E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f072v8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP48 package outline	115
Figure 50.	Recommended footprint for LQFP48 package	116
Figure 51.	LQFP48 package marking example	117
Figure 52.	UFQFPN48 package outline	118
Figure 53.	Recommended footprint for UFQFPN48 package	119
Figure 54.	UFQFPN48 package marking example	120
Figure 55.	LQFP64 P _D max versus T _A	123

Figure 1. Block diagram

back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Figure 2. Clock tree

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	X	-
Receiver timeout interrupt	X	-
Modbus communication	Х	-
Auto baud rate detection	Х	-
Driver Enable	X	Х

Table 10. STM32F072x8/xB USART ir	mplementation (continued)

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.

Table 11. STM32F0	72x8/xB SPI/I ² S	implementation
-------------------	------------------------------	----------------

SPI features ⁽¹⁾	SPI1 and SPI2
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

1. X = supported.

3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory

overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.20 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.21 Universal serial bus (USB)

The STM32F072x8/xB embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB (the last 256 byte are used for CAN peripheral if enabled) and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

3.22 Clock recovery system (CRS)

The STM32F072x8/xB embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.23 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

Figure 4. LQFP100 package pinout

	P	'in nu	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	Pin Pin type V		Alternate functions	Additional functions	
C10	79	B6	52	-	-	PC11	I/O	FT	(3)	USART3_RX, USART4_RX	-	
B10	80	C5	53	-	-	PC12	I/O	FT	(3)	USART3_CK, USART4_CK	-	
C9	81	-	-	-	-	PD0	I/O	FT	(3)	SPI2_NSS, I2S2_WS, CAN_RX	-	
В9	82	-	-	-	-	PD1	I/O	FT	(3)	SPI2_SCK, I2S2_CK, CAN_TX	-	
C8	83	B5	54	-	-	PD2	I/O	FT	(3)	USART3_RTS, TIM3_ETR	-	
B8	84	-	-	-	-	PD3	I/O	FT	T - SPI2_MISO, I2S2_MCK, USART2_CTS		-	
B7	85	-	-	-	-	PD4	I/O FT - SPI2_MOSI, I2S2_SD, USART2_RTS		-			
A6	86	-	-	-	-	PD5	I/O	FT -		USART2_TX	-	
B6	87	-	-	-	-	PD6	I/O	FT	-	USART2_RX	-	
A5	88	-	-	-	-	PD7	I/O	FT	-	USART2_CK	-	
A8	89	A5	55	39	A3	PB3	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT	-	
A7	90	A4	56	40	A4	PB4	I/O	FT - SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT		SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT	-	
C5	91	C4	57	41	B4	PB5	I/O	FT	-	SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	WKUP6	
B5	92	D3	58	42	C4	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03	-	

Table 13. STM32F072x8/xB pin definitions (continued)

Table 14. Alternate functions selected through GPIOA_AFR registers for port A AF1 AF2 AF4 Pin name AF0 AF3 AF5 AF7 AF6 USART2 CTS TIM2 CH1 ETR TSC G1 IO1 USART4 TX PA0 COMP1 OUT _ -EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 USART4 RX TIM15 CH1N PA1 _ TIM15_CH1 PA2 USART2_TX TIM2_CH3 TSC_G1_IO3 COMP2_OUT ---TIM15 CH2 USART2 RX TIM2_CH4 TSC G1 IO4 PA3 ----SPI1_NSS, I2S1_WS USART2_CK TSC_G2_IO1 PA4 _ TIM14_CH1 --_ SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 PA5 _ _ _ USART3 CTS COMP1 OUT PA6 SPI1 MISO, I2S1 MCK TIM3 CH1 TIM1 BKIN TSC G2 103 TIM16 CH1 EVENTOUT SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17 CH1 COMP2_OUT PA7 **EVENTOUT** PA8 MCO USART1 CK TIM1_CH1 **EVENTOUT** CRS_SYNC _ _ TIM15 BKIN USART1 TX TIM1 CH2 TSC G4 IO1 PA9 ----TIM17_BKIN USART1 RX TIM1 CH3 TSC_G4_IO2 PA10 ----EVENTOUT PA11 USART1_CTS TIM1 CH4 TSC_G4_IO3 CAN_RX COMP1 OUT _ -EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 CAN_TX COMP2 OUT PA12 --SWDIO IR_OUT USB NOE PA13 _ _ -_ SWCLK USART2_TX **PA14** -_ -SPI1 NSS, I2S1 WS USART2 RX TIM2 CH1 ETR **EVENTOUT** USART4 RTS PA15 _ --

DocID025004 Rev 5

41/128

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
AIIDZ	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
APB	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0800 - 0x4001 23FF	7 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG + COMP
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Table 20. STM32F072x8/xB peripheral register boundary addresses

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 21: Voltage characteristics*, *Table 22: Current characteristics* and *Table 23: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage	- 0.3	4.0	V
V _{DDIO2} -V _{SS}	External I/O supply voltage	- 0.3	4.0	V
$V_{DDA} - V_{SS}$	External analog supply voltage	- 0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
V(2)	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
VIN	BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} - 0.3	4.0	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara	.12: Electrical acteristics	-

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 22: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

									0011							
Symbol	Para- meter	Para- meter						V _{DDA} = 2.4 V				V _{DDA} = 3.6 V				
			Conditions (1)	f _{HCLK}	Tun	Max @ T _A ⁽²⁾			T	Max @ T _A ⁽²⁾			Unit			
				тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C					
		HSI48	48 MHz	311	326	334	343	322	337	345	354					
		HSE	48 MHz	152	170 ⁽³⁾	178	182 ⁽³⁾	165	184 ⁽³⁾	196	200 ⁽³⁾					
	Supply current in Run or Sleep mode, code executing from Flash memory or RAM	bypass,	32 MHz	105	121	126	128	113	129	136	138					
		PLL on	24 MHz	81.9	95.9	99.5	101	88.7	102	107	108					
		Sleep mode, code executing	Sleep mode.	Sleep mode.	Sleep HSE	8 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5		
I _{DDA}			bypass, PLL off	1 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5	μA			
			48 MHz	223	244	255	260	245	265	279	284					
		Flash memory or RAM	Flash F memorv	Hash HSI clock, memory PI I on	32 MHz	176	195	203	206	193	212	221	224			
				24 MHz	154	171	178	181	168	185	192	195				
		HSI clock, PLL off	8 MHz	74.2	83.4	86.4	87.3	83.4	92.5	95.3	96.6					

Table 30. Typical and maximum current consumption from the $\rm V_{\rm DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Symbol	Parameter	4	Typical consumption in Run mode		Typical con Sleep	Unit	
Symbol	Farameter	HCLK	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	24.1	13.5	14.6	3.5	
		36 MHz	18.3	10.5	11.1	2.9	
		32 MHz	16.5	9.6	10.0	2.7	
	Current	24 MHz	12.9	7.6	7.8	2.2	
	consumption	16 MHz	8.9	5.3	5.5	1.7	m۸
DD	from V _{DD}	8 MHz	4.8	3.1	3.1	1.2	mA
	suppry	4 MHz	3.1	2.1	2.2	1.1	
		2 MHz	2.1	1.6	1.6	1.0	
		1 MHz	1.6	1.3	1.4	1.0	
		500 kHz	1.3	1.2	1.2	1.0	
		48 MHz		163	3.3		
		36 MHz	124.3				
		32 MHz	111.9				
		24 MHz	87.1				
	consumption	16 MHz		62	2.5		
'DDA	from V _{DDA}	8 MHz	2.5				
	Suppry	4 MHz		2.5			
		2 MHz		2.	.5		
		1 MHz		2.	.5		1
		500 kHz		2.	.5		

Table 33. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

STM32F072x8 STM32F072xB

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
		V = 3.3.V	4 MHz	0.07	
			8 MHz	0.15	
		$C = C_{INT}$	16 MHz	0.31	
			24 MHz	0.53	
			48 MHz	0.92	
			4 MHz	0.18	
		V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39	. mA
			48 MHz	2.188	
		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_{S}$ 4 MHz $1/0 \text{ current}$ 4 MHz	4 MHz	0.32	
	I/O current consumption		8 MHz	0.64	
			16 MHz	1.25	
			24 MHz	2.23	
low			48 MHz	4.442	
.200		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_{S}$	4 MHz	0.49	
			8 MHz	0.94	
			16 MHz	2.38	
			24 MHz	3.99	
		V _{DDIOx} = 3.3 V	4 MHz	0.64	
			8 MHz	1.25	
		$C = C_{INT} + C_{EXT} + C_S$	16 MHz	3.24	
			24 MHz	5.02	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_{S}$ $C = C_{int}$	16 MHz	3.67	
		V _{DDIOx} = 2.4 V	4 MHz	0.66	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.43	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45	
		$C = C_{int}$	24 MHz	4.97	

Table 34. Switching output I/O current consumption

1. C_S = 7 pF (estimated value).

Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution	-	-	823	kHz
	12-bit resolution -		-	17	1/f _{ADC}	
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 58</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (2)(3)	Calibration time	f _{ADC} = 14 MHz		5.9		μs
'CAL'		-		83		
W _{LATENCY} ⁽²⁾⁽⁴⁾		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	0.196			μs
		$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}
t _{latr} (2)	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219			μs
		$f_{ADC} = f_{PCLK}/4$	10.5			1/f _{PCLK}
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS, ,		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time	-		14		1/f _{ADC}
+ (2)	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1 - 18		18	μs
t _{CONV} ⁽²⁾	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

 Table 57. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 67. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 68* for SPI or in *Table 69* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 24: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{SCK}	SDI clock froguency	Master mode	-	18		
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	1011 12	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time Capacitive load: C = 15 pF		-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-		
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1		
t _{su(MI)}	Data input satur timo	Master mode	4	-		
t _{su(SI)}	Data input setup time	Slave mode	5	-		
t _{h(MI)}	Data input hold time	Master mode	4	-		
t _{h(SI)}		Slave mode	5	-	ns	
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk		
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18		
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5		
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6		
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-		
t _{h(MO)}		Master mode (after enable edge)	2	-		
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%	

Table 68. SPI characteristics ^{(*}

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 30. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Example:	STM32	F	072	R	8	T	6 >
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Sub-family							
072 = STM32F072xx							
Pin count							
C = 48/49 pins							
R = 64 pins							
V = 100 pins							
8 = 64 Kbyte							
B = 128 Kbyte							
Package							
H = UFBGA							
T = LQFP							
U = UFQFPN							
Y = WLCSP							
Temperature range							
6 = -40 to 85 °C							—
7 = -40 to 105 °C							
Options							
xxx = code ID of programmed parts (includes parts)	acking type)						

xxx = code ID of programmed parts (includes packing type)TR = tape and reel packingblank = tray packing

Date	Revision	Changes
		Section 6: Electrical characteristics:
		- Table 40: LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$) - information on configuring different drive capabilities removed. See the corresponding reference manual.
	7 5	 Table 28: Embedded internal reference voltage - V_{REFINT} values
10-Jan-2017		– Table 60: DAC characteristics - min. R_{LOAD} to V_{DDA} defined
		 Figure 30: SPI timing diagram - slave mode and CPHA = 0 and Figure 31: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected
		Section 8: Ordering information:
		 The name of the section changed from the previous "Part numbering"

Table 82.	Document re	vision his	storv (continued)
	Documentie	131011111	Story	commuca

