

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (1.375K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f04ka200t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

As with Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and busing. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

The user access to the program memory space is restricted to the lower half of the address range (00000h to 7FFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the PIC24F04KA201 family of devices is displayed in Figure 4-1.

TABLE 4-20: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	PGMONLY	—	—	—	—	_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1
NVMKEY	0766	—	_	_	_	_	_	_	_	NVMKEY7	NVMKEY6	NVMKEY5	NVMKEY4	NVMKEY3	NVMKEY2	NVMKEY1	NVMKEY0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-21: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	_	T3MD	T2MD	T1MD	-	—	—	I2C1MD	—	U1MD	—	SPI1MD	—	—	ADC1MD	0000
PMD2	0772		—	_	—	—	_	_	IC1MD	_	_	_	_	_	_	_	OC1MD	0000
PMD3	0774		—	_	—	—	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0776	_	—	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	HLVDMD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

NOTES:

NLOISTEN	<i>i</i> -0. ILC0						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NVMIE		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	—	—	—	T1IE	OC1IE	IC1IE	INTOIE
bit /							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	NVMIE: NVN	/I Interrupt Enab	le bit				
	1 = Interrupt	request enabled) blad				
bit 14		request not ena	Died				
bit 13		Conversion Con) Inlete Interrun	t Enable bit			
bit to	1 = Interrupt	request enable					
	0 = Interrupt	request not ena	bled				
bit 12	U1TXIE: UA	RT1 Transmitter	Interrupt Enal	ble bit			
	1 = Interrupt	request enabled	t i				
h:+ 44		request not ena		- L:1			
DIT 11		RI1 Receiver Ir	iterrupt Enable	DIT			
	0 = Interrupt	request enabled	bled				
bit 10	SPI1IE: SPI1	1 Transfer Comp	olete Interrupt I	Enable bit			
	1 = Interrupt	request enabled	k				
	0 = Interrupt	request not ena	bled				
bit 9	SPF1IE: SPI	1 Fault Interrupt	Enable bit				
	1 = Interrupt	request enabled) blod				
bit 8	T3IF: Timer3	Interrunt Enabl	e hit				
Sito	1 = Interrupt	request enable	1				
	0 = Interrupt	request not ena	bled				
bit 7	T2IE: Timer2	2 Interrupt Enabl	e bit				
	1 = Interrupt	request enabled	t				
h:+ C 4	0 = Interrupt	request not ena	bled				
DIL 0-4		hted: Read as () o hit				
DIL 3							
	0 = Interrupt	request not ena	bled				
bit 2	OC1IE: Outp	out Compare Ch	annel 1 Interru	pt Enable bit			
	1 = Interrupt	request enabled	t				
	0 = Interrupt	request not ena	bled				
bit 1	IC1IE: Input	Capture Channe	el 1 Interrupt E	nable bit			
	⊥ = Interrupt 0 = Interrupt	request enabled	ג bled				
bit 0	INTOIE: Exte	ernal Interrupt 0	Enable bit				
	1 = Interrupt	request enabled	1				
	0 = Interrupt	request not ena	bled				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	NVMIP2	NVMIP1	NVMIP0	_	_	—	_		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_	AD1IP2	U1TXIP1	U1TXIP0						
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14-12	NVMIP<2:0>	NVM Interrup	t Priority bits						
	 111 = Interrupt is priority 7 (highest priority interrupt) 								
	•								
	•								
	001 = Interru	pt is priority 1	chlad						
bit 11 7		pt source is us							
DIL II-7		A/D Conversion	U Vn Complete In	torrupt Driority	hita				
DIL 0-4	AD IIP<2:0>:	A/D COnversion	highost priority		DILS				
	•		ingriest priority	(interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1 pt source is dis	ahled						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	UIIIIPICIICU. ICau as U								
5112 0	111 = Interrupt is priority 7 (highest priority interrupt)								
	•		5	,,					
	•								
	• 001 = Interru	nt is priority 1							
	000 = Interru	pt source is dis	abled						
		•							

REGISTER 7-14: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24F04KA201 family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator

The primary oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 23.1 "Configuration Bits" for further details). The Primary Oscillator Configuration POSCMD<1:0> bits, (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC primary oscillator with postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode frequency range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 MHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

12.0 TIMER2/3

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer2/3 module is a 32-bit timer, which can also be configured as two independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 operates in three modes:

- Two independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- · Single 32-bit timer
- · Single 32-bit synchronous counter
- They also support these features:
- Timer gate operation
- Selectable prescaler settings
- · Timer operation during Idle and Sleep modes
- · Interrupt on a 32-bit Period register match
- ADC Event Trigger

Individually, both of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the ADC event trigger (this is implemented only with Timer3). The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. T2CON and T3CON are provided in generic form in Register 12-1 and Register 12-2, respectively.

For 32-bit timer/counter operation, Timer2 is the least significant word (lsw) and Timer3 is the most significant word (msw) of the 32-bit timer.

Note:	For 32-bit operation, T3CON control bits
	are ignored. Only T2CON control bits are
	used for setup and control. Timer2 clock
	and gate inputs are utilized for the 32-bit
	timer modules, but an interrupt is generated
	with the Timer3 interrupt flags.

To configure Timer2/3 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value. PR3 will contain the msw of the value while PR2 contains the lsw.
- 5. If interrupts are required, set the interrupt enable bit, T3IE; use the priority bits, T3IP<2:0>, to set the interrupt priority.

While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.

6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2>. TMR3 always contains the msw of the count, while TMR2 contains the lsw.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit in T2CON<3>.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽¹⁾	_	TSIDL ⁽¹⁾	_	_	_	_	_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0		
_	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		<u> </u>	TCS ⁽¹⁾	_		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
		(4)							
bit 15	TON: Timer3	On bit ⁽¹⁾							
	1 = Starts 16-bit Timer3 0 = Stops 16-bit Timer3								
hit 14		U = Stops To-bit Timets							
hit 13	TSIDI · Ston i	Unimplemented: Read as 0							
bit to	1 = Discontini	ue module oper	ration when de	vice enters Idle	mode				
	0 = Continue	module operati	on in Idle mod	e					
bit 12-7	Unimplemen	ted: Read as 'o)'						
bit 6	TGATE: Time	er3 Gated Time	Accumulation	Enable bit ⁽¹⁾					
	When TCS =	<u>1:</u>							
	This bit is igno	ored.							
	<u>When $ICS = 1$</u>	<u>0:</u> ne accumulatio	n enabled						
	0 = Gated tin	ne accumulation	n disabled						
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Prescale	e Select bits ⁽¹⁾					
	11 = 1:256	-							
	10 = 1:64								
	01 = 1:8								
hit 3-2	Unimplemen	ted: Read as '(ı'						
bit 1	TCS: Timer3	Clock Source S	Select hit(1)						
bit i	1 = External	clock from the	T3CK pin (on t	he risina edae)					
	0 = Internal c	clock (Fosc/2)							
bit 0	Unimplemen	ted: Read as 'o)'						
	0011				<i></i>	T : 0			

REGISTER 12-2: T3CON: TIMER3 CONTROL REGISTER

Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timer3 operation; all timer functions are set through T2CON.

NOTES:

REGISTER 15-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPI1 Transmit Buffer Full Status bit
	 1 = Transmit not yet started, SPI1TXB is full 0 = Transmit started, SPI1TXB is empty
	In Standard Buffer mode: Automatically set in hardware when CPU writes SPI1BUF location, loading SPI1TXB. Automatically cleared in hardware when SPI1 module transfers data from SPI1TXB to SPI1SR.
hit 0	In Enhanced Buffer mode: Automatically set in hardware when CPU writes SPI1BUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.
DILO	1 = Receive complete, SPI1RXB is full 0 = Receive is not complete, SPI1RXB is empty
	In Standard Buffer mode: Automatically set in hardware when SPI1 transfers data from SPI1SR to SPI1RXB. Automatically cleared in hardware when core reads SPI1BUF location, reading SPI1RXB.
	In Enhanced Buffer mode:

Automatically set in hardware when SPI1 transfers data from SPI1SR to buffer, filling the last unread buffer location.

Automatically cleared in hardware when a buffer location is available for a transfer from SPI1SR.

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the *"PIC24F Family Reference Manual"*, Section 21. "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the U1CTS and U1RTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the U1TX and U1RX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with U1CTS and U1RTS pins

- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- · Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is displayed in Figure 17-1. The UART module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 17-1: U1MODE: UART1 MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- **Note 1:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 2: Bit availability depends on pin availability.

REGISTER 19-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	_	PCFG12	PCFG11	PCFG10	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 12-10	PCFG<12:10>: Analog Input Pin Configuration Control bits
	1 = Pin for corresponding analog channel is configured in Digital mode; I/O port read enabled
	0 = Pin configured in Analog mode; I/O port read disabled; A/D samples pin voltage
bit 9-6	Unimplemented: Read as '0'
bit 5-0	PCFG<5:0>: Analog Input Pin Configuration Control bits
	1 - Din for corresponding analog channel is configured in Digital mode: I/O port road enabled

1 = Pin for corresponding analog channel is configured in Digital mode; I/O port read enabled
 0 = Pin configured in Analog mode; I/O port read disabled; A/D samples pin voltage

REGISTER 19-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	CSSL12	CSSL11	CSSL10	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-10	CSSL<12:10>: A/D Input Pin Scan Selection bits
	 1 = Corresponding analog channel selected for input scan 0 = Analog channel omitted from input scan
bit 9-6	Unimplemented: Read as '0'
bit 5-0	CSSL<5:0>: A/D Input Pin Scan Selection bits
	 1 = Corresponding analog channel selected for input scan 0 = Analog channel omitted from input scan

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Measurement Unit, refer to the "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Four edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance, or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through two registers, CTMUCON and CTMUICON. CTMUCON enables the module, and controls edge source selection, edge source polarity selection, and edge sequencing. The CTMUICON register selects the current range of current source and trims the current.

22.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse with a width equal to the time between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

$$C = I \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A precision resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 22-1 displays the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 22-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description		
#text	Means literal defined by "text"		
(text)	Means "content of text"		
[text]	Means "the location addressed by text"		
{ }	Optional field or operation		
<n:m></n:m>	Register bit field		
.b	Byte mode selection		
.d	Double-Word mode selection		
.S	Shadow register select		
.w	Word mode selection (default)		
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$		
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero		
Expr	Absolute address, label or expression (resolved by the linker)		
f	File register address ∈ {0000h1FFFh}		
lit1	1-bit unsigned literal $\in \{0,1\}$		
lit4	4-bit unsigned literal ∈ {015}		
lit5	5-bit unsigned literal ∈ {031}		
lit8	8-bit unsigned literal ∈ {0255}		
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode		
lit14	14-bit unsigned literal ∈ {016384}		
lit16	16-bit unsigned literal ∈ {065535}		
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'		
None	Field does not require an entry, may be blank		
PC	Program Counter		
Slit10	10-bit signed literal ∈ {-512511}		
Slit16	16-bit signed literal ∈ {-3276832767}		
Slit6	6-bit signed literal \in {-1616}		
Wb	Base W register \in {W0W15}		
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }		
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }		
Wm,Wn	Dividend, Divisor working register pair (direct addressing)		
Wn	One of 16 working registers ∈ {W0W15}		
Wnd	One of 16 destination working registers ∈ {W0W15}		
Wns	One of 16 source working registers ∈ {W0W15}		
WREG	W0 (working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾	—			_	
DI10		I/O Pins	Vss	—	0.2 Vdd	V	
DI15		MCLR	Vss	—	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	_	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C [™] Buffer	Vss	_	0.3 Vdd	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus enabled
	Vih	Input High Voltage ⁽⁴⁾	—	—	—	—	
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 Vdd	—	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	—	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le VPIN \le VDD$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
D150		I/O Ports	—	0.050	±0.100	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance
DI51		VREF+, VREF-, AN0, AN1	—	0.300	±0.500	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI55		MCLR	—	—	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI	—	_	±5.0	μA	Vss \leq VPIN \leq VDD, XT and HS modes

TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-2 for I/O pin buffer types.

TABLE 26-26: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	_		μS	
SY11	TPWRT	Power-up Timer Period	50	64	90	ms	
SY12	TPOR	Power-on Reset Delay	1	5	10	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	_	100	ns	
SY20	TWDT	Watchdog Timer Time-out Period	0.85	1.0	1.15	ms	1.32 prescaler
			3.4	4.0	4.6	ms	1:128 prescaler
SY25	TBOR	Brown-out Reset Pulse Width	1			μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	2	2.3	μS	
SY45	TRST	Configuration Update Time	—	20	_	μS	
	TVREG	On-Chip Voltage Regulator Output Delay	_	10		μS	
SY55	TLOCK	PLL Start-up Time	—	1		ms	
SY65	Tost	Oscillator Start-up Time	_	1024		Tosc	
SY75	TFRC	Fast RC Oscillator Start-up Time	_	1	1.5	μS	
SY85	TLPRC	Low-Power Oscillator Start-up Time			100	μS	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

14-Lead PDIP

Example

14-Lead TSSOP

Example

20-Lead PDIP

Example

Legend	: XXX Y YY WW NNN @3 *	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

Demo/Development Boards,	Evaluation and
Starter Kits	
Development Support	
Third-Party Tools	
Device Features (Summary)	9

Е

—	
Electrical Characteristics	
Absolute Maximum Ratings	185
Thermal Operating Conditions	186
V/F Graphs	186
Equations	
A/D Conversion Clock Period	150
Baud Rate Reload Value	127
Calculating the PWM Period	112
Calculation for Maximum PWM Resolution	112
Device and SPI Clock Speed Relationship	124
UART Baud Rate with BRGH = 0	134
UART Baud Rate with BRGH = 1	134
Errata	5

Doze Mode97

F

Flash Program Memory	
Control Registers	
Enhanced ICSP Operation	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	43

Н

High/Low-Voltage Detect (HLVD)	
--------------------------------	--

I

I/O Ports	
Analog Port Pins Configuration	100
Input Change Notification	100
Open-Drain Configuration	100
Parallel (PIO)	99
l^2C	
Clock Rates	127
Communicating as Master in Single	
Master Environment	125
Pin Remapping Options	125
Reserved Addresses	127
Slave Address Masking	127
In-Circuit Serial Programming	171
Input Capture	109
Instruction Set	
Opcode Symbols	178
Overview	179
Summary	177
Instruction-Based Power-Saving Modes	
Deep Sleep	
ldle	
Sleep	
Inter-Integrated Circuit. See I ² C.	
Internet Address	

Interrupts

•	
Alternate Interrupt Vector Table (AIVT)	57
Implemented Vectors	58
Interrupt Vector Table (IVT)	57
Reset Sequence	57
Setup and Service Procedures	80
Trap Vectors	58
Vector Table	57

Μ

Microchip Internet Web Site	218
MPLAB Assembler, Linker, Librarian	174
MPLAB ICD 3 In-Circuit Debugger	175
MPLAB PM3 Device Programmer	175
MPLAB REAL ICE In-Circuit Emulator System	175
MPLAB X Integrated Development	
Environment Software	173
MPLAB X SIM Software Simulator	175
MPLIB Object Librarian	174
MPLINK Object Linker	174

Ν

Near Data Space	
-----------------	--

0

Oscillator Configuration	
Clock Switching	87
Sequence	87
Configuration Values for Clock Selection	82
CPU Clocking Scheme	82
Initial Configuration on POR	82
Output Compare	
Continuous Output Pulse Generation	111
PWM Mode	
Period and Duty Cycle Calculations	113
Single Output Pulse Generation	111

Ρ

Packaging	
Details	207
Marking	205
PICkit 3 In-Circuit Debugger/Programmer	175
Pinout Descriptions	11–13
Power-Saving Features	91
Clock Frequency and Clock Switching	91
Product Identification System	220
Program and Data Memory	
Access Using Table Instructions	39
Program Space Visibility	40
Program and Data Memory Spaces	
Interfacing	37
Program Memory	
Address Space	25
Memory Map	25
Program Verification	171
Pulse-Width Modulation. See PWM	112