

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072rbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F072x8/xB microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

Table 4. Internal voltage reference calibration values

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion

Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pins
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to *Table 28: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

Pinouts and pin descriptions

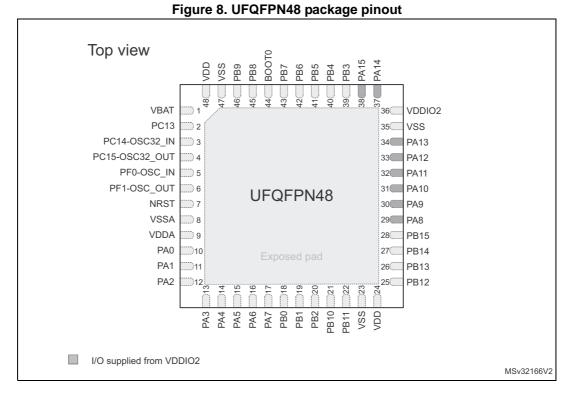
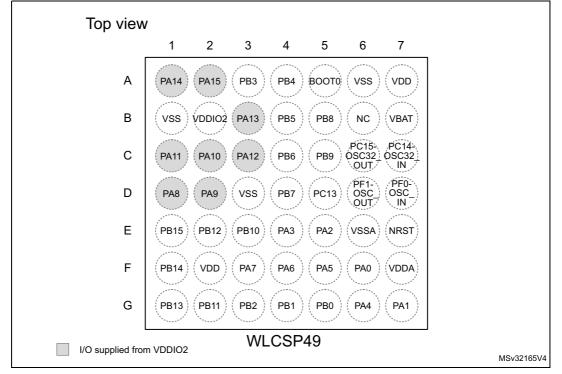



Figure 9. WLCSP49 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

DocID025004 Rev 5

	Р	in nu	mber	s						Pin functio	ns	
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
B4	93	C3	59	43	D4	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4	-	
A4	94	B4	60	44	A5	BOOT0	I	В	-	Boot memory selection		
A3	95	В3	61	45	B5	PB8	I/O	FTf	-	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	-	
В3	96	A3	62	46	C5	PB9	I/O	FTf	-	SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT, CAN_TX	-	
C3	97	-	-	-	-	PE0	I/O	FT	-	EVENTOUT, TIM16_CH1	-	
A2	98	-	-	-	-	PE1	I/O	FT	-	EVENTOUT, TIM17_CH1	-	
D3	99	D4	63	47	A6	VSS	S	-	-	Ground		
C4	100	E4	64	48	A7	VDD	S	-	-	Digital power s	upply	

Table 13. STM32F072x8/xB pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These GPIOs must not be used as current sources (e.g. to drive an LED).

2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.

3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2.

4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

Pin name	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2	USART3_CK	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3	USART3_RTS	-
PB2	-	-	-	TSC_G3_IO4	-	-
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1	-	-
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2	-	TIM17_BKIN
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3	-	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4	USART4_CTS	-
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC	CAN_RX	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	CAN_TX	SPI2_NSS, I2S2_W
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC	USART3_TX	SPI2_SCK, I2S2_CF
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1	USART3_RX	-
PB12	SPI2_NSS, I2S2_WS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2	USART3_CK	TIM15_BKIN
PB13	SPI2_SCK, I2S2_CK	-	TIM1_CH1N	TSC_G6_IO3	USART3_CTS	I2C2_SCL
PB14	SPI2_MISO, I2S2_MCK	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4	USART3_RTS	I2C2_SDA
PB15	SPI2_MOSI, I2S2_SD	TIM15_CH2	TIM1_CH3N	TIM15_CH1N	-	-

_ - -- -- -- ----. _

42/128

5

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 21: Voltage characteristics*, *Table 22: Current characteristics* and *Table 23: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage	- 0.3	4.0	V
V _{DDIO2} -V _{SS}	External I/O supply voltage	- 0.3	4.0	V
V _{DDA} -V _{SS}	External analog supply voltage	- 0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} - 0.3	$V_{DDIOx} + 4.0^{(3)}$	V
V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
VIN	BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} - 0.3	$ \begin{array}{r} 4.0 \\ 4.0 \\ 4.0 \\ 0.4 \\ 4.0 \\ V_{DDIOx} + 4.0^{(3)} \\ 4.0 \\ 9.0 \\ 4.0 \\ 50 \\ 50 \\ 50 \\ 12: Electrical $	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara		-

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 22: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	48	N 41 1-		
f _{PCLK}		-	0	48	MHz		
V _{DD}	Standard operating voltage	-	2.0	3.6	V		
V _{DDIO2}	I/O supply voltage	Must not be supplied if V_{DD} is not present	1.65	3.6	V		
		Must have a potential equal	V _{DD}	3.6			
V _{DDA}		to or higher than V _{DD}	- 0 48 - 0 48 - 2.0 3.6 t be supplied if V_{DD} esent 1.65 3.6 ve a potential equal her than V_{DD} V_{DD} 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 - 1.65 3.6 RST I/O -0.3 $V_{DDIOx}+0.3$ - 0 5.5 100 - 364 0 5.5 100 - 308 - - 476 54 - 370 V48 - 625 49 -40 85 ver dissipation (³) -40 105 m power diss	3.6	V		
V _{BAT}	Backup operating voltage	-	1.65	3.6	V		
		TC and RST I/O	-0.3	V _{DDIOx} +0.3	V		
V	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾			
V _{IN}		FT and FTf I/O	-0.3	5.5 ⁽¹⁾	V		
		BOOT0	0	5.5			
		UFBGA100	-	364	-		
		LQFP100	-	476			
	Power dissipation at T ₄ = 85 °C	$\begin{array}{c ccccc} 2.4 & 3.6 \\ \hline 3.6 & 1.65 & 3.6 \\ \hline 1.65 & -0.3 & V_{DDIOX} + 0.3 \\ \hline 1.65 & 3.6 \\ \hline 1.65 & -0.3 & V_{DDA} + 0.3^{(1)} \\ \hline FT and FTf I/O & -0.3 & 5.5^{(1)} \\ \hline BOOT0 & 0 & 5.5 \\ \hline BOOT0 & 0 & 5.5 \\ \hline 0.65 & 0 & -364 \\ \hline 1.05 & 0 & -364 \\ \hline$					
P_D	for suffix 6 or T_{Δ} = 105 °C for	LQFP64	- 0 48 - 0 48 - 2.0 3.6 De supplied if V_{DD} 1.65 3.6 De supplied if V_{DD} 1.65 3.6 De supplied if V_{DD} 1.65 3.6 De supplied if V_{DD} 2.4 3.6 De supplied if V_{DD} 2.4 3.6 Paper than V_{DD} -0.3 $V_{DDIOX} + 0.3$ 2.4 3.6 - ST I/O -0.3 $V_{DDIOX} + 0.3$ - -0.3 $V_{DDA} + 0.3^{(1)}$ Tf I/O -0.3 $5.5^{(1)}$ 0 5.5 0 - 364 - - 476 - 4 - 308 - 455 - - 370 - 48 - 625 - -408 - power dissipation (3) -40 105 power dissipation (3) -40 125	mW			
	suffix 7 ⁽²⁾	y - 0 48 - 2.0 3.6 1 Must not be supplied if V_{DD} is not present 1.65 3.6 1 Must have a potential equal to or higher than V_{DD} 1.65 3.6 1 TC and RST I/O -0.3 $V_{DDOx}^+0.3$ 1 TTa I/O -0.3 $V_{DDA}^+0.3^{(1)}$ 1 FT and FTf I/O -0.3 $V_{DDA}^+0.3^{(1)}$ 1 BOOT0 0 5.5 1 BOOT0 0 5.5 1 UFBGA100 - 364 1 LQFP100 - 455 1 LQFP48 - 370 1 UFQFPN48 - 625 1 WLCSP49 -40 85 1 Low power dissipation ⁽³⁾ -40 105 1 Low power dissipation ⁽³⁾ -40 105 1					
		UFQFPN48	-	625			
		WLCSP49	-	408			
	Ambient temperature for the	Maximum power dissipation	-40	85	°C		
Та	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	U		
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C		
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125			
ТJ	lunction temperature range	Suffix 6 version	-40	105	°C		
IJ	Junction temperature range	is not present I.65 3.6 Must have a potential equal to or higher than V_{DD} V_{DD} 3.6 Image: Image	125	U			

Table 24. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.8: Thermal characteristics.

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.8: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 25* are derived from tests performed under the ambient temperature condition summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate		0	8	
	V _{DD} fall time rate	-	20	∞	μs/V
+	V _{DDA} rise time rate		0	∞	μ5/ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR} ⁽¹⁾		Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
* POR/PDR	reset threshold	Rising edge	1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

 Table 26. Embedded reset and power control block characteristics

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{\text{DD}}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{PVD0}	PVD threshold 0	Rising edge	2.1	2.18	2.26	V
♥ PVD0		Falling edge	2	2.08	18 2.26 08 2.16 28 2.37 18 2.27 38 2.48 28 2.38 48 2.58	V
V	PVD threshold 1	Rising edge	2.19	2.28	2.37	V
V _{PVD1}		Falling edge	2.09	2.18	3 2.26 3 2.16 3 2.37 3 2.27 3 2.48 3 2.38 3 2.58	V
V	PVD threshold 2	Rising edge	2.28		V	
V _{PVD2}		Falling edge	2.18	2.28	2.38	V
V	PVD threshold 3	Rising edge	2.38	2.48	2.58	V
V _{PVD3}		Falling edge	2.28	2.38	2.48	V

Symbol	Parameter	6		sumption in node		sumption in mode	Unit
Symbol	i arameter	^f нсLк	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Onit
		48 MHz	24.1	13.5	14.6	3.5	
		36 MHz	18.3	10.5	11.1	2.9	
		32 MHz	16.5	9.6	10.0	2.7	
	Current	24 MHz	12.9	7.6	7.8	2.2	
	consumption	16 MHz	8.9	5.3	5.5	1.7	mA
I _{DD}	from V _{DD} supply	8 MHz	4.8	3.1	3.1	1.2	mA
	Suppry	4 MHz	3.1	2.1	2.2	1.1	
		2 MHz	2.1	1.6	1.6	1.0	
		1 MHz	1.6	1.3	1.4	1.0	
		500 kHz	1.3	1.2	1.2	1.0	
		48 MHz		16	3.3		
		36 MHz		12	4.3		
		32 MHz		11	1.9		
	Current	24 MHz		87	7.1		
I	consumption	16 MHz		62	2.5		μA
I _{DDA}	from V _{DDA} supply	8 MHz		2	.5		μΛ
	Suppry	4 MHz		2	.5		-
		2 MHz		2	.5		
		1 MHz		2	.5		
		500 kHz		2	.5		

Table 33. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 45* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter		Value			
	Falameter	Min	Тур	Max	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz	
	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%	
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz	
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs	
Jitter _{PLL}	Cycle-to-cycle jitter	-	_	300 ⁽²⁾	ps	

Table 45. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (2 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
I _{DD} Supply current	Write mode	-	-	10	mA	
	Supply current	Erase mode	-	-	12	mA

1. Guaranteed by design, not tested in production.

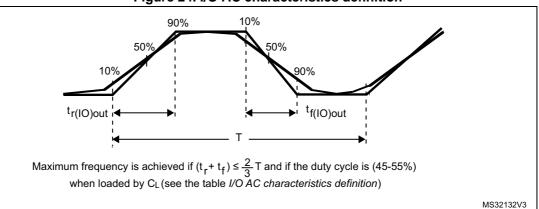

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V		12	ns
Fm+ configuration	t _{r(IO)out}	Output rise time			34	
(4)	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	0.5	MHz
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	16	00
	t _{r(IO)out}	Output rise time			44	ns
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

 The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

- 3. The maximum frequency is defined in *Figure 24*.
- 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Figure 24. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter Conditions Min 1		Тур	Мах	Unit	
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v

Table 56. NRST pin characteristics

6.3.18 Comparator characteristics

Symbol	Parameter	Conditi	ons	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
V_{DDA}	Analog supply voltage	-		V_{DD}	-	3.6	V	
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	-		
V _{SC}	V _{REFINT} scaler offset voltage	-		-	±5	±10	mV	
t _{s_sc}	V _{REFINT} scaler startup time from power down	First V _{REFINT} scaler acti power on	vation after device	-	-	1000 (2)	ms	
		Next activations		-	-	0.2		
t _{START}	Comparator startup time	Startup time to reach pro specification	-	-	60	μs		
		Ultra-low power mode			2	4.5	μs	
	Propagation delay for	Low power mode			0.7	1.5		
	200 mV step with	Medium power mode	-	0.3	0.6			
	100 mV overdrive	Lligh apood mode	V _{DDA} ≥ 2.7 V	-	50	100		
+		High speed mode	V _{DDA} < 2.7 V	-	100	240	– ns	
t _D		Ultra-low power mode	-	2	7	μs		
	Propagation delay for	Low power mode	-	0.7	2.1			
	full range step with	Medium power mode	-	0.3	1.2			
	100 mV overdrive	High speed mode	V _{DDA} ≥ 2.7 V	-	90	180		
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	ns	
V _{offset}	Comparator offset error	-		-	±4	±10	mV	
dV _{offset} /dT	Offset error temperature coefficient	-	-	18	-	µV/°C		
		Ultra-low power mode		-	1.2	1.5		
	COMP current	Low power mode	-	3	5			
I _{DD(COMP)}	consumption	Medium power mode		-	10	15	μA	
		High speed mode		-	75	100		

Table 61. Comparator characteristics

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 UFBGA100 package information

UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package.

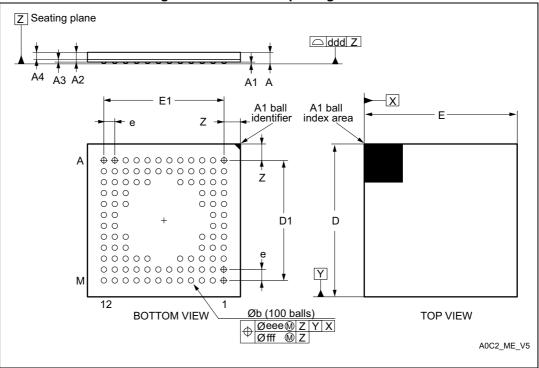
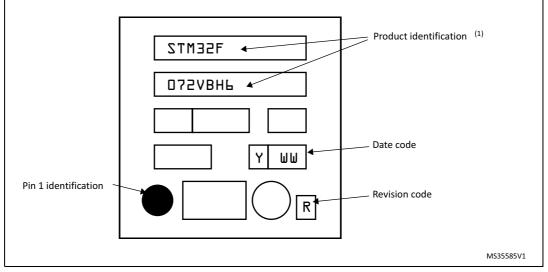
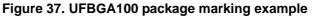


Figure 35. UFBGA100 package outline

1. Drawing is not to scale.

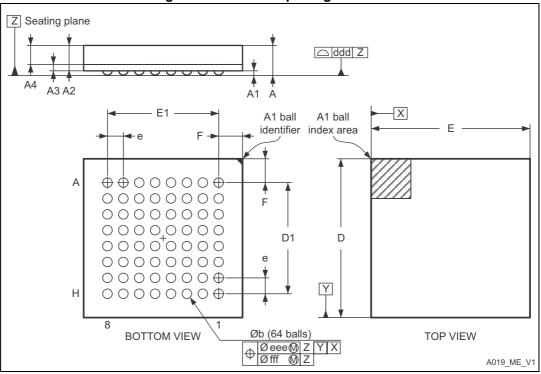

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	0.600	-	-	0.0236	
A1	-	-	0.110	-	-	0.0043	
A2	-	0.450	-	-	0.0177	-	
A3	-	0.130	-	-	0.0051	0.0094	
A4	-	0.320	-	-	0.0126	-	

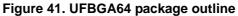


Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.




 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

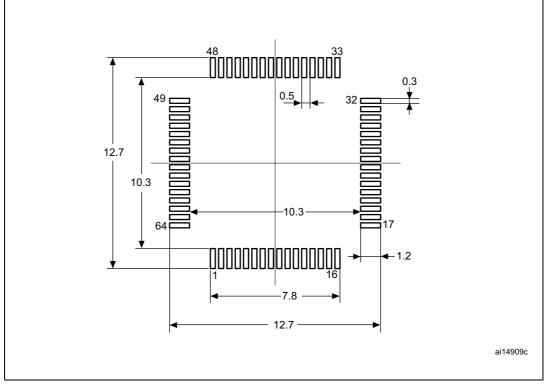
7.3 UFBGA64 package information

UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.170	0.280	0.330	0.0067	0.0110	0.0130
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398
е	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315

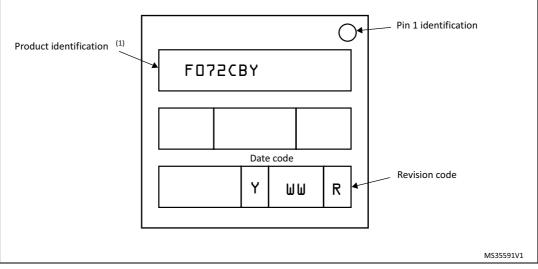
Table 74. UFBGA64 package mechanical data


DocID025004 Rev 5

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 76. LQFP64 package mechanical data (continued)

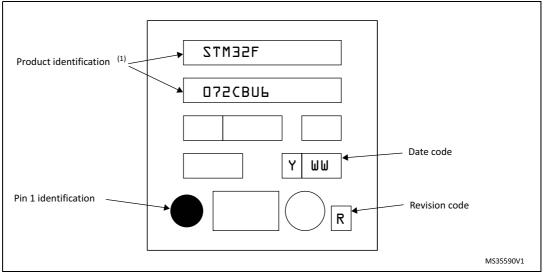
1. Values in inches are converted from mm and rounded to 4 decimal digits.


1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 54. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F072x8/xB at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax}= 175 + 272 = 447 mW

Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum temperature $T_{Amax} = 100$ °C (measured according to JESD51-2), $I_{DDmax} = 20$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V $P_{INTmax} = 20$ mA × 3.5 V= 70 mW $P_{IOmax} = 20 \times 8$ mA × 0.4 V = 64 mW This gives: $P_{INTmax} = 70$ mW and $P_{IOmax} = 64$ mW: $P_{Dmax} = 70 + 64 = 134$ mW

Thus: P_{Dmax} = 134 mW

DocID025004 Rev 5

Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- $T_{Jmax} = 100 \text{ °C} + (45 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 6.03 \text{ °C} = 106.03 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 55* to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements.

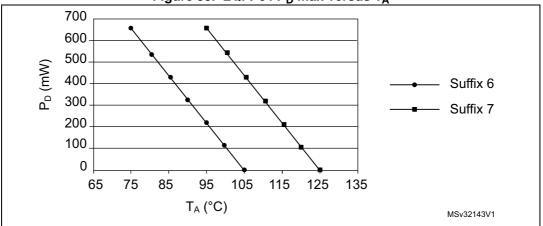


Figure 55. LQFP64 P_D max versus T_A

