQFP100	-	476	mW			
	Power dissipation at $T_{1} = 85 ^{\circ}C_{1}$	UFBGA64	-	308				
PD	for suffix 6 or $T_A = 105 \degree C$ for	LQFP64	-	455				
	suffix 7 ⁽²⁾	LQFP48	-	370				
		UFQFPN48	-	625				
		WLCSP49	-	408				
	Ambient temperature for the	Maximum power dissipation	-40	85	°C			
т	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	C			
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C			
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125				
T.		Suffix 6 version	-40	105	°C			
IJ		Suffix 7 version	-40	125	J [°] C			

Table 24. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.8: Thermal characteristics.

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.8: Thermal characteristics).

			Typ @ V _{BAT}						Max ⁽¹⁾			
Symbol	Parameter	Conditions	1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	Т _А = 25 °С	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_VBAT}	RTC domain supply current	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.6	0.7	0.8	1.1	1.2	1.3	1.7	2.3	
		LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.9	1.1	1.2	1.4	1.6	1.7	2.1	2.8	μΑ

Table 32. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		low drive capability	-	0.5	0.9		
I _{DD}	ISE current consumption	medium-low drive capability	-	-	1		
	LSE current consumption	medium-high drive capability	-	-	1.3	μΑ	
		high drive capability	-	-	1.6		
		low drive capability	5	-	-		
~	Oscillator	medium-low drive capability	8	-	-		
9 _m	transconductance	medium-high drive capability	15	-	-	μΑ/ν	
		high drive capability	25	-	-		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S	

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

High-speed internal (HSI) RC oscillator

Parameter	Conditions	Min	Тур	Мах	Unit				
Frequency	-	-	8	-	MHz				
HSI user trimming step	-	-	-	1 ⁽²⁾	%				
Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%				
	T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾					
	T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾					
Accuracy of the HSI	T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	0/				
oscillator	$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾	70				
	$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾					
	$T_{A} = 25^{\circ}C^{(4)}$	-1	-	1					
HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs				
HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA				
	Parameter Frequency HSI user trimming step Duty cycle Accuracy of the HSI oscillator HSI oscillator startup time HSI oscillator power consumption	ParameterConditionsFrequency-HSI user trimming step-Duty cycle-Accuracy of the HSI oscillator $T_A = -40 \text{ to } 105^{\circ}C$ $T_A = -10 \text{ to } 85^{\circ}C$ $T_A = 0 \text{ to } 70^{\circ}C$ $T_A = 0 \text{ to } 55^{\circ}C$ $T_A = 0 \text{ to } 55^{\circ}C$ $T_A = 25^{\circ}C^{(4)}$ HSI oscillator power consumption-	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min \\ \hline Frequency & - & - \\ \hline HSI user trimming step & - & - \\ \hline Duty cycle & - & 45^{(2)} \\ \hline T_A = -40 \ to \ 105^\circ C & -2.8^{(3)} \\ \hline T_A = -10 \ to \ 85^\circ C & -1.9^{(3)} \\ \hline T_A = 0 \ to \ 85^\circ C & -1.9^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} \\ \hline T_A = 25^\circ C^{(4)} & -1 \\ \hline HSI \ oscillator \ power \\ consumption & - & 1^{(2)} \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min & Typ \\ \hline Frequency & - & - & 8 \\ \hline HSI user trimming step & - & - & - \\ \hline Duty cycle & - & 45^{(2)} & - \\ \hline Duty cycle & - & 45^{(2)} & - \\ \hline T_A = -40 \ to \ 105^\circ C & -2.8^{(3)} & - \\ \hline T_A = -10 \ to \ 85^\circ C & -1.9^{(3)} & - \\ \hline T_A = 0 \ to \ 85^\circ C & -1.9^{(3)} & - \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} & - \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} & - \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} & - \\ \hline T_A = 0 \ to \ 55^\circ C & -1 & -1 \\ \hline HSI \ oscillator \ startup \ time & - & 1^{(2)} & - \\ \hline HSI \ oscillator \ power \ consumption & - & - & 80 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Parameter & Conditions & Min & Typ & Max \\ \hline Frequency & - & - & 8 & - \\ \hline HSI user trimming step & - & - & 1(^2) \\ \hline Duty cycle & - & 45^{(2)} & - & 55^{(2)} \\ \hline T_A = -40 \ to \ 105^\circ C & -2.8^{(3)} & - & 3.8^{(3)} \\ \hline T_A = -10 \ to \ 85^\circ C & -1.9^{(3)} & - & 2.3^{(3)} \\ \hline T_A = 0 \ to \ 85^\circ C & -1.9^{(3)} & - & 2^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1.3^{(3)} & - & 2^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} & - & 2^{(3)} \\ \hline T_A = 0 \ to \ 55^\circ C & -1^{(3)} & - & 1 \\ \hline HSI \ oscillator \ startup \ time & - & 1^{(2)} & - & 1 \\ \hline HSI \ oscillator \ power \ consumption & - & 80 & 100^{(2)} \\ \hline \end{tabular}$				

Table 41. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz		
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	125	ne		
vO	t _{r(IO)out}	Output rise time		-	125	115		
×0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz		
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	125	00		
	t _{r(IO)out}	Output rise time		-	125	115		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz		
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	25	ns		
01	t _{r(IO)out}	Output rise time		-	25			
01	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz		
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	62.5	20		
	t _{r(IO)out}	Output rise time		-	62.5			
				C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50		
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	V _{DDIOx} ≥ 2.7 V - 30 MH				
	'max(IO)out		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	20			
			C _L = 50 pF, V _{DDIOx} < 2 V	-	10			
			C _L = 30 pF, V _{DDIOx} ≥ 2.7 V	-	5			
11	+	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	1		
11	۲f(IO)out		C_L = 50 pF, 2 V \leq V _{DDIOx} $<$ 2.7 V	-	12			
			C _L = 50 pF, V _{DDIOx} < 2 V	-	25			
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	115		
	+	Output riss time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	-		
	۲(IO)out		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12			
				C _L = 50 pF, V _{DDIOx} < 2 V	-	25		

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV		
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ		
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns		
V _{NF(NRST)}	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ne		
		2.0 < V _{DD} < 3.6	500 ⁽³⁾	-	-			

Table 56. NRST pin characteristics (continued)

1. Data based on design simulation only. Not tested in production.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz

Symbol	Parameter	Conditions	Min Typ Max		Unit	
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution			823	kHz
		12-bit resolution	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 58</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	1		1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	8		8	pF
+ (2)(3)	Calibration time	f _{ADC} = 14 MHz		5.9		
'CAL'		-		83		1/f _{ADC}
		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽²⁾⁽⁴⁾	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	- 8.5		-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	0.196			μs
		$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}
t _{latr} ⁽²⁾	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219			μs
		$f_{ADC} = f_{PCLK}/4$	10.5		1/f _{PCLK}	
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	- 1		-	1/f _{HSI14}
t _S ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
		-	1.5 - 239.5		239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time	-	14			1/f _{ADC}
t _{CONV} ⁽²⁾	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1 - 18		μs	
	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

 Table 57. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

1. Guaranteed by design, not tested in production.

2. The DAC is in "quiescent mode" when it keeps the value steady on the output so no dynamic consumption is involved.

3. Data based on characterization results, not tested in production.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Cumhal		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 73. LQPF100 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.3 UFBGA64 package information

UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
Cymbol	Min	Тур	Max	Min	Тур	Max	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.170	0.280	0.330	0.0067	0.0110	0.0130	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398	
е	-	0.500	-	-	0.0197	-	
F	0.700	0.750	0.800	0.0276	0.0295	0.0315	

Table 74. UFBGA64 package mechanical data

DocID025004 Rev 5

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- $T_{Jmax} = 100 \text{ °C} + (45 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 6.03 \text{ °C} = 106.03 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 55* to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements.

Figure 55. LQFP64 P_D max versus T_A

