

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072v8h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP48 package outline	115
Figure 50.	Recommended footprint for LQFP48 package	116
Figure 51.	LQFP48 package marking example	117
Figure 52.	UFQFPN48 package outline	118
Figure 53.	Recommended footprint for UFQFPN48 package	119
Figure 54.	UFQFPN48 package marking example	120
Figure 55.	LQFP64 P _D max versus T _A	123

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F072x8/xB microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address		
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9		
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3		

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F072x8/xB devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0	$ \begin{array}{ c c c c c c c } \hline Group & \hline Capacitive sensing \\ signal name & n \\ \hline signal name & n \\ \hline rsc_G5_101 & \hline TSC_G5_102 & \hline \\ TSC_G5_103 & \hline \\ TSC_G5_104 & \hline \\ TSC_G5_104 & \hline \\ TSC_G6_101 & F \\ \hline \\$	PB3	
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	Pin name Group Capacitive sensing signal name Pin name PA0	PB11		
2	TSC_G2_IO2	PA5	$ \begin{array}{ c c c c c c } \hline Group & Gignal name & name \\ \hline signal name & name \\ \hline signal name & name \\ \hline \\ \hline \\ \hline \\ 5 & TSC_G5_IO1 & PB3 \\ \hline \\ \hline \\ 5 & TSC_G5_IO2 & PB4 \\ \hline \\ \hline \\ TSC_G5_IO3 & PB6 \\ \hline \\ $	PB12	
2	TSC_G2_IO3	PA6	0	Capacitive sensing signal name P TSC_G5_IO1 PI TSC_G5_IO2 PI TSC_G5_IO3 PI TSC_G5_IO3 PI TSC_G5_IO4 PI TSC_G6_IO1 PE TSC_G6_IO2 PE TSC_G6_IO3 PE TSC_G6_IO3 PE TSC_G6_IO4 PE TSC_G6_IO3 PE TSC_G6_IO4 PE TSC_G7_IO1 P TSC_G7_IO2 P TSC_G7_IO3 P TSC_G8_IO1 PE TSC_G8_IO2 PE TSC_G8_IO3 PE TSC_G8_IO4 PE	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	IO2 PA5 ISC_G6_IO2 IO3 PA6 TSC_G6_IO3 IO4 PA7 TSC_G6_IO4 IO1 PC5 TSC_G7_IO1 IO2 PB0 7 TSC_G7_IO2	PE2		
3	TSC_G3_IO2	PB0	7	Capacitive sensing signal name TSC_G5_IO1 TSC_G5_IO2 TSC_G5_IO3 TSC_G5_IO4 TSC_G6_IO1 TSC_G6_IO2 TSC_G6_IO3 TSC_G6_IO3 TSC_G6_IO3 TSC_G6_IO3 TSC_G6_IO3 TSC_G6_IO3 TSC_G6_IO3 TSC_G7_IO1 TSC_G7_IO2 TSC_G7_IO4 TSC_G8_IO1 TSC_G8_IO3 TSC_G8_IO3 TSC_G8_IO4	PE3
5	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	_G2_IO1 PA4 _G2_IO2 PA5 _G2_IO3 PA6 _G2_IO4 PA7 _G3_IO1 PC5 _G3_IO2 PB0 _G3_IO3 PB1 _G3_IO4 PB2 _G4_IO1 PA9	PD12		
1	TSC_G4_IO2	PA10	8	Group Capacitive sensing signal name name 5 TSC_G5_IO1 F 5 TSC_G5_IO2 F 5 TSC_G5_IO3 F 7 TSC_G6_IO1 P 7 TSC_G6_IO2 F 7 TSC_G6_IO3 P 7 TSC_G6_IO3 F 7 TSC_G6_IO3 P 7 TSC_G6_IO3 F 7 TSC_G6_IO3 P 7 TSC_G6_IO3 F 7 TSC_G6_IO3 F 7 TSC_G6_IO3 F 7 TSC_G7_IO2 F 7 TSC_G7_IO3 F 7 TSC_G8_IO1 P 7 TSC_G8_IO3 F	PD13
-	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA12		TSC_G8_IO4	PD15

Table 5. Capacitive sensing GPIOs available on STM32F072x8/xB devices

DocID025004 Rev 5

	Number of capacitive sensing channels						
	STM32F072Vx	Number of capacitive sensing channels F072Vx STM32F072Rx STM32F072Cx 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 24 18 17	STM32F072Cx				
G1	3	3	3				
G2	3	3	3				
G3	3	3	2				
G4	3	3	3				
G5	3	3	3				
G6	3	3	3				
G7	3	0	0				
G8	3	0	0				
Number of capacitive sensing channels	24	18	17				

Table 6. Number of capacitive sensing channels available on STM32F072x8/xB devices

3.14 Timers and watchdogs

The STM32F072x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.20 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.21 Universal serial bus (USB)

The STM32F072x8/xB embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB (the last 256 byte are used for CAN peripheral if enabled) and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

3.22 Clock recovery system (CRS)

The STM32F072x8/xB embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.23 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

	P	'in nu	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
M2	24	H2	15	11	G7	PA1	I/O	ТТа	-	USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	
КЗ	25	F3	16	12	E5	PA2	I/O	ТТа	-	USART2_TX, COMP2_OUT, TIM2_CH3, TIM15_CH1, TSC_G1_IO3	ADC_IN2, COMP2_INM6, WKUP4	
L3	26	G3	17	13	E4	PA3	I/O	ТТа	-	USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	
D3	27	C2	18	-	-	VSS	S	-	-	Ground		
H3	28	D2	19	-	-	VDD	S	-	-	Digital power supply		
М3	29	H3	20	14	G6	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	
K4	30	F4	21	15	F5	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	
L4	31	G4	22	16	F4	PA6	I/O	TTa	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6	
M4	32	H4	23	17	F3	PA7	I/O	TTa	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7	

Table 13. STM32F072x8/xB pin definitions (continued)

5 Memory mapping

To the difference of STM32F072xB memory map in *Figure 10*, the two bottom code memory spaces of STM32F072x8 end at 0x0000 FFFF and 0x0800 FFFF, respectively.

Figure 10. STM32F072xB memory map

DocID025004 Rev 5

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 29* to *Table 31* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

e e		a.		ъ		ъ		All	All peripherals enabled ⁽¹⁾				All peripherals disabled			
lodm'	amete	Conditions	f _{HCLK}		N	lax @ T ₄	(2)		м	ax @ T _A	(2)	Unit				
Sy	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C					
		HSI48	48 MHz	24.3	26.9	27.2	27.9	13.1	14.8	14.9	15.5					
	ory		48 MHz	24.1	26.8	27.0	27.7	13.0	14.6	14.8	15.4					
	ode, nem	HSE bypass, PLL on	32 MHz	16.0	18.3	18.6	19.2	8.76	9.56	9.73	10.6					
	in m ash r		24 MHz	12.3	13.7	14.3	14.7	7.36	7.94	8.37	8.81					
	n Ru n Fla	HSE bypass, PLL off	8 MHz	4.52	5.25	5.28	5.61	2.89	3.17	3.26	3.34					
I _{DD}	ent i fror		1 MHz	1.25	1.39	1.58	1.87	0.93	1.06	1.15	1.34	mA				
	curr		48 MHz	24.1	27.1	27.6	27.8	12.9	14.7	14.9	15.5					
Supply de exect	HSI clock, PLL on	32 MHz	16.1	18.2	18.9	19.3	8.82	9.69	9.83	10.7						
	-	24 MHz	12.4	14.0	14.4	14.8	7.31	7.92	8.34	8.75						
	8	HSI clock, PLL off	8 MHz	4.52	5.25	5.35	5.61	2.87	3.16	3.25	3.33					

Table 29. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit			
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle			
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30				
t _{RET}		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year			
		10 kcycle ⁽²⁾ at T _A = 55 °C	20				

Table 47. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Table 48. E	MS charac	teristics
-------------	-----------	-----------

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _{lkg}	Input leakage current ⁽²⁾	TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DDIOx}	-	-	± 0.1	
		TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA
		TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2	
		FT and FTf I/O V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 53. I/O static characteristics (continued)
--	------------

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 52: I/O current injection susceptibility.*

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* for standard I/Os, and in *Figure 23* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

1. Guaranteed by design, not tested in production.

2. The DAC is in "quiescent mode" when it keeps the value steady on the output so no dynamic consumption is involved.

3. Data based on characterization results, not tested in production.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

USB characteristics

The STM32F072x8/xB USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Symbol	Parameter	Conditions	Min.	Тур	Max.	Unit
V _{DDIO2}	USB transceiver operating voltage	-	3.0 ⁽¹⁾	-	3.6	V
t _{STARTUP} ⁽²⁾	USB transceiver startup time	-	-	-	1.0	μs
R _{PUI}	Embedded USB_DP pull-up value during idle	-	1.1	1.26	1.5	Ŷ
R _{PUR}	Embedded USB_DP pull-up value during reception	-	2.0	2.26	2.6	K32
Z _{DRV} ⁽²⁾	Output driver impedance ⁽³⁾	Driving high and low	28	40	44	Ω

|--|

1. The STM32F072x8/xB USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

2. Guaranteed by design, not tested in production.

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 UFBGA100 package information

UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package.

Figure 35. UFBGA100 package outline

1. Drawing is not to scale.

Table 71. UFBGA100	package mechanical data
--------------------	-------------------------

Symbol		millimeters		inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	0.600	-	-	0.0236	
A1	-	-	0.110	-	-	0.0043	
A2	-	0.450	-	-	0.0177	-	
A3	-	0.130	-	-	0.0051	0.0094	
A4	-	0.320	-	-	0.0126	-	

Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 73. LQPF100 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.6 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 78. LQFP48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

DocID025004 Rev 5

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

