

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90usb1286-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Real time counter with separate oscillator
- Four 8-bit PWM channels
- Six PWM channels with programmable resolution from 2 to 16 bits
- Output compare modulator
- 8-channels, 10-bit ADC
- Programmable serial USART
- Master/slave SPI serial interface
- Byte oriented 2-wire serial interface
- Programmable watchdog timer with separate on-chip oscillator
- On-chip analog comparator
- Interrupt and wake-up on pin change
- Special microcontroller features
 - Power-on reset and programmable brown-out detection
 - Internal calibrated oscillator
 - External and internal interrupt sources
 - Six sleep modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and packages
 - 48 programmable I/O lines
 - 64-lead TQFP and 64-lead QFN
- Operating voltages
 - 2.7 5.5V
- Operating temperature
- Industrial (-40°C to +85°C)
- Maximum frequency
 - 8MHz at 2.7V industrial range
 - 16MHz at 4.5V industrial range

2. Overview

The Atmel® AVR® AT90USB64/128 is a low-power CMOS 8-bit microcontroller based on the Atmel® AVR® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the AT90USB64/128 achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.2 Pin descriptions

- 2.2.1 VCC Digital supply voltage.
- 2.2.2 GND

Ground.

2.2.3 AVCC

Analog supply voltage.

2.2.4 Port A (PA7..PA0)

Port A is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the Atmel AT90USB64/128 as listed on page 78.

2.2.5 Port B (PB7..PB0)

Port B is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the AT90USB64/128 as listed on page 79.

2.2.6 Port C (PC7..PC0)

Port C is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the AT90USB64/128 as listed on page 82.

2.2.7 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the AT90USB64/128 as listed on page 83.

2.2.8 Port E (PE7..PE0)

Port E is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the AT90USB64/128 as listed on page 86.

2.2.9 Port F (PF7..PF0)

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bidirectional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.2.10	D-	USB Full speed / Low Speed Negative Data Upstream Port. Should be connected to the USB D-connector pin with a serial 22Ω resistor.
2.2.11	D+	USB Full speed / Low Speed Positive Data Upstream Port. Should be connected to the USB D+ connector pin with a serial 22 Ω resistor.
2.2.12	UGND	USB Pads Ground.
2.2.13	UVCC	USB Pads Internal Regulator Input supply voltage.
2.2.14	UCAP	USB Pads Internal Regulator Output supply voltage. Should be connected to an external capacitor (1 μ F).
2.2.15	VBUS	USB VBUS monitor and OTG negociations.
2.2.16	RESET	Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page 58. Shorter pulses are not guaranteed to generate a reset.
2.2.17	XTAL1	Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.18	XTAL2	
		Output from the inverting oscillator amplifier.
2.2.19	AVCC	
		AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.
2.2.20	AREF	
		This is the analog reference pin for the A/D Converter.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. About code examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

5. Register summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	OTGTCON		PA	GE				VA	LUE	
(0xF8)	UPINT				Pli	NT7:0		DDVOTIO		
(0xF7)	UPBCHX	-	-	-	-	-		PBYCT10:8		
(UXF6)	UPBCLX		COLIN	TED1.0			DID	DATADID	DATATO	
(UXF5)	UPERRX	-	COUN	TERT:0	CRC16	EDINITE:0	PID	DATAPID	DATATGL	
(0xF4)		_	-	_	_	EFINIO.0	1	BVCT10.9		
(0xF2)			_	-	BV	CT7:0		BTOTIO.0		
(0xF1)	UEDATX					AT7:0				
(0xF0)	UEIENX	FLERRE	NAKINE	-	NAKOUTE	RXSTPE	RXOUTE	STALLEDE	TXINE	
(0xEF)	UESTA1X	-	-	-	-	-	CTRLDIR	CURF	RBK1:0	
(0xEE)	UESTA0X	CFGOK	OVERFI	UNDERFI	-	DTSE	EQ1:0	NBUS	YBK1:0	
(0xED)	UECFG1X			EPSIZE2:0	1	EPB	3K1:0	ALLOC		
(0xEC)	UECFG0X	EPTY	'PE1:0				-	-	EPDIR	
(0xEB)	UECONX			STALLRQ	STALLRQC	RSTDT			EPEN	
(0xEA)	UERST					EPRST6:0				
(0xE9)	UENUM							EPNUM2:0		
(0xE8)	UEINTX	FIFOCON	NAKINI	RWAL	NAKOUTI	RXSTPI	RXOUTI	STALLEDI	TXINI	
(0xE7)	Reserved			-	-	-	-			
(0xE6)	UDMFN				FNCERR					
(0xE5)	UDFNUMH							FNUM10:8		
(0xE4)	UDFNUML				FN	UM7:0				
(0xE3)	UDADDR	ADDEN		r	1	UADD6:0	1	1	1	
(0xE2)	UDIEN		UPRSME	EORSME	WAKEUPE	EORSTE	SOFE		SUSPE	
(0xE1)	UDINT		UPRSMI	EORSMI	WAKEUPI	EORSTI	SOFI		SUSPI	
(0xE0)	UDCON			0701			LSM	RMWKUP	DETACH	
(0xDF)	OTGINT			STOL	HNPERRI	ROLEEXI	BCERRI	VBERRI	SRPI	
(0xDE)	OTGIEN					ROLEEXE	VELISHWC	VERRE	VELISEOC	
	Bosonvod			HINFREQ	SHENEQ	SHFBEL	VBUSHWC	VBUSHEQ	VBUSHQU	
(0xDC) (0xDB)	Reserved									
(0xDA)	USBINT							IDTI	VBUSTI	
(0xD9)	USBSTA		-			SPEED		ID	VBUS	
(0xD8)	USBCON	USBE	HOST	FRZCLK	OTGPADE	-		IDTE	VBUSTE	
(0xD7)	UHWCON	UIMOD	UIDE		UVCONE				UVREGE	
(0xD6)	Reserved									
(0xD5)	Reserved									
(0xD4)	Reserved									
(0xD3)	Reserved									
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	UDR1			-	USART1 I/C	Data Register				
(0xCD)	UBRR1H	-	-	-	-	U	ISART1 Baud Rat	te Register High B	lyte	
(0xCC)	UBRR1L			<u>ا</u>	JSART1 Baud Ra	ate Register Low I	Byte			
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	UCSR1C	UMSEL11	UMSEL10	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	
(0xC9)	UCSR1B	HXCIE1	I XCIE1	UDRIE1	HXEN1	I XEN1	UCSZ12	HXB81	I XB81	
(0xC8)	UCSR1A	HXC1	IXC1	UDRE1	FE1	DOR1	PE1	U2X1	MPCM1	
(UXC7)	Reserved	-	-	-	-	-	-	-	-	
(UXC6)	Reserved	-	-	-	-	-	-	-	-	
(UxC5)	Reserved	-	-	-	-	-	-	-	-	
(0xC4)	Reserved	-	-	_	-	_		_	-	
(0xC3)	Reserved	-		-				-		
(0xC1)	Reserved	-	-	-		-	-	-	-	
(0xC0)	Reserved	-	-	-	-	-	-	-	-	
(0xBF)	Reserved	-	-	-	-	-	-	-	-	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	
(0xBB)	TWDR		1	T	2-wire Serial Inte	erface Data Regis	ter		1	
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	
(0xB8)	I WBR Bosonrod	_	_	2	-wire Serial Intern	ace Bit Hate Heg	Ister	_	_	
(0xB7)	ASSB	-	EXCLK	AS2	TCN2UB	OCB2AUB	OCB2BUB	TCB2AUB	TCB2BUB	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2B			Tim	ner/Counter2 Out	put Compare Reg	jister B			
(0xB3)	OCR2A			Tin	ner/Counter2 Out	put Compare Reg	ister A			
(0xB2)	TCNT2		-	-	Timer/Co	unter2 (8 Bit)	_	_		
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	
(0xAF)	UPDATX				PD	AT7:0	TYOUTE	DYOTALLE	DVINE	
(UXAE)		FLERRE	NAKEDE	-			TXOUTE	RXSTALLE	RAINE	
(0xAD)	LIPSTAX	CEGOK	OVEBEI				EQ1:0	NBUS	YBK1.0	
(0xAB)	UPCFG1X	ordon	OVENIT	PSIZE2:0		PB	K1:0	ALLOC		
(0xAA)	UPCFG0X	PTY	PE1:0	PTOK	EN1:0		PEP	NUM3:0		
(0xA9)	UPCONX		PFREEZE	INMODE		RSTDT			PEN	
(0xA8)	UPRST			•		PRST6:0				
(0xA7)	UPNUM							PNUM2:0		
(0xA6)	UPINTX	FIFOCON	NAKEDI	RWAL	PERRI	TXSTPI	TXOUTI	RXSTALLI	RXINI	
(0xA5)	UPINRQX				INF	RQ7:0				
(0xA4)	UHFLEN				FL	EN7:0	1	ENIL IN 110-0		
(0xA3) (0xA2)					EN	LIM7:0		FINUMI10:8		
(0xA1)	UHADDR					HADD6:0				
(0xA0)	UHIEN		HWUPE	HSOFE	RXRSME	RSMEDE	RSTE	DDISCE	DCONNE	
(0x9F)	UHINT		HWUPI	HSOFI	RXRSMI	RSMEDI	RSTI	DDISCI	DCONNI	
(0x9E)	UHCON						RESUME	RESET	SOFEN	
(0x9D)	OCR3CH			Timer/Co	unter3 - Output C	compare Register	C High Byte			
(0x9C)	OCR3CL			Timer/Co	unter3 - Output C	Compare Register	C Low Byte			
(0x9B)	OCR3BH			Timer/Co	unter3 - Output C	compare Register	B High Byte			
(0x9A)	OCR3BL			Timer/Co	unter3 - Output C	Compare Register	A High Byte			
(0x98)	OCB3AI			Timer/Co	unter3 - Output C	Compare Register	A Low Byte			
(0x97)	ICR3H			Timer/	Counter3 - Input (Capture Register	High Byte			
(0x96)	ICR3L			Timer/	Counter3 - Input	Capture Register	Low Byte			
(0x95)	TCNT3H			Tim	er/Counter3 - Cou	unter Register Hig	jh Byte			
(0x94)	TCNT3L		-	Tim	er/Counter3 - Co	unter Register Lo	w Byte	_		
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	TCCR3C	FOC3A	FOC3B	FOC3C	-	-	-	-	-	
(0x91)	TCCR3B	ICNC3	ICES3	- COM2R1	WGM33	WGM32	CS32 COM2C0	CS31	CS30	
(0x90) (0x8E)	Beserved	CONSAT	CONISAU	CONISBI	CONISBO	CONISCI	CONISCO	WGIVI31	VVGIVI30	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	OCR1CH			Timer/Co	unter1 - Output C	ompare Register	C High Byte			
(0x8C)	OCR1CL			Timer/Co	unter1 - Output C	Compare Register	C Low Byte			
(0x8B)	OCR1BH			Timer/Co	unter1 - Output C	ompare Register	B High Byte			
(0x8A)	OCR1BL			Timer/Co	unter1 - Output C	Compare Register	B Low Byte			
(0x89)	OCR1AH			Timer/Co	unter1 - Output C	compare Register	A High Byte			
(0x88)	OCR1AL			Timer/Co	unter1 - Output C	Compare Register	A Low Byte			
(UX87)				Limer/	Counter1 - Input (Capture Register	nign Byte			
(UX86) (0x85)	TCNT1H			Timer/	er/Counter1 - Cou	unter Register His	tow byte			
(0x84)	TCNT1L			Tim	er/Counter1 - Co	unter Register Lo	w Byte			
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-	
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	
(0x7D)	-	-	-	-	-	-	-	-	-	1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	
(0x7B)	ADCSRB	ADHSM	ACME	-	-	-	ADTS2	ADTS1	ADTS0	
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	
(0x79)	ADCH				ADC Data Re	egister High byte				
(0x78)	ADCL				ADC Data R	egister Low byte				
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	XMCRB	XMBK	-	-	-	-	XMM2	XMM1	XMM0	
(0x74)	XMCRA	SRE	SRL2	SRL1	SRL0	SRW11	SRW10	SRW01	SRW00	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-			-	
(0x71)	TIMSK3	-	-	ICIE3	-	OCIE3C	OCIE3B	OCIESA	TOIE3	
(0x70)	TIMSK2	-	-		-				TOIE2	4
(0x6E)	TIMSKI			ICILI		OCILIC			TOIET	
	Beserved						OCILOB	OCILOA	TOILU	
(0x6C)	Reserved	-	-	-	-	-	-	-	-	
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO	
(0x6A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	
(0x68)	PCICR	-	-	-	-	-	-	-	PCIE0	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL				Oscillator Cal	ibration Register				
(0x65)	PRR1	PRUSB	-	-	-	PRTIM3	-	-	PRUSART1	
(0x64)	PRR0	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	-	PRADC	
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	
0x3F (0x5F)	SREG	1	Т	Н	S	V	N	Z	С	
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	RAMPZ	-	-	-	-	-	-	RAMPZ1	RAMPZ0	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-		-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRI	PGERS	SPMEN	
0x36 (0x56)	Reserved	-	-	-	- BUD	-	-	-	-	
0x35 (0x55)	MCUCR	JID	-	-		- WDRE	- BORE	EVTRE	PORE	
0x34 (0x54)	SMCB				5111	SM2	SM1	SMO	SE	
0x33 (0x53)	Beserved		-			-	-	-		
0,02 (0,02)	OCDB/	OCDB7	OCDB6	OCDB5	OCDB4	OCDB3	OCDB2	OCDB1	OCDB0	
0x31 (0x51)	MONDR	00010	000110	000110	Monitor [Data Register	000112	000111	000110	•
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR				SPI Da	ta Register				
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	
0x2B (0x4B)	GPIOR2				General Purpo	ose I/O Register 2				
0x2A (0x4A)	GPIOR1				General Purpo	ose I/O Register 1				
0x29 (0x49)	PLLCSR	-	-	-	PLLP2	PLLP1	PLLP0	PLLE	PLOCK	
0x28 (0x48)	OCR0B			Tin	ner/Counter0 Out	put Compare Reg	ister B			
0x27 (0x47)	OCR0A			Tin	ner/Counter0 Out	put Compare Reg	ister A			
0x26 (0x46)	TCNT0		I		Timer/Co	unter0 (8 Bit)	I	1	I	
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	
0x22 (0x42)	EEARH	-	-	-	-	<u> </u>	EEPROM Addres	s Register High B	yte	
0x21 (0x41)	EEARL				EEPHOM Addres	s Register Low B	yte			
0x20 (0x40)	EEDR				EEPROM	Data Register				
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0		EEMPE	EEPE	EERE	
0x1E (0x3E)	GPIORU		INTE			INTO REGISTER 0				
	EINISK									
0210 (0230)		INTE/	071711	UN I FO	INTE4	111173			INTEU	L

Mnemonics	Operands	Description Operation			#Clocks
BRVC	k	Branch if Overflow Flag is Cleared if $(V = 0)$ then PC \leftarrow PC + k + 1		None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
	BIT AN	ID BIT-TEST INSTRUCTIONS	1	1	-
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
RUR	Rd	Avithmetic Chift Dight	$Ra(7) \leftarrow C, Ra(n) \leftarrow Ra(n+1), C \leftarrow Ra(0)$	Z,C,N,V	1
SWAP	Rd	Swan Nibbles	$Rd(3, 0) \leftarrow Rd(7, 4) Rd(7, 4) \leftarrow Rd(3, 0)$	Z,C,N,V	1
BSET	s	Flag Set	$SBEG(s) \leftarrow 1$	SBEG(s)	1
BCLR	s	Flag Clear	$SBEG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	← 1	1	1
CLI		Global Interrupt Disable		1	1
SES		Clear Signed Test Flag	S ← I	S	1
SEV		Set Twos Complement Overflow	S ← 0	S V	1
		Clear Twos Complement Overflow	V \leftarrow 0	v	1
SET		Set T in SBEG	T ← 1	Т	1
CLT	Clear T in SREG T ← 0		T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
	DATA	TRANSFER INSTRUCTIONS	-		
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Hd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Hd \leftarrow (X)$	None	2
LD	Ru, f	Load Indirect $Rd \leftarrow (Y)$		None	2
LD	Rd - Y	Load indirect and Post-Inc. $Rd \leftarrow (Y), Y \leftarrow Y + I$		None	2
LDD	Rd.Y+a	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd. Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	Rd ← (Z), Z ← Z+1	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
SI	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Hr, Y \leftarrow Y + 1$	None	2
	- Y, Hr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - I, (Y) \leftarrow Hr$	None	2
<u>от</u>	1+4,HI 7 Pr	Store Indirect with Displacement	$(\tau + q) \leftarrow Hr$	None	2
ST	7+ Rr	Store Indirect and Post-Inc	$(Z) \leftarrow \operatorname{Rr} 7 \leftarrow 7 \pm 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$. (Z) $\leftarrow Rr$	None	2
STD	Z+a.Rr	Store Indirect with Displacement	$(Z + \alpha) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
ELPM		Extended Load Program Memory	$R0 \leftarrow (RAMPZ:Z)$	None	3
ELPM	Rd, Z	Extended Load Program Memory	$Rd \leftarrow (Z)$	None	3
FLPM	Bd Z+ Extended Load Program Memory Bd - (BAMP7'7) BAMP7'7 - E		$Bd \leftarrow (BAMP7.7) BAMP7.7 \leftarrow BAMP7.7+1$	None	3

Mnemonics	Operands	Description Operation		Flags	#Clocks
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port $P \leftarrow Rr$		None	1
PUSH	Rr	Push Register on Stack STACK \leftarrow Rr		None	2
POP	Rd	Pop Register from Stack	$Rd \gets STACK$	None	2
	MCU	CONTROL INSTRUCTIONS			
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

7.2 Atmel AT90USB647

Speed [MHz]	Power supply [V]	Ordering code ⁽²⁾	USB interface	Package (1)	Operating range
16 ⁽³⁾	2.7-5.5	AT90USB647-AU AT90USB647-MU	USB OTG	MD PS	Industrial (-40° to +85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully green.

3. See "Maximum speed vs. VCC" on page 392.

MD	64 - lead, 14×14 mm body size, 1.0mm body thickness 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)
PS	64 - lead, 9 × 9mm body size, 0.50mm pitch Quad flat no lead package (QFN)

7.3 Atmel AT90USB1286

Speed [MHz]	Power supply [V]	Ordering code ⁽²⁾	USB interface	Package (1)	Operating range
16 ⁽³⁾	2.7-5.5	AT90USB1286-AU AT90USB1286-MU	Device	MD PS	Industrial (-40° to +85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully green.

3. See "Maximum speed vs. VCC" on page 392.

MD	64 - lead, 14×14 mm body size, 1.0mm body thickness 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)
PS	64 - lead, 9 × 9mm body size, 0.50mm pitch Quad flat no lead package (QFN)

8. Packaging information

8.1 TQFP64

NOTES: STANDARD NOTES FOR PQFP/VQFP/TQFP/DQFP

1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. - 1982.

2. "D1 AND E1" DIMENSIONS DO NOT INCLUDE MOLD PROTUSIONS MOLD PROTUSIONS SHALL NOT EXCEED 0.25 mm (0.010 INCH) . THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE BY AS MUCH AS 0.15 mm.

3. DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXISTS PLASTIC BODY AT BOTTOM OF PARTING LINE.

4. DATUM "A" AND "D" TO BE DETERMINED AT DATUM PLANE H.

5. DIMENSION "f" DOES NOT INCLUDE DAMBAR PROTUSION ALLOWABLE DAMBAR PROTUSION SHALL BE 0.08 mm/.003" TOTAL EXCESS OF THE "f" DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

9. Errata

9.1 Atmel AT90USB1287/6 errata

9.1.1 AT90USB1287/6 errata history

Silicon Release	90USB1286-16MU	90USB1287-16AU	90USB1287-16MU
First Release	Date Code up to 0648	Date Code up to 0714 and lots 0735 6H2726 ⁽¹⁾	Date Code up to 0701
Second Release	Date Code from 0709 to 0801 except lots 0801 7H5103 ⁽¹⁾	from Date Code 0722 to 0806 except lots 0735 6H2726 ⁽¹⁾	Date Code from 0714 to 0810 except lots 0748 7H5103 ⁽¹⁾
Third Release	Lots 0801 7H5103 ⁽¹⁾ and Date Code from 0814	Date Code from 0814	Lots 0748 7H5103 ⁽¹⁾ and Date Code from 0814
Fourth Release	TBD	TBD	TBD

Notes: 1. A blank or any alphanumeric string.

9.1.2 AT90USB1287/6 first release

- Incorrect CPU behavior for VBUSTI and IDTI interrupts routines
- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- VBUS Session valid threshold voltage
- USB signal rate
- VBUS residual level
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- · Async timer interrupt wake up from sleep generate multiple interrupts

9. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

8. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

Problem fix/workaround

None.

7. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does

Problem fix/workaround

A software workaround is to wait before performing the sleep instruction: until TCNT2>OCR2+1.

9.2 Atmel AT90USB646/7 errata

9.2.1 AT90USB646/7 errata history TBD

Silicon Release	90USB646-16MU	90USB647-16AU	90USB647-16MU
First Release			
Second Release			

Note '*' means a blank or any alphanumeric string.

9.2.2 AT90USB646/7 first release.

- Incorrect interrupt routine execution for VBUSTI, IDTI interrupts flags
- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- · Async timer interrupt wake up from sleep generate multiple interrupts

6. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

Problem fix/workaround

None.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go back in sleep mode again it may wake up several times.

Problem fix/workaround

A software workaround is to wait with performing the sleep instruction until TCNT2>OCR2+1.

9.2.3 Atmel AT90USB646/7 Second Release.

- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

Problem fix/workaround

None.

4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go back in sleep mode again it may wake up several times.

Problem fix/workaround

A software workaround is to wait with performing the sleep instruction until TCNT2>OCR2+1.

10.8 Changes from 7593H to 7593I

1. Updated Table 9-2 in "Brown-out detection" on page 60. Unused BOD levels removed.

10.9 Changes from 7593I to 7593J

- 1. Updated Table 9-2 in "Brown-out detection" on page 60. BOD level 100 removed.
- 2. Updated "Ordering information" on page 18.
- 3. Removed ATmega32U6 errata section.

10.10 Changes from 7593J to 7593K

- 1. Corrected Figure 6-7 on page 34, Figure 6-8 on page 34 and Figure 6-9 on page 35.
- Corrected ordering information for Section 7.3 "Atmel AT90USB1286" on page 20, Section 7.4 "Atmel AT90USB1287" on page 21 and Section 7.2 "Atmel AT90USB647" on page 19.
- 3. Removed the ATmega32U6 device and updated the datasheet accordingly.
- 4. Updated Assembly Code Example in "Watchdog reset" on page 61.

10.11 Changes from 7593K to 7593L

- 1. Updated the "Ordering information" on page 18. Changed the speed from 20MHz to 16MHz.
- 2. Replaced ATmegaAT90USBxxxx by AT90USBxxxx through the datasheet.
- 3. Updated the first paragraph of "Overview" on page 307. Port A replaced by Port F.
- 4. Updated ADC equation in "ADC conversion result" on page 318. The equation has 1024 instead of 1023.
- 5. Created "Packaging Information" chapter.
- 6. Replaced the "QFN64" Packaging by an updated QFN64 Packaging drawing.
- 7. Updated "Errata" on page 26. AT90USB1286/7 has a fourth release, while AT90USB646/7 updated with a second release.
- 8. In Section "Overview" on page 307, "Port A" has been replaced by "Port F" in the first section.
- 9. In Section "Atmel AT90USB647" on page 19 the USB interface has been changed to USB OTG.
- 10. In Section "Atmel AT90USB1286" on page 20 the USB interface has been changed to Device.
- 11. In Section "Atmel AT90USB1287" on page 21 the USB interface has been changed to Host OTG.
- 12. General update according to new template.