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Figure 2–23. Data Path in Reverse Serial Loopback Mode

BIST (Built-In Self Test)

The Stratix GX transceiver has built-in self test modes to aid in debug and 
testing. The BIST modes are set in the Stratix GX MegaWizard Plug-In 
Manager in the Quartus II software. Only one BIST mode can be set for 
any single instance of the transceiver block. The BIST mode applies to all 
channels used in a transceiver.

The following is a list of the available BIST modes:

■ PRBS generator and verifier
■ Incremental mode generator and verifier
■ High-frequency generator
■ Low-frequency generator
■ Mixed-frequency generator

Figures 2–24 and 2–25 are diagrams of the BIST PRBS data path and the 
BIST incremental data path, respectively.
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Introduction
multiplication value. The ×1 and ×2 operation is also possible by 
bypassing the SERDES. The SERDES DPA cannot support ×1, ×2, or ×4 
natively.

On the receiver side, the high-frequency clock generated by the PLL shifts 
the serial data through a shift register (also called deserializer). The 
parallel data is clocked out to the logic array synchronized with the low-
frequency clock. On the transmitter side, the parallel data from the logic 
array is first clocked into a parallel-in, serial-out shift register 
synchronized with the low-frequency clock and then transmitted out by 
the output buffers.

There are two dedicated fast PLLs each in EP1SGX10 to EP1SGX25 
devices, and four in EP1SGX40 devices. These PLLs are used for the 
SERDES operations as well as general-purpose use.

Stratix GX Differential I/O Receiver Operation (Non-DPA Mode)

You can configure any of the Stratix GX source synchronous differential 
input channels as a receiver channel (see Figure 3–1). The differential 
receiver deserializes the incoming high-speed data. The input shift 
register continuously clocks the incoming data on the negative transition 
of the high-frequency clock generated by the PLL clock (×W).

The data in the serial shift register is shifted into a parallel register by the 
RXLOADEN signal generated by the fast PLL counter circuitry on the third 
falling edge of the high-frequency clock. However, you can select which 
falling edge of the high frequency clock loads the data into the parallel 
register, using the data-realignment circuit.

In normal mode, the enable signal RXLOADEN loads the parallel data into 
the next parallel register on the second rising edge of the low-frequency 
clock. You can also load data to the parallel register through the 
TXLOADEN signal when using the data-realignment circuit.

Figure 3–1 shows the block diagram of a single SERDES receiver channel. 
Figure 3–2 shows the timing relationship between the data and clocks in 
Stratix GX devices in ×10 mode. W is the low-frequency multiplier and J 
is the data parallelization division factor.
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Introduction
The logic array sends parallel data to the SERDES transmitter circuit 
when the TXLOADEN signal is asserted. This signal is generated by the 
high-speed counter circuitry of the logic array low-frequency clock’s 
rising edge. The data is then transferred from the parallel register into the 
serial shift register by the TXLOADEN signal on the third rising edge of the 
high-frequency clock.

Figure 3–3 shows the block diagram of a single SERDES transmitter 
channel and Figure 3–4 shows the timing relationship between the data 
and clocks in Stratix GX devices in ×10 mode. W is the low-frequency 
multiplier and J is the data parallelization division factor.

Figure 3–3. Stratix GX High-Speed Interface Serialized in ×10 Mode

Figure 3–4. Transmitter Timing Diagram
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Stratix GX Architecture
Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. The asynchronous load acts as a preset when the 
asynchronous load data input is tied high.

With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [7..0] and LAB local interconnect generate the LAB-
wide control signals. The MultiTrackTM interconnect’s inherent low skew 
allows clock and control signal distribution in addition to data. Figure 4–3 
shows the LAB control signal generation circuit.

Figure 4–3. LAB-Wide Control Signals

Logic Elements The smallest unit of logic in the Stratix GX architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
contains a four-input LUT, which is a function generator that can 
implement any function of four variables. In addition, each LE contains a 
programmable register and carry chain with carry select capability. A 
single LE also supports dynamic single bit addition or subtraction mode 
selectable by an LAB-wide control signal. Each LE drives all types of 
interconnects: local, row, column, LUT chain, register chain, and direct 
link interconnects. See Figure 4–4.
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MultiTrack Interconnect
Figure 4–9. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs, M512, or M4K blocks up or down 
from a source LAB. Every LAB has its own set of C4 interconnects to drive 
either up or down. Figure 4–10 shows the C4 interconnect connections 
from an LAB in a column. The C4 interconnects can drive and be driven 
by all types of architecture blocks, including DSP blocks, TriMatrix 
memory blocks, and vertical IOEs. For LAB interconnection, a primary 
LAB or its LAB neighbor can drive a given C4 interconnect. 
C4 interconnects can drive each other to extend their range as well as 
drive row interconnects for column-to-column connections. 
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TriMatrix Memory
Figure 4–19. EP1SGX40 Device with M-RAM Interface Locations  Note (1)

Note to Figure 4–19:
(1) Device shown is an EP1SGX40 device. The number and position of M-RAM blocks varies in other devices.

The M-RAM block local interconnect is driven by the R4, R8, C4, C8, and 
direct link interconnects from adjacent LABs. For independent M-RAM 
blocks, up to 10 direct link address and control signal input connections 
to the M-RAM block are possible from the left adjacent LABs for M-RAM 
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Digital Signal Processing Block
Pipeline/Post Multiply Register

The output of 9 × 9- or 18 × 18-bit multipliers can optionally feed a register 
to pipeline multiply-accumulate and multiply-add/subtract functions. 
For 36 × 36-bit multipliers, this register pipelines the multiplier function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block 
which consist of an adder/subtractor/accumulator unit, summation unit, 
output select multiplexer, and output registers. The results are used to 
configure the adder/output block as a pure output, accumulator, a simple 
two-multiplier adder, four-multiplier adder, or final stage of the 36-bit 
multiplier. You can configure the adder/output block to use output 
registers in any mode, and must use output registers for the accumulator. 
The system cannot use adder/output blocks independently of the 
multiplier. Figure 4–33 shows the adder and output stages.
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Stratix GX Architecture
Figure 4–33. Adder/Output Blocks  Note (1)

Notes to Figure 4–33:
(1) Adder/output block shown in Figure 4–33 is in 18 × 18-bit mode. In 9 × 9-bit mode, there are four adder/subtractor 

blocks and two summation blocks.
(2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.
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Stratix GX Architecture
These clocks are organized into a hierarchical clock structure that allows 
for up to 22 clocks per device region with low skew and delay. This 
hierarchical clocking scheme provides up to 40 unique clock domains 
within EP1SGX10 and EP1SGX25 devices, and 48 unique clock domains 
within EP1SGX40 devices.

There are 12 dedicated clock pins (CLK[15..12], and CLK[7..0]) to 
drive either the global or regional clock networks. Three clock pins drive 
the top, bottom, and left side of the device. Enhanced and fast PLL 
outputs as well as an I/O interface can also drive these global and 
regional clock networks.

There are up to 20 recovered clocks (rxclkout[20..0]) and up to 
5 transmitter clock outputs (coreclk_out) which can drive any of the 
global clock networks (CLK[15..0]), as shown in Figure 4–41.

Global Clock Network

These clocks drive throughout the entire device, feeding all device 
quadrants. The global clock networks can be used as clock sources for all 
resources within the device IOEs, LEs, DSP blocks, and all memory 
blocks. These resources can also be used for control signals, such as clock 
enables and synchronous or asynchronous clears fed from the external 
pin. The global clock networks can also be driven by internal logic for 
internally generated global clocks and asynchronous clears, clock 
enables, or other control signals with large fanout. Figure 4–41 shows the 
12 dedicated CLK pins and the transceiver clocks driving global clock 
networks.
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PLLs & Clock Networks
Figure 4–45. Regional Clock Bus

IOE clocks have horizontal and vertical block regions that are clocked by 
eight I/O clock signals chosen from the 22-quadrant or half-quadrant 
clock resources. Figures 4–46 and 4–47 show the quadrant and half-
quadrant relationship to the I/O clock regions, respectively. The vertical 
regions (column pins) have less clock delay than the horizontal regions 
(row pins).
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PLLs & Clock Networks
Figure 4–52. Clock Switchover Circuitry

Note to Figure 4–52:
(1) PFD: phase frequency detector.

There are two possible ways to use the clock switchover feature.

■ You can use automatic switchover circuitry for switching between 
inputs of the same frequency. For example, in applications that 
require a redundant clock with the same frequency as the primary 
clock, the switchover state machine generates a signal that controls 
the multiplexer select input on the bottom of Figure 4–52. In this case, 
the secondary clock becomes the reference clock for the PLL.

■ You can use the clkswitch input for user- or system-controlled 
switch conditions. This is possible for same-frequency switchover or 
to switch between inputs of different frequencies. For example, if 
inclk0 is 66 MHz and inclk1 is 100 MHz, you must control the 
switchover because the automatic clock-sense circuitry cannot 
monitor primary and secondary clock frequencies with a frequency 
difference of more than ±20%. This feature is useful when clock 
sources can originate from multiple cards on the backplane, 
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Stratix GX Architecture
requiring a system-controlled switchover between frequencies of 
operation. You can use clkswitch together with the lock signal to 
trigger the switch from a clock that is running but becomes unstable 
and cannot be locked onto. 

During switchover, the PLL VCO continues to run and either slows down 
or speeds up, generating frequency drift on the PLL outputs. The clock 
switchover transitions without any glitches. After the switch, there is a 
finite resynchronization period to lock onto new clock as the VCO ramps 
up. The exact amount of time it takes for the PLL to relock relates to the 
PLL configuration and may be adjusted by using the programmable 
bandwidth feature of the PLL. The preliminary specification for the 
maximum time to relock is 100 µs.

f For more information on clock switchover, see AN313: Implementing 
Clock Switchover in Stratix & Stratix GX Devices.

PLL Reconfiguration

The PLL reconfiguration feature enables system logic to change 
Stratix GX device enhanced PLL counters and delay elements without 
reloading a Programmer Object File (.pof). This provides considerable 
flexibility for frequency synthesis, allowing real-time PLL frequency and 
output clock delay variation. You can sweep the PLL output frequencies 
and clock delay in prototype environments. The PLL reconfiguration 
feature can also dynamically or intelligently control system clock speeds 
or tCO delays in end systems.

Clock delay elements at each PLL output port implement variable delay. 
Figure 4–53 shows a diagram of the overall dynamic PLL control feature 
for the counters and the clock delay elements. The configuration time is 
less than 20 μs for the enhanced PLL using a input shift clock rate of 
25 MHz. The charge pump, loop filter components, and phase shifting 
using VCO phase taps cannot be dynamically adjusted.
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Stratix GX Architecture
Figure 4–60. Column I/O Block Connection to the Interconnect

Notes to Figure 4–60:
(1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], 

four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
(2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications 

io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables 
io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear 
signals io_cclr[5..0].
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I/O Structure
Stratix GX devices have an I/O interconnect similar to the R4 and C4 
interconnect to drive high-fanout signals to and from the I/O blocks. 
There are 16 signals that drive into the I/O blocks composed of four 
output enables io_boe[3..0], four clock enables io_bce[3..0], four 
clocks io_bclk[3..0], and four clear signals io_bclr[3..0]. The 
pin’s datain signals can drive the IO interconnect, which in turn drives 
the logic array or other I/O blocks. In addition, the control and data 
signals can be driven from the logic array, providing a slower but more 
flexible routing resource. The row or column IOE clocks, io_clk[7..0], 
provide a dedicated routing resource for low-skew, high-speed clocks. 
I/O clocks are generated from regional, global, or fast regional clocks (see 
“PLLs & Clock Networks” on page 4–68). Figure 4–61 illustrates the 
signal paths through the I/O block.

Figure 4–61. Signal Path Through the I/O Block

Each IOE contains its own control signal selection for the following 
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, 
clk_in, and clk_out. Figure 4–62 illustrates the control signal 
selection.
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Stratix GX Architecture
Table 4–28 shows I/O standard support for each I/O bank.

Table 4–28. I/O Support by Bank (Part 1 of 2)

I/O Standard Top & Bottom Banks 
(3, 4, 7 & 8)

Left Banks
(1 & 2)

Enhanced PLL External 
Clock Output Banks 

(9, 10, 11 & 12)

LVTTL v v v

LVCMOS v v v

2.5 V v v v

1.8 V v v v

1.5 V v v v

3.3-V PCI v v

3.3-V PCI-X 1.0 v v

LVPECL v v

3.3-V PCML v v

LVDS v v

HyperTransport technology v v

Differential HSTL (clock 
inputs) v v

Differential HSTL (clock 
outputs) v

Differential SSTL (clock 
outputs) v

3.3-V GTL v v

3.3-V GTL+ v v v

1.5-V HSTL class I v v v

1.5-V HSTL class II v v

1.8-V HSTL class I v v v

1.8-V HSTL class II v v

SSTL-18 class I v v v

SSTL-18 class II v v

SSTL-2 class I v v v

SSTL-2 class II v v v

SSTL-3 class I v v v
Altera Corporation   4–117
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DC & Switching Characteristics
Table 6–56. EP1SGX10 Column Pin Global Clock External I/O Timing Parameters

Symbol
-5 Speed Grade -6 Speed Grade -7 Speed Grade

Unit
Min Max Min Max Min Max

tINSU 1.785 1.814 2.087 ns

tINH 0.000 0.000 0.000 ns

tOUTCO 2.000 5.057 2.000 5.438 2.000 6.214 ns

tINSUPLL 0.988 0.936 1.066 ns

tINHPLL 0.000 0.000 0.000 ns

tOUTCOPLL 0.500 2.634 0.500 2.774 0.500 3.162 ns

Table 6–57. EP1SGX10 Row Pin Fast Regional Clock External I/O Timing Parameters

Symbol
-5 Speed Grade -6 Speed Grade -7 Speed Grade

Unit
Min Max Min Max Min Max

tINSU 2.194 2.384 2.727 ns

tINH 0.000 0.000 0.000 ns

tOUTCO 2.000 4.956 2.000 4.971 2.000 5.463 ns

Table 6–58. EP1SGX10 Row Pin Regional Clock External I/O Timing Parameters

Symbol
-5 Speed Grade -6 Speed Grade -7 Speed Grade

Unit
Min Max Min Max Min Max

tINSU 2.244 2.413 2.574 ns

tINH 0.000 0.000 0.000 ns

tOUTCO 2.000 4.906 2.000 4.942 2.000 5.616 ns

tINSUPLL 1.126 1.186 1.352 ns

tINHPLL 0.000 0.000 0.000 ns

tOUTCOPLL 0.500 2.804 0.500 2.627 0.500 2.765 ns

Table 6–59. EP1SGX10 Row Pin Global Clock External I/O Timing Parameters (Part 1 of 2)

Symbol
-5 Speed Grade -6 Speed Grade -7 Speed Grade

Unit
Min Max Min Max Min Max

tINSU 1.919 2.062 2.368 ns

tINH 0.000 0.000 0.000 ns
Altera Corporation   6–39
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Timing Model
Tables 6–84 and 6–85 show the maximum output clock rate for column 
and row pins in Stratix GX devices.

1.8 V 422 422 390 MHz

1.5 V 422 422 390 MHz

LVCMOS 422 422 390 MHz

GTL 300 250 200 MHz

GTL+ 300 250 200 MHz

SSTL-3 class I 400 350 300 MHz

SSTL-3 class II 400 350 300 MHz

SSTL-2 class I 400 350 300 MHz

SSTL-2 class II 400 350 300 MHz

SSTL-18 class I 400 350 300 MHz

SSTL-18 class II 400 350 300 MHz

1.5-V HSTL class I 400 350 300 MHz

1.5-V HSTL class II 400 350 300 MHz

1.8-V HSTL class I 400 350 300 MHz

1.8-V HSTL class II 400 350 300 MHz

3.3-V PCI 422 422 390 MHz

3.3-V PCI-X 1.0 422 422 390 MHz

Compact PCI 422 422 390 MHz

AGP 1× 422 422 390 MHz

AGP 2× 422 422 390 MHz

CTT 300 250 200 MHz

Differential HSTL 400 350 300 MHz

LVDS 645 645 640 MHz

LVPECL 645 645 640 MHz

PCML 300 275 275 MHz

HyperTransport technology 645 645 640 MHz

Table 6–83. Stratix GX Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins (Part 2 of 2)

I/O Standard -5 Speed Grade -6 Speed Grade -7 Speed Grade Unit

Table 6–84. Stratix GX Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins (Part 1 of 2)

I/O Standard -5 Speed Grade -6 Speed Grade -7 Speed Grade Unit

LVTTL 350 300 250 MHz

2.5 V 350 300 300 MHz
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High-Speed I/O Specification
High-Speed I/O 
Specification

Table 6–86 provides high-speed timing specifications definitions.

1.5 V 350 300 300 MHz

LVCMOS 400 350 300 MHz

GTL 200 167 125 MHz

GTL+ 200 167 125 MHz

SSTL-3 class I 167 150 133 MHz

SSTL-3 class II 167 150 133 MHz

SSTL-2 class I 150 133 133 MHz

SSTL-2 class II 150 133 133 MHz

SSTL-18 class I 150 133 133 MHz

SSTL-18 class II 150 133 133 MHz

HSTL class I 250 225 200 MHz

HSTL class II 225 225 200 MHz

3.3-V PCI 250 225 200 MHz

3.3-V PCI-X 1.0 225 225 200 MHz

Compact PCI 400 350 300 MHz

AGP 1× 400 350 300 MHz

AGP 2× 400 350 300 MHz

CTT 300 250 200 MHz

Differential HSTL 225 225 200 MHz

LVDS 717 717 500 MHz

LVPECL 717 717 500 MHz

PCML 420 420 420 MHz

HyperTransport technology 420 420 420 MHz

Table 6–85. Stratix GX Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 2] Pins (Part 2 of 2)

I/O Standard -5 Speed Grade -6 Speed Grade -7 Speed Grade Unit

Table 6–86. High-Speed Timing Specifications & Definitions (Part 1 of 2)

High-Speed Timing Specification Definitions

tC High-speed receiver/transmitter input and output clock period.

fHSCLK High-speed receiver/transmitter input and output clock frequency.

tRISE Low-to-high transmission time.
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DC & Switching Characteristics
Table 6–87 shows the high-speed I/O timing specifications for Stratix GX 
devices.

tFALL High-to-low transmission time.

Timing unit interval (TUI) The timing budget allowed for skew, propagation delays, and data 
sampling window. (TUI = 1/(Receiver Input Clock Frequency ×  
Multiplication Factor) = tC/w).

fHSDR Maximum/minimum LVDS data transfer rate (fHSDR = 1/TUI), non-DPA.

fHSDRDPA Maximum/minimum LVDS data transfer rate (fHSDRDPA = 1/TUI), DPA.

Channel-to-channel skew (TCCS) The timing difference between the fastest and slowest output edges, 
including tCO variation and clock skew. The clock is included in the TCCS 
measurement.

Sampling window (SW) The period of time during which the data must be valid in order to capture 
it correctly. The setup and hold times determine the ideal strobe position 
within the sampling window.
SW = tSW (max) – tSW (min).

Input jitter (peak-to-peak) Peak-to-peak input jitter on high-speed PLLs.

Output jitter (peak-to-peak) Peak-to-peak output jitter on high-speed PLLs.

tDUTY Duty cycle on high-speed transmitter output clock.

tLOCK Lock time for high-speed transmitter and receiver PLLs.

Table 6–86. High-Speed Timing Specifications & Definitions (Part 2 of 2)

High-Speed Timing Specification Definitions

Table 6–87. High-Speed I/O Specifications (Part 1 of 4) Notes (1), (2)

Symbol Conditions
-5 Speed Grade -6 Speed Grade -7 Speed Grade

Unit
Min Typ Max Min Typ Max Min Typ Max

fHSCLK (Clock 
frequency)
(LVDS, 
LVPECL, 
HyperTransport 
technology)
fHSCLK = 
fHSDR / W

W = 1 to 30 for ≤ 717 
Mbps
W = 2 to 30 for > 717 
Mbps

10 717 10 717 10 624 MHz

fHSCLK_DPA 74 717 74 717 74 717 MHz
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DLL Jitter
DLL Jitter Table 6–93 reports the jitter for the DLL in the DQS phase-shift reference 
circuit.

tDUTY Duty cycle for DFFIO 1× CLKOUT pin (3) 45 55 %

tJITTER Period jitter for DIFFIO clock out (3) ±80 ps

Period jitter for internal global or 
regional clock

±100 ps for >200 MHz outclk
±20 mUI for <200 MHz outclk

ps or 
mUI

tLOCK Time required for PLL to acquire lock 10 100 μs

m Multiplication factors for m counter (4) 1 32 Integer

l0, l1, g0 Multiplication factors for l0, l1, and g0 
counter (4), (5)

1 32 Integer

tARESET Minimum pulse width on areset 
signal

10 ns

Notes to Tables 6–91 & 6–92:
(1) See “Maximum Input & Output Clock Rates” on page 6–54.
(2) When using the SERDES, high-speed differential I/O mode supports a maximum output frequency of 210 MHz 

to the global or regional clocks (that is, the maximum data rate 840 Mbps divided by the smallest SERDES J factor 
of 4).

(3) This parameter is for high-speed differential I/O mode only.
(4) These counters have a maximum of 32 if programmed for 50/50 duty cycle. Otherwise, they have a maximum 

of 16. 
(5) High-speed differential I/O mode supports W = 1 to 16 and J = 4, 7, 8, or 10.

Table 6–92. Fast PLL Specifications for -7 & -8 Speed Grades (Part 2 of 2)

Symbol Parameter Min Max Unit

Table 6–93. DLL Jitter for DQS Phase Shift Reference Circuit

Frequency (MHz) DLL Jitter (ps)

197 to 200 ± 100

160 to 196 ± 300

100 to 159 ± 500
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