




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

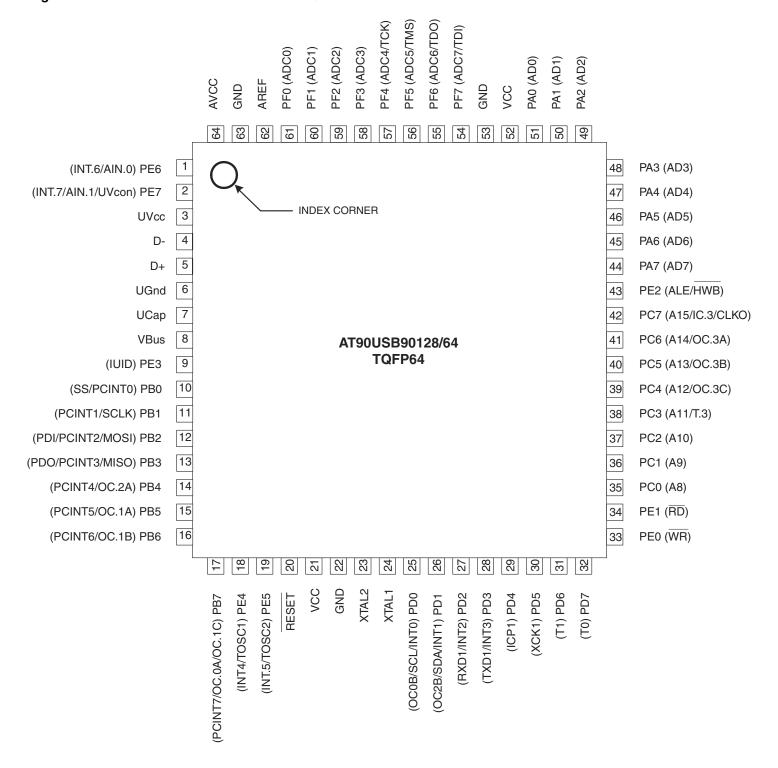
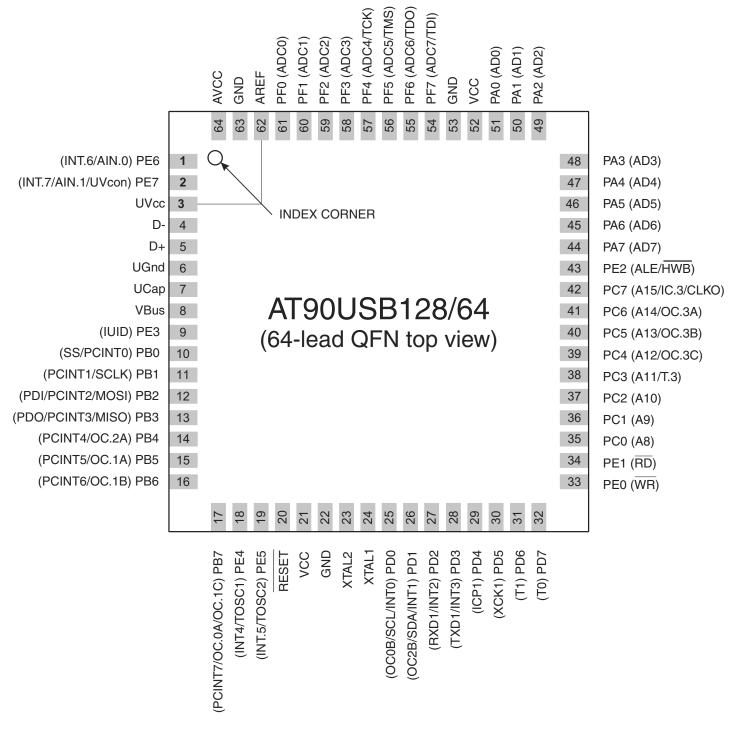
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

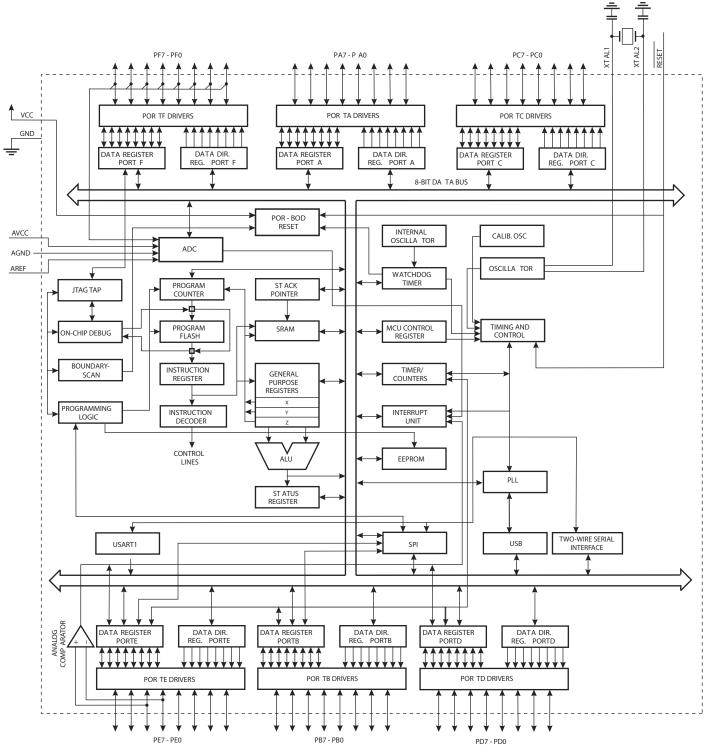
Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                           |
|----------------------------|---------------------------------------------------------------------------|
| Product Status             | Active                                                                    |
| Core Processor             | AVR                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 16MHz                                                                     |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, SPI, UART/USART, USB                           |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 48                                                                        |
| Program Memory Size        | 128KB (128K x 8)                                                          |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 4K x 8                                                                    |
| RAM Size                   | 8K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                               |
| Data Converters            | A/D 8x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 64-VFQFN Exposed Pad                                                      |
| Supplier Device Package    | 64-QFN (9x9)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at90usb1286-mur |

## 1. Pin configurations

Figure 1-1. Pinout Atmel AT90USB64/128-TQFP.



Figure 1-2. Pinout Atmel AT90USB64/128-QFN.



Note: The large center pad underneath the MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

## 2.1 Block diagram

Figure 2-1. Block diagram.



The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting

## 2.2 Pin descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 AVCC

Analog supply voltage.

#### 2.2.4 Port A (PA7..PA0)

Port A is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the Atmel AT90USB64/128 as listed on page 78.

## 2.2.5 Port B (PB7..PB0)

Port B is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the AT90USB64/128 as listed on page 79.

## 2.2.6 Port C (PC7..PC0)

Port C is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the AT90USB64/128 as listed on page 82.

## 2.2.7 Port D (PD7..PD0)

8

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the AT90USB64/128 as listed on page 83.

# 5. Register summary

| <u> </u>                   |                      |         |         | 1         | i        | Ī                  | 1              | 1                  |         |              |
|----------------------------|----------------------|---------|---------|-----------|----------|--------------------|----------------|--------------------|---------|--------------|
| Address                    | Name                 | Bit 7   | Bit 6   | Bit 5     | Bit 4    | Bit 3              | Bit 2          | Bit 1              | Bit 0   | Page         |
| (0xFF)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xFE)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xFD)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xFC)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xFB)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xFA)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xF9)                     | OTGTCON              |         | P.A     | AGE       |          |                    |                | VA                 | LUE     |              |
| (0xF8)                     | UPINT                |         | •       |           | PII      | NT7:0              | •              | •                  |         |              |
| (0xF7)                     | UPBCHX               | -       | -       | -         | -        | -                  |                | PBYCT10:8          |         |              |
| (0xF6)                     | UPBCLX               |         | •       | •         | PBY      | /CT7:0             | •              |                    |         |              |
| (0xF5)                     | UPERRX               | -       | COUN    | ITER1:0   | CRC16    | TIMEOUT            | PID            | DATAPID            | DATATGL |              |
| (0xF4)                     | UEINT                |         |         |           |          | EPINT6:0           | •              | •                  | •       |              |
| (0xF3)                     | UEBCHX               | -       | -       | -         | -        | -                  |                | BYCT10:8           |         |              |
| (0xF2)                     | UEBCLX               |         | •       | •         | BY       | CT7:0              | •              |                    |         |              |
| (0xF1)                     | UEDATX               |         |         |           | DA       | AT7:0              |                |                    |         |              |
| (0xF0)                     | UEIENX               | FLERRE  | NAKINE  | -         | NAKOUTE  | RXSTPE             | RXOUTE         | STALLEDE           | TXINE   |              |
| (0xEF)                     | UESTA1X              | -       | -       | -         | -        | -                  | CTRLDIR        |                    | RBK1:0  |              |
| (0xEE)                     | UESTA0X              | CFGOK   | OVERFI  | UNDERFI   | -        | DTS                | EQ1:0          |                    | YBK1:0  |              |
| (0xED)                     | UECFG1X              |         |         | EPSIZE2:0 |          |                    | 3K1:0          | ALLOC              |         |              |
| (0xEC)                     | UECFG0X              | EPTY    | /PE1:0  |           |          |                    | -              | -                  | EPDIR   |              |
| (0xEB)                     | UECONX               | =:      |         | STALLRQ   | STALLRQC | RSTDT              |                |                    | EPEN    |              |
| (0xEA)                     | UERST                |         |         |           |          | EPRST6:0           |                |                    |         |              |
| (0xE9)                     | UENUM                |         |         |           |          |                    |                | EPNUM2:0           |         |              |
| (0xE8)                     | UEINTX               | FIFOCON | NAKINI  | RWAL      | NAKOUTI  | RXSTPI             | RXOUTI         | STALLEDI           | TXINI   |              |
| (0xE7)                     | Reserved             |         |         | _         | _        | -                  | -              | -                  |         |              |
| (0xE6)                     | UDMFN                |         |         |           | FNCERR   |                    |                |                    |         |              |
| (0xE5)                     | UDFNUMH              |         |         |           |          |                    |                | FNUM10:8           |         |              |
| (0xE4)                     | UDFNUML              |         |         |           | FNI      | UM7:0              | ı              |                    |         |              |
| (0xE3)                     | UDADDR               | ADDEN   |         |           |          | UADD6:0            |                |                    |         |              |
| (0xE2)                     | UDIEN                |         | UPRSME  | EORSME    | WAKEUPE  | EORSTE             | SOFE           |                    | SUSPE   |              |
| (0xE1)                     | UDINT                |         | UPRSMI  | EORSMI    | WAKEUPI  | EORSTI             | SOFI           |                    | SUSPI   |              |
| (0xE0)                     | UDCON                |         |         |           | _        |                    | LSM            | RMWKUP             | DETACH  |              |
| (0xDF)                     | OTGINT               |         |         | STOI      | HNPERRI  | ROLEEXI            | BCERRI         | VBERRI             | SRPI    |              |
| (0xDE)                     | OTGIEN               |         |         | STOE      | HNPERRE  | ROLEEXE            | BCERRE         | VBERRE             | SRPE    |              |
| (0xDD)                     | OTGCON               |         |         | HNPREQ    | SRPREQ   | SRPSEL             | VBUSHWC        | VBUSREQ            | VBUSRQC |              |
| (0xDC)                     | Reserved             |         |         |           |          |                    |                |                    |         |              |
| (0xDB)                     | Reserved             |         |         |           |          |                    |                |                    |         |              |
| (0xDA)                     | USBINT               |         |         |           |          |                    |                | IDTI               | VBUSTI  |              |
| (0xD9)                     | USBSTA               |         |         |           |          | SPEED              |                | ID                 | VBUS    |              |
| (0xD8)                     | USBCON               | USBE    | HOST    | FRZCLK    | OTGPADE  |                    |                | IDTE               | VBUSTE  |              |
| (0xD7)                     | UHWCON               | UIMOD   | UIDE    |           | UVCONE   |                    |                |                    | UVREGE  |              |
| (0xD6)                     | Reserved             |         |         |           |          |                    |                |                    |         |              |
| (0xD5)                     | Reserved             |         |         |           |          |                    |                |                    |         |              |
| (0xD4)                     | Reserved             |         |         |           |          |                    |                |                    |         |              |
| (0xD3)                     | Reserved             |         |         |           |          |                    |                |                    |         |              |
| (0xD2)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xD1)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xD0)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xCF)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xCE)                     | UDR1                 |         |         |           |          | Data Register      |                |                    |         |              |
| (0xCD)                     | UBRR1H               | -       | -       | -         | -        |                    | ISART1 Baud Ra | te Register High E | Byte    |              |
| (0xCC)                     | UBRR1L               |         |         |           |          | ate Register Low I |                | - 3                | •       |              |
| (0xCB)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xCA)                     | UCSR1C               | UMSEL11 | UMSEL10 | UPM11     | UPM10    | USBS1              | UCSZ11         | UCSZ10             | UCPOL1  |              |
| (0xC9)                     | UCSR1B               | RXCIE1  | TXCIE1  | UDRIE1    | RXEN1    | TXEN1              | UCSZ12         | RXB81              | TXB81   |              |
| (0xC8)                     | UCSR1A               | RXC1    | TXC1    | UDRE1     | FE1      | DOR1               | PE1            | U2X1               | MPCM1   |              |
| (0xC7)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xC6)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xC5)                     | Reserved             | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
|                            |                      | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| ` '                        | Reserved             |         |         |           |          |                    | 1              | 1                  |         | <del> </del> |
| (0xC4)                     | Reserved<br>Reserved |         | -       | _         | _        | _                  | -              | -                  | -       |              |
| (0xC4)<br>(0xC3)           | Reserved             | -       |         | -         | -        | -                  | -              | -                  | -       |              |
| (0xC4)<br>(0xC3)<br>(0xC2) | Reserved<br>Reserved | -       | -       | -         | -        | -                  | -              | -                  | -       |              |
| (0xC4)<br>(0xC3)           | Reserved             | -       |         | -         |          |                    |                | -                  |         |              |

| Address     | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Page |
|-------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0x1B (0x3B) | PCIFR    | -      | -      | -      | -      | -      | -      | -      | PCIF0  |      |
| 0x1A (0x3A) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x19 (0x39) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x18 (0x38) | TIFR3    | -      | -      | ICF3   | -      | OCF3C  | OCF3B  | OCF3A  | TOV3   |      |
| 0x17 (0x37) | TIFR2    | -      | -      | -      | -      | -      | OCF2B  | OCF2A  | TOV2   |      |
| 0x16 (0x36) | TIFR1    | -      | -      | ICF1   | -      | OCF1C  | OCF1B  | OCF1A  | TOV1   |      |
| 0x15 (0x35) | TIFR0    | -      | -      | -      | -      | -      | OCF0B  | OCF0A  | TOV0   |      |
| 0x14 (0x34) | Reserved | -      | -      | -      | -      | -      | -      | •      | -      |      |
| 0x13 (0x33) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x12 (0x32) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x11 (0x31) | PORTF    | PORTF7 | PORTF6 | PORTF5 | PORTF4 | PORTF3 | PORTF2 | PORTF1 | PORTF0 |      |
| 0x10 (0x30) | DDRF     | DDF7   | DDF6   | DDF5   | DDF4   | DDF3   | DDF2   | DDF1   | DDF0   |      |
| 0x0F (0x2F) | PINF     | PINF7  | PINF6  | PINF5  | PINF4  | PINF3  | PINF2  | PINF1  | PINF0  |      |
| 0x0E (0x2E) | PORTE    | PORTE7 | PORTE6 | PORTE5 | PORTE4 | PORTE3 | PORTE2 | PORTE1 | PORTE0 |      |
| 0x0D (0x2D) | DDRE     | DDE7   | DDE6   | DDE5   | DDE4   | DDE3   | DDE2   | DDE1   | DDE0   |      |
| 0x0C (0x2C) | PINE     | PINE7  | PINE6  | PINE5  | PINE4  | PINE3  | PINE2  | PINE1  | PINE0  |      |
| 0x0B (0x2B) | PORTD    | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTD0 |      |
| 0x0A (0x2A) | DDRD     | DDD7   | DDD6   | DDD5   | DDD4   | DDD3   | DDD2   | DDD1   | DDD0   |      |
| 0x09 (0x29) | PIND     | PIND7  | PIND6  | PIND5  | PIND4  | PIND3  | PIND2  | PIND1  | PIND0  |      |
| 0x08 (0x28) | PORTC    | PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTC0 |      |
| 0x07 (0x27) | DDRC     | DDC7   | DDC6   | DDC5   | DDC4   | DDC3   | DDC2   | DDC1   | DDC0   |      |
| 0x06 (0x26) | PINC     | PINC7  | PINC6  | PINC5  | PINC4  | PINC3  | PINC2  | PINC1  | PINC0  |      |
| 0x05 (0x25) | PORTB    | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTB0 |      |
| 0x04 (0x24) | DDRB     | DDB7   | DDB6   | DDB5   | DDB4   | DDB3   | DDB2   | DDB1   | DDB0   |      |
| 0x03 (0x23) | PINB     | PINB7  | PINB6  | PINB5  | PINB4  | PINB3  | PINB2  | PINB1  | PINB0  |      |
| 0x02 (0x22) | PORTA    | PORTA7 | PORTA6 | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTA0 |      |
| 0x01 (0x21) | DDRA     | DDA7   | DDA6   | DDA5   | DDA4   | DDA3   | DDA2   | DDA1   | DDA0   |      |
| 0x00 (0x20) | PINA     | PINA7  | PINA6  | PINA5  | PINA4  | PINA3  | PINA2  | PINA1  | PINA0  |      |

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O registers within the address range \$00 \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The Atmel AT90USB64/128 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

# 6. Instruction set summary

| Mnemonics    | Operands  | Description                                      | Operation                                            | Flags        | #Clocks    |
|--------------|-----------|--------------------------------------------------|------------------------------------------------------|--------------|------------|
|              | ARITHME   | TIC AND LOGIC INSTRUCTIONS                       |                                                      |              |            |
| ADD          | Rd, Rr    | Add two Registers                                | $Rd \leftarrow Rd + Rr$                              | Z,C,N,V,H    | 1          |
| ADC          | Rd, Rr    | Add with Carry two Registers                     | $Rd \leftarrow Rd + Rr + C$                          | Z,C,N,V,H    | 1          |
| ADIW         | Rdl,K     | Add Immediate to Word                            | Rdh:Rdl ← Rdh:Rdl + K                                | Z,C,N,V,S    | 2          |
| SUB          | Rd, Rr    | Subtract two Registers                           | Rd ← Rd - Rr                                         | Z,C,N,V,H    | 1          |
| SUBI         | Rd, K     | Subtract Constant from Register                  | $Rd \leftarrow Rd - K$                               | Z,C,N,V,H    | 1          |
| SBC          | Rd, Rr    | Subtract with Carry two Registers                | Rd ← Rd - Rr - C                                     | Z,C,N,V,H    | 1          |
| SBCI         | Rd, K     | Subtract with Carry Constant from Reg.           | Rd ← Rd - K - C                                      | Z,C,N,V,H    | 1          |
| SBIW         | RdI,K     | Subtract Immediate from Word                     | Rdh:Rdl ← Rdh:Rdl - K                                | Z,C,N,V,S    | 2          |
| AND          | Rd, Rr    | Logical AND Registers                            | Rd ← Rd • Rr                                         | Z,N,V        | 1          |
| ANDI         | Rd, K     | Logical AND Register and Constant                | Rd ← Rd • K                                          | Z,N,V        | 1          |
| OR           | Rd, Rr    | Logical OR Registers                             | Rd ← Rd v Rr                                         | Z,N,V        | 1          |
| ORI          | Rd, K     | Logical OR Register and Constant                 | Rd ← Rd v K                                          | Z,N,V        | 1          |
| EOR          | Rd, Rr    | Exclusive OR Registers                           | $Rd \leftarrow Rd \oplus Rr$                         | Z,N,V        | 1          |
| COM          | Rd        | One's Complement                                 | Rd ← 0xFF – Rd                                       | Z,C,N,V      | 1          |
| NEG          | Rd        | Two's Complement                                 | Rd ← 0x00 − Rd                                       | Z,C,N,V,H    | 1          |
| SBR          | Rd,K      | Set Bit(s) in Register                           | Rd ← Rd v K                                          | Z,N,V        | 1          |
| CBR          | Rd,K      | Clear Bit(s) in Register                         | $Rd \leftarrow Rd \bullet (0xFF - K)$                | Z,N,V        | 1          |
| INC          | Rd        |                                                  | ` '                                                  |              | 1          |
|              | Rd        | Increment                                        | Rd ← Rd + 1                                          | Z,N,V        | 1          |
| DEC          |           | Decrement<br>Total for Zens on Minus             | Rd ← Rd − 1                                          | Z,N,V        |            |
| TST          | Rd        | Test for Zero or Minus                           | Rd ← Rd • Rd                                         | Z,N,V        | 1          |
| CLR          | Rd        | Clear Register                                   | Rd ← Rd ⊕ Rd                                         | Z,N,V        | 1          |
| SER          | Rd        | Set Register                                     | Rd ← 0xFF                                            | None         | 1          |
| MUL          | Rd, Rr    | Multiply Unsigned                                | R1:R0 ← Rd x Rr                                      | Z,C          | 2          |
| MULS         | Rd, Rr    | Multiply Signed                                  | $R1:R0 \leftarrow Rd \times Rr$                      | Z,C          | 2          |
| MULSU        | Rd, Rr    | Multiply Signed with Unsigned                    | $R1:R0 \leftarrow Rd \times Rr$                      | Z,C          | 2          |
| FMUL         | Rd, Rr    | Fractional Multiply Unsigned                     | $R1:R0 \leftarrow (Rd \times Rr) << 1$               | Z,C          | 2          |
| FMULS        | Rd, Rr    | Fractional Multiply Signed                       | $R1:R0 \leftarrow (Rd \times Rr) << 1$               | Z,C          | 2          |
| FMULSU       | Rd, Rr    | Fractional Multiply Signed with Unsigned         | $R1:R0 \leftarrow (Rd \times Rr) << 1$               | Z,C          | 2          |
|              | BI        | RANCH INSTRUCTIONS                               |                                                      |              |            |
| RJMP         | k         | Relative Jump                                    | PC ← PC + k + 1                                      | None         | 2          |
| IJMP         |           | Indirect Jump to (Z)                             | PC ← Z                                               | None         | 2          |
| EIJMP        |           | Extended Indirect Jump to (Z)                    | $PC \leftarrow (EIND:Z)$                             | None         | 2          |
| JMP          | k         | Direct Jump                                      | $PC \leftarrow k$                                    | None         | 3          |
| RCALL        | k         | Relative Subroutine Call                         | $PC \leftarrow PC + k + 1$                           | None         | 4          |
| ICALL        |           | Indirect Call to (Z)                             | PC ← Z                                               | None         | 4          |
| EICALL       |           | Extended Indirect Call to (Z)                    | PC ←(EIND:Z)                                         | None         | 4          |
| CALL         | k         | Direct Subroutine Call                           | PC ← k                                               | None         | 5          |
| RET          |           | Subroutine Return                                | PC ← STACK                                           | None         | 5          |
| RETI         |           | Interrupt Return                                 | PC ← STACK                                           | I            | 5          |
| CPSE         | Rd,Rr     | Compare, Skip if Equal                           | if (Rd = Rr) PC ← PC + 2 or 3                        | None         | 1/2/3      |
| CP           | Rd,Rr     | Compare                                          | Rd – Rr                                              | Z, N,V,C,H   | 1          |
| CPC          | Rd,Rr     | Compare with Carry                               | Rd – Rr – C                                          | Z, N,V,C,H   | 1          |
| CPI          | Rd,K      | Compare Register with Immediate                  | Rd – K                                               | Z, N,V,C,H   | 1          |
| SBRC         | Rr, b     | Skip if Bit in Register Cleared                  | if (Rr(b)=0) PC ← PC + 2 or 3                        | None         | 1/2/3      |
| SBRS         | Rr, b     | Skip if Bit in Register is Set                   | if (Rr(b)=1) PC $\leftarrow$ PC + 2 or 3             | None         | 1/2/3      |
| SBIC         | P, b      | Skip if Bit in I/O Register Cleared              | if (P(b)=0) PC ← PC + 2 or 3                         | None         | 1/2/3      |
| SBIS         | P, b      | Skip if Bit in I/O Register is Set               | if (P(b)=1) PC $\leftarrow$ PC + 2 or 3              | None         | 1/2/3      |
| BRBS         | s, k      | Branch if Status Flag Set                        | if (SREG(s) = 1) then PC←PC+k + 1                    | None         | 1/2        |
|              |           |                                                  |                                                      | +            |            |
| BRBC<br>BREQ | s, k<br>k | Branch if Status Flag Cleared<br>Branch if Equal | if (SREG(s) = 0) then PC←PC+k + 1                    | None         | 1/2        |
|              |           |                                                  | if (Z = 1) then PC ← PC + k + 1                      | None         |            |
| BRNE         | k         | Branch if Not Equal                              | if (Z = 0) then PC ← PC + k + 1                      | None         | 1/2        |
| BRCS         | k         | Branch if Carry Set                              | if (C = 1) then PC $\leftarrow$ PC + k + 1           | None         | 1/2        |
| BRCC         | k         | Branch if Carry Cleared                          | if (C = 0) then PC ← PC + k + 1                      | None         | 1/2        |
| BRSH         | k         | Branch if Same or Higher                         | if (C = 0) then PC $\leftarrow$ PC + k + 1           | None         | 1/2        |
| BRLO         | k         | Branch if Lower                                  | if (C = 1) then PC ← PC + k + 1                      | None         | 1/2        |
| BRMI         | k         | Branch if Minus                                  | if (N = 1) then PC ← PC + k + 1                      | None         | 1/2        |
| BRPL         | k         | Branch if Plus                                   | if (N = 0) then PC ← PC + k + 1                      | None         | 1/2        |
| BRGE         | k         | Branch if Greater or Equal, Signed               | if (N $\oplus$ V= 0) then PC $\leftarrow$ PC + k + 1 | None         | 1/2        |
| BRLT         | k         | Branch if Less Than Zero, Signed                 | if (N $\oplus$ V= 1) then PC $\leftarrow$ PC + k + 1 | None         | 1/2        |
| BRHS         | k         | Branch if Half Carry Flag Set                    | if (H = 1) then PC ← PC + k + 1                      | None         | 1/2        |
|              | k         | Branch if Half Carry Flag Cleared                | if (H = 0) then PC $\leftarrow$ PC + k + 1           | None         | 1/2        |
| BRHC         | K         | Branon ii rian barry riag broarba                |                                                      |              |            |
| BRHC<br>BRTS | k         | Branch if T Flag Set                             | if (T = 1) then PC ← PC + k + 1                      | None         | 1/2        |
|              |           |                                                  |                                                      | None<br>None | 1/2<br>1/2 |

| Mnemonics | Operands                                       | Description                                        | Operation                    | Flags | #Clocks |
|-----------|------------------------------------------------|----------------------------------------------------|------------------------------|-------|---------|
| SPM       |                                                | Store Program Memory                               | (Z) ← R1:R0                  | None  | -       |
| IN        | Rd, P                                          | In Port                                            | Rd ← P                       | None  | 1       |
| OUT       | P, Rr                                          | Out Port                                           | P ← Rr                       | None  | 1       |
| PUSH      | Rr                                             | Push Register on Stack STACK ← Rr                  |                              | None  | 2       |
| POP       | Rd                                             | Pop Register from Stack                            | Rd ← STACK                   | None  | 2       |
|           | MCU                                            | CONTROL INSTRUCTIONS                               |                              |       |         |
| NOP       |                                                | No Operation                                       |                              | None  | 1       |
| SLEEP     | Sleep (see specific descr. for Sleep function) |                                                    | None                         | 1     |         |
| WDR       |                                                | Watchdog Reset (see specific descr. for WDR/timer) |                              | None  | 1       |
| BREAK     |                                                | Break                                              | Break For On-chip Debug Only |       | N/A     |

# **Ordering information**

#### Atmel AT90USB646 7.1

| Speed [MHz]       | Power supply [V] | Ordering code (2)              | USB interface | Package (1) | Operating range               |
|-------------------|------------------|--------------------------------|---------------|-------------|-------------------------------|
| 16 <sup>(3)</sup> | 2.7-5.5          | AT90USB646-AU<br>AT90USB646-MU | Device        | MD<br>PS    | Industrial<br>(-40° to +85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully green.
  - 3. See "Maximum speed vs. VCC" on page 392.

| MD | 64 - lead, $14 \times 14$ mm body size, 1.0mm body thickness 0.8mm lead pitch, thin profile plastic quad flat package (TQFP) |
|----|------------------------------------------------------------------------------------------------------------------------------|
| PS | 64 - lead, $9 \times 9$ mm body size, 0.50mm pitch Quad flat no lead package (QFN)                                           |

#### 7.2 Atmel AT90USB647

| Speed [MHz]       | Power supply [V] | Ordering code (2)              | USB interface | Package (1) | Operating range               |
|-------------------|------------------|--------------------------------|---------------|-------------|-------------------------------|
| 16 <sup>(3)</sup> | 2.7-5.5          | AT90USB647-AU<br>AT90USB647-MU | USB OTG       | MD<br>PS    | Industrial<br>(-40° to +85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully green.
  - 3. See "Maximum speed vs. VCC" on page 392.

| MD | 64 - lead, 14 × 14mm body size, 1.0mm body thickness<br>0.8mm lead pitch, thin profile plastic quad flat package (TQFP) |
|----|-------------------------------------------------------------------------------------------------------------------------|
| PS | 64 - lead, 9 × 9mm body size, 0.50mm pitch<br>Quad flat no lead package (QFN)                                           |

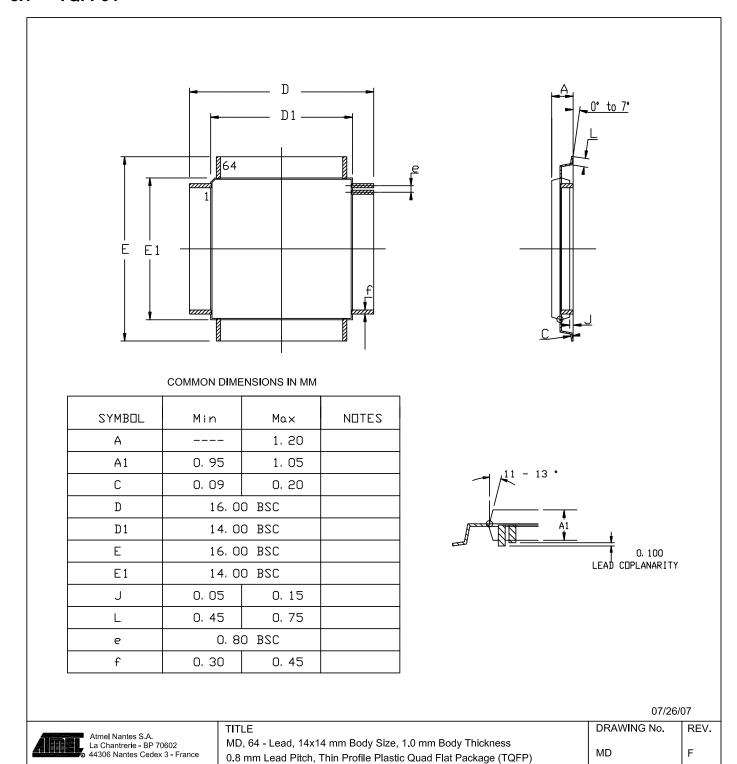
#### 7.3 Atmel AT90USB1286

| Speed [MHz]       | Power supply [V] | Ordering code (2)                | USB interface | Package (1) | Operating range               |
|-------------------|------------------|----------------------------------|---------------|-------------|-------------------------------|
| 16 <sup>(3)</sup> | 2.7-5.5          | AT90USB1286-AU<br>AT90USB1286-MU | Device        | MD<br>PS    | Industrial<br>(-40° to +85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully green.
  - 3. See "Maximum speed vs. VCC" on page 392.

| MD | 64 - lead, 14 × 14mm body size, 1.0mm body thickness 0.8mm lead pitch, thin profile plastic quad flat package (TQFP) |
|----|----------------------------------------------------------------------------------------------------------------------|
| PS | 64 - lead, 9 × 9mm body size, 0.50mm pitch<br>Quad flat no lead package (QFN)                                        |

#### 7.4 Atmel AT90USB1287


| Speed [MHz]       | Power supply [V] | Ordering code (2)                | USB interface | Package (1) | Operating range               |
|-------------------|------------------|----------------------------------|---------------|-------------|-------------------------------|
| 16 <sup>(3)</sup> | 2.7-5.5          | AT90USB1287-AU<br>AT90USB1287-MU | Host (OTG)    | MD<br>PS    | Industrial<br>(-40° to +85°C) |

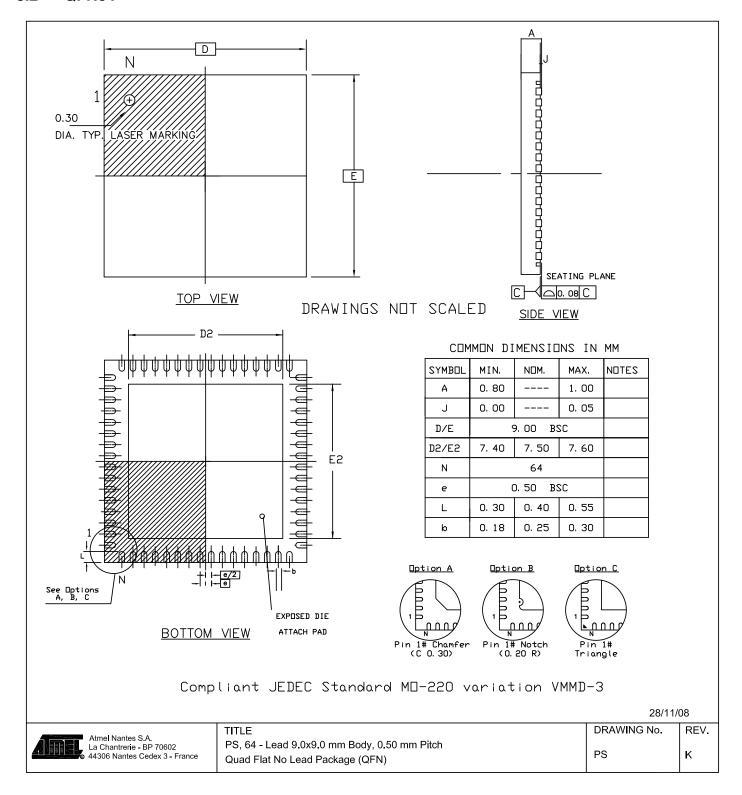
- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging complies to the European directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully green.
  - 3. See "Maximum speed vs. VCC" on page 392.

| MD | 64 - lead, 14 × 14mm body size, 1.0mm body thickness 0.8mm lead pitch, thin profile plastic quad flat package (TQFP) |  |
|----|----------------------------------------------------------------------------------------------------------------------|--|
| PS | 64 - lead, $9 \times 9$ mm body size, 0.50mm pitch Quad flat no lead package (QFN)                                   |  |

# 8. Packaging information

## 8.1 TQFP64




NOTES: STANDARD NOTES FOR PQFP/VQFP/TQFP/DQFP

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. 1982.
- 2. "D1 AND E1" DIMENSIONS DO NOT INCLUDE MOLD PROTUSIONS MOLD PROTUSIONS SHALL NOT EXCEED 0.25 mm (0.010 INCH).

  THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE BY AS MUCH AS 0.15 mm.
- 3. DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXISTS PLASTIC BODY AT BOTTOM OF PARTING LINE.
- 4. DATUM "A" AND "D" TO BE DETERMINED AT DATUM PLANE H.
- 5. DIMENSION "f" DOES NOT INCLUDE DAMBAR PROTUSION ALLOWABLE
  DAMBAR PROTUSION SHALL BE 0.08 mm/.003" TOTAL EXCESS OF THE
  "f" DIMENSION AT MAXIMUM MATERIAL CONDITION.

DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

## 8.2 QFN64



## NOTES: QFN STANDARD NOTES

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. 1994.
- 2. DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION 6 SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. MAX. PACKAGE WARPAGE IS 0.05mm.
- 4. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- 5. PIN #1 ID ON TOP WILL BE LASER MARKED.
- 6. THIS DRAWING CONFORMES TO JEDEC REGISTERED OUTLINE MO-220.
- 7. A MAXIMUM 0.15mm PULL BACK (L1) MAY BE PRESENT.
  - L MINUS L1 TO BE EQUAL TO OR GREATER THAN 0.30 mm
- 8. THE TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.

  THE TERMINAL #1 IDENTIFIER BE EITHER A MOLD OR MARKED FEATURE

not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

#### Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

### 6. VBUS session valid threshold voltage

The VSession valid threshold voltage is internally connected to VBus\_Valid (4.4V approx.). That causes the device to attach to the bus only when Vbus is greater than VBusValid instead of V\_Session Valid. Thus if VBUS is lower than 4.4V, the device is detached.

#### Problem fix/workaround

According to the USB power drop budget, this may require connecting the device to aroot hub or a self-powered hub.

## 5. UBS signal rate

The average USB signal rate may sometime be measured out of the USB specifications (12MHz ±30kHz) with short frames. When measured on a long period, the average signal rate value complies with the specifications. This bit rate deviation does not generates communication or functional errors.

#### Problem fix/workaround

None.

#### 4. VBUS residual level

In USB device and host mode, once a 5V level has been detected to the VBUS pad, a residual level (about 3V) can be measured on the VBUS pin.

#### Problem fix/workaround

None.

## 3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

#### Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of the TWI network.

#### 2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

#### Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

## 9.2 Atmel AT90USB646/7 errata

### 9.2.1 AT90USB646/7 errata history TBD

| Silicon Release | 90USB646-16MU | 90USB647-16AU | 90USB647-16MU |
|-----------------|---------------|---------------|---------------|
| First Release   |               |               |               |
| Second Release  |               |               |               |

Note '\*' means a blank or any alphanumeric string.

#### 9.2.2 AT90USB646/7 first release.

- Incorrect interrupt routine execution for VBUSTI, IDTI interrupts flags
- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

## 6. Incorrect CPU behavior for VBUSTI and IDTI interrupts routines

The CPU core may incorrectly execute the interrupt vector related to the VBUSTI and IDTI interrupt flags.

#### Problem fix/workaround

Do not enable these interrupts, firmware must process these USB events by polling VBUSTI and IDTI flags.

#### 5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

#### Problem fix/workaround

None.

#### 4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

#### Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

#### 3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

#### 9.2.3 Atmel AT90USB646/7 Second Release.

- USB Eye Diagram violation in low-speed mode
- Transient perturbation in USB suspend mode generates over consumption
- Spike on TWI pins when TWI is enabled
- High current consumption in sleep mode
- Async timer interrupt wake up from sleep generate multiple interrupts

### 5. USB Eye Diagram violation in low-speed mode

The low to high transition of D- violates the USB eye diagram specification when transmitting with low-speed signaling.

#### Problem fix/workaround

None.

#### 4. Transient perturbation in USB suspend mode generates overconsumption

In device mode and when the USB is suspended, transient perturbation received on the USB lines generates a wake up state. However the idle state following the perturbation does not set the SUSPI bit anymore. The internal USB engine remains in suspend mode but the USB differential receiver is still enabled and generates a typical 300µA extra-power consumption. Detection of the suspend state after the transient perturbation should be performed by software (instead of reading the SUSPI bit).

#### Problem fix/workaround

USB waiver allows bus powered devices to consume up to 2.5mA in suspend state.

#### 3. Spike on TWI pins when TWI is enabled

100ns negative spike occurs on SDA and SCL pins when TWI is enabled.

#### Problem fix/workaround

No known workaround, enable Atmel AT90USB64/128 TWI first versus the others nodes of the TWI network.

### 2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

#### Problem fix/workaround

Before entering sleep, interrupts not used to wake up the part from the sleep mode should be disabled.

#### 1. Asynchronous timer interrupt wake up from sleep generates multiple interrupts

If the CPU core is in sleep and wakes-up from an asynchronous timer interrupt and then go back in sleep mode again it may wake up several times.

#### Problem fix/workaround

A software workaround is to wait with performing the sleep instruction until TCNT2>OCR2+1.

## 10. Datasheet revision history for Atmel AT90USB64/128

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

## 10.1 Changes from 7593A to 7593B

- 1. Changed default configuration for fuse bytes and security byte.
- 2. Suppression of timer 4,5 registers which does not exist.
- 3. Updated typical application schematics in USB section

## 10.2 Changes from 7593B to 7593C

1. Update to package drawings, MQFP64 and TQFP64.

## 10.3 Changes from 7593C to 7593D

 For further product compatibility, changed USB PLL possible prescaler configurations. Only 8MHz and 16MHz crystal frequencies allows USB operation (see Table 7-11 on page 50).

## 10.4 Changes from 7593D to 7593E

- 1. Updated PLL Prescaler table: configuration words are different between AT90USB64x and AT90USB128x to enable the PLL with a 16MHz source.
- 2. Cleaned up some bits from USB registers, and updated information about OTG timers, remote wake-up, reset and connection timings.
- 3. Updated clock distribution tree diagram (USB prescaler source and configuration register).
- 4. Cleaned up register summary.
- 5. Suppressed PCINT23:8 that do not exist from External Interrupts.
- 6. Updated Electrical Characteristics.
- 7. Added Typical Characteristics.
- 8. Update Errata section.

## 10.5 Changes from 7593E to 7593F

- 1. Removed 'Preliminary' from document status.
- 2. Clarification in Stand by mode regarding USB.

## 10.6 Changes from 7593F to 7593G

1. Updated Errata section.

## 10.7 Changes from 7593G to 7593H

- 1. Added Signature information for 64K devices.
- 2. Fixed figure for typical bus powered application
- 3. Added min/max values for BOD levels
- 4. Added ATmega32U6 product
- 5. Update Errata section
- 6. Modified descriptions for HWUPE and WAKEUPE interrupts enable (these interrupts should be enabled only to wake up the CPU core from power down mode).