

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (1.375K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f04ka201-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	15
3.0	CPU	19
4.0	Memory Organization	25
5.0	Flash Program Memory	43
6.0	Resets	51
7.0	Interrupt Controller	57
8.0	Oscillator Configuration	81
9.0	Power-Saving Features	91
10.0	I/O Ports	99
11.0	Timer1	101
12.0	Timer2/3	103
13.0	Input Capture	109
14.0	Output Compare	111
15.0	Serial Peripheral Interface (SPI)	117
16.0	Inter-Integrated Circuit (I ² C [™])	125
17.0	Universal Asynchronous Receiver Transmitter (UART)	133
18.0	High/Low-Voltage Detect (HLVD)	141
19.0	10-Bit High-Speed A/D Converter	143
20.0	Comparator Module	153
21.0	Comparator Voltage Reference	157
22.0	Charge Time Measurement Unit (CTMU)	159
23.0	Special Features	163
24.0	Development Support	173
25.0	Instruction Set Summary	177
26.0	Electrical Characteristics	185
27.0	Packaging Information	205
Appe	ndix A: Revision History	213
Index		215
The N	/icrochip Web Site	219
Custo	omer Change Notification Service	219
Custo	mer Support	219
Produ	Ict Identification System	221

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into an 8K word page (in PIC24F08KA1XX devices) and a 16K word page (in PIC24F16KA1XX devices) of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1', and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '011000' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

; Set up NVMCO	N for row erase operation		
MOV	#0x4058, W0	;	
MOV	W0, NVMCON	; Initialize NVMCON	
; Init pointer	to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR	
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	; Initialize in-page EA[15:0] pointer	
TBLWTL	WO, [WO]	; Set base address of erase block	
DISI	#5	; Block all interrupts	
		for next 5 instructions	
MOV	#0x55, W0		
MOV	W0, NVMKEY	; Write the 55 key	
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	; Write the AA key	
BSET	NVMCON, #WR	; Start the erase sequence	
NOP		; Insert two NOPs after the erase	
NOP		; command is asserted	

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 7-1: TRAP VECTOR DETAILS

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

Internet Service	Vector		AIVT	Interrupt Bit Locations			
	Number	IVI Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
Input Capture1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
HLVD High/Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>	
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	

REGISTER 7-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7							bit 0

Legend: C = Clearable bit		HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less

bit 1-0 Unimplemented: Read as '0'

- **Note 1:** See Register 3-1 for the description of this bit, which is not dedicated to interrupt control functions.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

Note: Bit 2 is described in Section 3.0 "CPU".

8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24F04KA201 family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator

The primary oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 23.1 "Configuration Bits" for further details). The Primary Oscillator Configuration POSCMD<1:0> bits, (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC primary oscillator with postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode frequency range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 MHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

14.3 Pulse-Width Modulation (PWM) Mode

The following steps should be taken when configuring the output compare module for PWM operation:

- 1. Set the PWM period by writing to the selected Timer Period register (PRy).
- 2. Set the PWM duty cycle by writing to the OC1RS register.
- 3. Write the OC1R register with the initial duty cycle.
- 4. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Configure the output compare module for one of two PWM Operation modes by writing to the Output Compare Mode bits, OCM<2:0> (OC1CON<2:0>).
- 6. Set the TMRy prescale value and enable the time base by setting TON (TxCON<15>) = 1.
- Note: The OC1R register should be initialized before the output compare module is first enabled. The OC1R register becomes a read-only Duty Cycle register when the module is operated in the PWM modes. The value held in OC1R will become the PWM duty cycle for the first PWM period. The contents of the Output Compare 1 Secondary register, OC1RS, will not be transferred into OC1R until a time base period match occurs.

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$ where:

PWM Frequency = 1/[PWM Period]

- **Note 1:** Based on TCY = 2 * Tosc, Doze mode and PLL are disabled.
- Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OC1RS register. The OC1RS register can be written to at any time, but the duty cycle value is not latched into OC1R until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation. In PWM mode, OC1R is a read-only register.

Some important boundary parameters of the PWM duty cycle include:

- If the Output Compare 1 register, OC1R, is loaded with 0000h, the OC1 pin will remain low (0% duty cycle).
- If OC1R is greater than PRy (Timer Period register), the pin will remain high (100% duty cycle).
- If OC1R is equal to PRy, the OC1 pin will be low for one time base count value and high for all other count values.

See Example 14-1 for PWM mode timing details. Table 14-1 provides an example of PWM frequencies and resolutions for a device operating at 10 MIPS.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0
							DILU
Legend:							
R = Read	able bit	W = Writable	oit	U = Unimplen	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 15-13	Unimplemen	ited: Read as '(
DIT 12		able SCK1 pin I	blod nin functi	r modes only)			
	0 = Internal S	SPI clock is uisa	bled, pin functi bled				
bit 11	DISSDO: Dis	ables SDO1 pir	n bit				
	1 = SDO1 pi	n is not used by	module; pin f	unctions as I/O			
	0 = SDO1 pi	n is controlled b	y the module				
bit 10	MODE16: We	ord/Byte Comm	unication Sele	ct bit			
	1 = Commun	nication is word-	wide (16 bits)				
hit 9	SMP: SPI1 D	ata Input Sam	le Phase hit				
Sit 0	Master mode	:					
	1 = Input dat	a sampled at er	nd of data outp	out time			
	0 = Input dat	a sampled at m	iddle of data o	utput time			
	SMP must be	cloared when	SDI1 is used in	Slavo modo			
bit 8	CKF: SPI1 C	lock Edge Sele	ct hit(1)	I Slave mode.			
Sit 0	1 = Serial ou	itput data chanc	ies on transitio	n from active c	lock state to Idl	e clock state (s	see bit 6)
	0 = Serial ou	tput data chang	es on transitio	on from Idle clo	ck state to activ	e clock state (s	see bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	e)			
	$1 = \frac{SS1}{SS1}$ pin	used for Slave I	node				
bit 6	0 = SS1 pin	not used by mo	aule; pin contr ;+	olled by port fu	nction		
DILO	1 = Idle state	for clock is a h	iu iah level: activ	e state is a low			
	0 = Idle state	e for clock is a lo	w level; active	e state is a high	level		
bit 5	MSTEN: Mas	ster Mode Enab	e bit	0			
	1 = Master n	node					
	0 = Slave mo	ode					
bit 4-2	SPRE<2:0>:	Secondary Pre	scale bits (Mas	ster mode)			
	111 = Secon 110 = Secon	dary prescale 1 dary prescale 2	:1 ·1				
	•						
	•						
	000 = Second	dary pressale 8	·1				
Note 1:	The CKE bit is no	ot used in the Fr	amed SPI mo	des. The user s	should program	this bit to '0' fo	or the Framed

REGISTER 15-2: SPI1CON1: SPI1 CONTROL REGISTER 1

REGISTER 17-2: U1STA: UART1 STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	C = Clearable bit	HC = Hardware Clearable bit		
	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable bit		
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

Sit 11	
	<u>If IREN = 0:</u>
	1 = U1TX Idle '0'
	0 = U1TX Idle '1'
	<u>If IREN = 1:</u>
	1 = U1TX Idle '1'
	0 = U1TX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: Transmit Break bit
	1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission disabled or completed
bit 10	UTXEN: Transmit Enable bit
	1 = Transmit enabled, U1TX pin controlled by UART1
	 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. U1TX pin controlled by the PORT register.
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on RSR transfer, making the receive buffer $3/4$ full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer
	0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
HLVDEN	—	HLSIDL	—	—	—	—	_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	HLVDEN: Hig 1 = HLVD en 0 = HLVD dis	jh/Low-Voltage abled sabled	Detect Power	Enable bit				
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	HLSIDL: HLVD Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode							
bit 12-8	Unimplemen	ted: Read as '	0'					
bit 7	VDIR: Voltage	e Change Direc	ction Select bit					
	1 = Event occ 0 = Event occ	curs when volta	ge equals or ex ge equals or fa	kceeds trip poir Ils below trip p	nt (HLVDL<3:0> oint (HLVDL<3:	>) :0>)		
bit 6	BGVST: Band	d Gap Voltage S	Stable Flag bit					
	1 = Indicates 0 = Indicates	that the band g that the band g	jap voltage is s jap voltage is u	table nstable				
bit 5	 bit 5 IRVST: Internal Reference Voltage Stable Flag bit 1 = Indicates that the internal reference voltage is stable and the high-voltage detect logic generates the interrupt flag at the specified voltage range 0 = Indicates that the internal reference voltage is unstable and the high-voltage detect logic will no generate the interrupt flag at the specified voltage range, and the HLVD interrupt should not be enabled 							
bit 4	Unimplemen	ted: Read as '	0'					
bit 3-0	HLVDL<3:0>	: High/Low-Volt	tage Detection	Limit bits				
	1111 = Exter 1110 = Trip p 1101 = Trip p 1100 = Trip p	nal analog inpu oint 1 ⁽¹⁾ oint 2 ⁽¹⁾ oint 3 ⁽¹⁾	it is used (input	comes from th	ne HLVDIN pin)			
	0000 – mp p	onit 10° '						

REGISTER 18-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Measurement Unit, refer to the "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Four edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance, or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through two registers, CTMUCON and CTMUICON. CTMUCON enables the module, and controls edge source selection, edge source polarity selection, and edge sequencing. The CTMUICON register selects the current range of current source and trims the current.

22.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse with a width equal to the time between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

$$C = I \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A precision resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 22-1 displays the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 22-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
DSWDTEN	DSLPBOR	_	_	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7	•						bit 0
Legend:							
R = Readabl	e bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 7	DSWDTEN: De	eep Sleep Wate	chdog Timer E	nable bit			
	1 = DSWDT en	abled					
	0 = DSWDT dis	sabled					
bit 6	DSLPBOR: De	ep Sleep/Low-F	Power BOR En	able bit (does n	ot affect operati	on in non Deep	Sleep modes)
	1 = Deep Sleep	b BOR enabled	l in Deep Sleep	p			
	0 = Deep Sleep		a in Deep Siee	þ			
DIT 5-4	Unimplemente						
bit 3-0	DSWDTPS<3:	0>: Deep Sleep	o Watchdog Tir	mer Postscale S	Select bits		
	The DSWDT p	rescaler is 32;	this creates an	approximate b	ase time unit o	f 1 ms.	
	1111 = 1:2,147	1,483,648 (25.7 270 012 (6 4 de	days) nomina	31			
	1110 = 1.030,0	070,912 (0.4 ua 017 728 (38 5 k	ays) nominal				
	1101 = 1.134,2 1100 = 1.33.55	54 432 (9 6 hou	irs) nominal				
	1011 = 1:8.388	3.608 (2.4 hour	s) nominal				
	1010 = 1:2,097	7,152 (36 minut	tes) nominal				
	1001 = 1:524,2	288 (9 minutes)) nominal				
	1000 = 1:131,0)72 (135 secon	ds) nominal				
	0111 = 1:32,76	68 (34 seconds) nominal				
	0110 = 1:8,192	2 (8.5 seconds)	nominal				
	0101 = 1:2,048	3 (2.1 seconds)	nominal				
	0100 = 1:512 (528 ms) nomin	al				
	0011 = 1:128 (132 ms) nomin	al				
	0010 = 1:32 (3	3 ms) nominal					
	0001 = 1:8 (8.3	3 ms) nominal					
	0000 = 1:2 (2.1	1 ms) nominal					

REGISTER 23-7: FDS: DEEP SLEEP CONFIGURATION REGISTER

23.2 Watchdog Timer (WDT)

For the PIC24F04KA201 family of devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The	CLRWDT	and	PWRSAV	instructions
	clear	the prese	caler	and posts	caler counts
	wher	n executed	d.		

23.2.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

23.2.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

FIGURE 23-1: WDT BLOCK DIAGRAM

26.1 DC Characteristics

FIGURE 26-1: PIC24F04KA201 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 26-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(Tj — Ta)/θja			W

TABLE 26-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 14-Pin PDIP	θJA	62.4		°C/W	1
Package Thermal Resistance, 20-Pin PDIP	θJA	60		°C/W	1
Package Thermal Resistance, 14-Pin SSOP	θJA	108	-	°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 14-Pin SOIC	θJA	75		°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	80.2	_	°C/W	1
Package Thermal Resistance, 14-Pin QFN	θJA	43	_	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	32	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions				
IDD Current							
DC31		28		-40°C			
DC31a	Q	28	μΑ	+25°C	1.8V		
DC31b	0	28		+60°C			
DC31c		28		+85°C			
DC31d		55		-40°C	3.3V		
DC31e	15	55	-μΑ	+25°C			
DC31f	10	55		+60°C			
DC31g		55		+85°C			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

• EC mode with clock input driven with a square wave rail-to-rail

• I/O configured as outputs driven low

• MCLR – VDD

WDT FSCM disabled

• SRAM, program and data memory active

• All PMD bits set except for modules being measured

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Op Operating ten	Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Typical ⁽¹⁾	Max	Units	Units Conditions				
Idle Current (IIDLE): Core	Off, Clock O	n Base Curre	nt, PMD Bits are Set	t ⁽²⁾			
DC40		100		-40°C				
DC40a	19	100	μA	+25°C	1.8V	0.5 MIPS, Fosc = 1 MHz		
DC40b	40	100		+60°C				
DC40c		100		+85°C				
DC40d		215		-40°C				
DC40e	106	215		+25°C	2 2)/			
DC40f	100	215	μΑ	+60°C	3.3V			
DC40g		215		+85°C				

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Operating Parameters:

Core off

· EC mode with clock input driven with a square wave rail-to-rail

• I/O configured as outputs driven low

• MCLR - VDD

WDT FSCM disabled

• SRAM, program and data memory active

All PMD bits set except for modules being measured

TABLE 26-19:	EXTERNAL CLOCK TIM	ING I	RE	QUIR	EMEI	NTS	
						-	

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4	_	32 8	MHz MHz	EC ECPLL	
		Oscillator Frequency	0.2 4 4 31		4 25 8 33	MHz MHz MHz kHz	XT HS HSPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—		—	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	_		ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

TABLE 26-20:PLL CLOCK TIMING SPECIFICATIONS (VDD = 1.8V TO 3.6V)

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz		
OS52	Тгоск	PLL Start-up Time (Lock Time)	—	—	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-21: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy @ 8 MHz ⁽¹⁾								
F20	FRC	-2	_	2	%	+25°C			
		-5	_	5	%	$-40^\circ C \le T_A \le +85^\circ C$	3.0v ≤ vD ≤ 3.0v		

Note 1: Frequency calibrated at +25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

TABLE 26-22: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 31 kHz ⁽¹⁾								
F21		-15	_	15	%	+25°C			
		-15	—	15	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	3.0V ≤ VUU ≤ 3.0V		

Note 1: Change of LPRC frequency as VDD changes.

R

Reference Clock Output	88
Register Mans	
A/D Converter (ADC)	34
Clock Control	
CTMU	
Deep Sieep	
NVM	
Output Compare	
Pad Configuration	33
PMD	36
PORTA	33
PORTB	33
SPI	32
Timer	31
UART	32
Registers	
AD1CHS (A/D Input Select)	148
AD1CON1 (A/D Control 1)	145
AD1CON2 (A/D Control 2)	146
AD1CON3 (A/D Control 3)	
AD1CSSI (A/D Input Scan Select Low)	149
AD1PCEG (A/D Port Configuration)	140
CLKDIV (Clock Divider)	145
CMSTAT (Comparator Status)	156
CMxCON (Comparator x Control)	150
	155
	01
	101
	102
CVRCON (Comparator Voltage	450
Reterence Control)	158
	169
DEVREV (Device Revision)	169
DSCON (Deep Sleep Control)	
DSWSRC (Deep Sleep Wake-up Source)	
FDS (Deep Sleep Configuration)	168
FGS (General Segment Configuration)	163
FICD (In-Circuit Debugger Configuration)	167
FOSC (Oscillator Configuration)	165
FOSCSEL (Oscillator Selection Configuration)	164
FPOR (Reset Configuration)	167
FWDT (Watchdog Timer Configuration)	166
HLVDCON (High/Low-Voltage Detect Control)	142
I2C1CON (I2C1 Control)	128
I2C1MSK (I2C1 Slave Mode Address Mask)	132
I2C1STAT (I2C1 Status)	130
IC1CON (Input Capture 1 Control)	110
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC4 (Interrupt Enable Control 4)	60
IESO (Interrupt Elao Status 0)	
IES1 (Interrupt Flag Status 1)	04 6F

IFS4 (Interrupt Flag Status 4) 66
INTCON1 (Interrupt Control 1)
INTTREG (Interrupt Control and Status)
IPC0 (Interrupt Priority Control 0)70
IPC1 (Interrupt Priority Control 1)71
IPC16 (Interrupt Priority Control 16)77
IPC18 (Interrupt Priority Control 18)78
IPC19 (Interrupt Priority Control 19)78
IPC2 (Interrupt Priority Control 2)
IPC3 (Interrupt Priority Control 3)73
IPC4 (Interrupt Priority Control 4)74
IPC5 (Interrupt Priority Control 5)75
IPC7 (Interrupt Priority Control 7)76
NVMCON (Flash Memory Control) 45
OC1CON (Output Compare 1 Control) 115
OSCCON (Oscillator Control) 83
OSCTUN (FRC Oscillator Tune) 86
PADCFG1 (Pad Configuration Control) 116, 132
RCON (Reset Control) 52
REFOCON (Reference Oscillator Control) 89
SPI1CON1 (SPI1 Control 1) 122
SPI1CON2 (SPI1 Control 2) 123
SPI1STAT (SPI1 Status and Control) 120
SR (ALU STATUS) 22, 60
T1CON (Timer1 Control) 102
T2CON (Timer2 Control) 106
T3CON (Timer3 Control) 107
U1MODE (UART1 Mode) 136
U1RXREG (UART1 Receive)140
U1STA (UART1 Status and Control) 138
U1TXREG (UART1 Transmit) 140
Resets
Clock Source Selection53
Delay Times 54
Device Times 54
RCON Flags Operation53
SFR States
Revision History
S
Selective Peripheral Power Control
Serial Peripheral Interface. See SPI.

т

•	
Timer1	101
Timer2/3	103
Timing Diagrams	
CLKO and I/O	200
External Clock	198
Timing Requirements	
CLKO and I/O	200
External Clock	198
PLL Clock Specifications	199

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-63276-041-8

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.