

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08ll16clf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor

Data Sheet: Technical Data

An Energy Efficient Solution by Freescale

MC9S08LL16 Series Covers: MC9S08LL16 and MC9S08LL8

Features

- 8-Bit HCS08 Central Processor Unit (CPU)
 - Up to 20-MHz CPU at 3.6V to 1.8V across temperature range of -40°C to 85°C
 - HC08 instruction set with added BGND instruction
 - Support for up to 32 interrupt/reset sources
- On-Chip Memory
 - Dual Array FLASH read/program/erase over full operating voltage and temperature
 - Random-access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and FLASH contents
- Power-Saving Modes
 - Two low power stop modes
 - Reduced power wait mode
 - Low power run and wait modes allow peripherals to run while voltage regulator is in standby
 - Peripheral clock gating register can disable clocks to unused modules, thereby reducing currents.
 - Very low power external oscillator that can be used in stop2 or stop3 modes to provide accurate clock source to real time counter
 - 6 usec typical wake up time from stop3 mode
- Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; Crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supports bus frequencies from 1MHz to 10 MHz.
- System Protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus clock
 - Low-Voltage Warning with interrupt
 - Low-Voltage Detection with reset or interrupt
 - Illegal opcode and illegal address detection with reset
- Flash block protection
- Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module)

Document Number: MC9S08LL16 Rev. 7, 1/2013

- On-chip in-circuit emulator (ICE) debug module containing three comparators and nine trigger modes. Eight deep FIFO for storing change-of-flow addresses and event-only data. Debug module supports both tag and force breakpoints
- Peripherals
 - LCD 4x28 or 8x24 LCD driver with internal charge pump and option to provide an internally regulated LCD reference that can be trimmed for contrast control.
 - ADC 8-channel, 12-bit resolution; 2.5 µs conversion time; automatic compare function; temperature sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6V to 1.8V
 - ACMP Analog comparator with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal bandgap reference voltage; outputs can be optionally routed to TPM module; operation in stop3
 - SCI Full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wake up on active edge
 - SPI— Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; Master or Slave mode; MSB-first or LSB-first shifting
 - IIC IIC with up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10-bit addressing
 - TPMx Two 2-channel (TPM1 and TPM2); Selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel;
 - TOD— (Time Of Day) 8-bit quarter second counter with match register; External clock source for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components.
- Input/Output
 - 38 GPIOs, 2 output-only pins
 - 8 KBI interrupts with selectable polarity
 - Hysteresis and configurable pull up device on all input pins; Configurable slew rate and drive strength on all output pins.
- Package Options
 - 64-LQFP, 48-LQFP and 48-QFN

Devices in the MC9S08LL16 Series

1 Devices in the MC9S08LL16 Series

Table 1 summarizes the feature set available in the MC9S08LL16 series of MCUs.

Table 1. MC9S08LL16 Series Features by MCU and Package

MC9S0	MC9S08LL8	
64-pin LQFP	48-pin QFN/LQFP	48-pin QFN/LQFP
,16 (Dual 8k	10,240 (8K and 2K arrays)	
2080	2080	2080
yes	yes	yes
8-ch	8-ch	8-ch
yes	yes	yes
yes	yes	yes
8	8	8
yes	yes	yes
yes	yes	yes
2-ch	2-ch	2-ch
2-ch	-	-
Yes	Yes	Yes
8x24 4x28	8x16 4x20	8x16 4x20
38	31	31
	MC9S0 64-pin LQFP 16, (Dual 8k 2080 yes 8-ch yes 8-ch yes yes 9 8 9 9 8 9 9 8 2-ch 2-ch 2-ch 2-ch 2-ch 2-ch 2-ch 8 8 2-ch 38	MC9S08LL16 64-pin LQFP 48-pin QFN/LQFP 16,384 (Dual 8K Arrays) 384 2080 2080 2080 2080 yes yes 8 8-ch yes yes Xes 4x20 Xes Xes Xes Xes <tr tbox<="" tr=""> Xes Xe</tr>

¹ I/O does not include two output-only port pins.

The block diagram in Figure 1 shows the structure of the MC9S08LL16 series MCU.

Note: V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA}

Figure 3. MC9S08LL16 Series in 48-Pin QFN/LQFP Packages

Pin Assignments

		< Lowest Priority> Highest					
64	48	Port Pin	Alt 1	Alt 2	Alt3	Alt4	
1	47	PTE1	LCD9				
2	48	PTE0	LCD8				
3	1	PTD7	LCD7				
4	2	PTD6	LCD6				
5	3	PTD5	LCD5				
6	4	PTD4	LCD4				
7	5	PTD3	LCD3				
8	6	PTD2	LCD2				
9	7	PTD1	LCD1				
10	8	PTD0	LCD0				
11	9		V _{cap1}				
12	10		V _{cap2}				
13	11		V _{LL1}				
14	12		V _{LL2}				
15	13		V _{LL3}				
16	_		V _{LCD}				
17	14	PTA6	KBIP6	ADP6	ACMP+		
18	15	PTA7	KBIP7	ADP7	ACMP-		
10	10				V _{SSA}		
19	10				V _{REFL}		
00	17				V _{REFH}		
20	17				V _{DDA}		
21	18	PTB0		EXTAL			
22	19	PTB1		XTAL			
23	20				V _{DD}		
24	21				V _{SS}		
25	22	PTB2	RESET				
26		PTB3					
27		PTB4	—	MISO	SDA		
28	_	PTB5	—	MOSI	SCL		
29	_	PTB6	—	SPSCK			
30	_	PTB7	—	SS			
31	23	PTC0		RxD			
32	24	PTC1		TxD			
33	25	PTC2		TPM1CH0			
34	26	PTC3		TPM1CH1			
35	—	PTC4		TPM2CH0			
36	—	PTC5		TPM2CH1			
37	27	PTC6	ACMPO	BKGD	MS		
38	28	PTC7		IRQ	TCLK		
39	29	PTA0	KBIP0	—	SS	ADP0	

Table 2. Pin Availability by Package Pin-Count

		< Lowest Priority > Highest						
64	48	Port Pin	Alt 1	Alt 2	Alt3	Alt4		
40	30	PTA1	KBIP1	_	SPSCK	ADP1		
41	31	PTA2	KBIP2	SDA	MISO	ADP2		
42	32	PTA3	KBIP3	SCL	MOSI	ADP3		
43	33	PTA4	KBIP4	ADP4	LCD31			
44	34	PTA5	KBIP5	ADP5	LCD30			
45	35		LCD29					
46	36		LCD28					
47	37		LCD27					
48	38		LCD26					
49	39		LCD25					
50	40		LCD24					
51	—		LCD23					
52	—		LCD22					
53	—		LCD21					
54	—		LCD20					
55			LCD19					
56			LCD18					
57			LCD17					
58			LCD16					
59	41	PTE7	LCD15					
60	42	PTE6	LCD14					
61	43	PTE5	LCD13					
62	44	PTE4	LCD12					
63	45	PTE3	LCD11					
64	46	PTE2	LCD10					

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08LL16 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 3-1 and Equation 3-2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body Model	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
Charge	Series resistance	R1	0	Ω
Device	Storage capacitance	С	200	pF
woder	Number of pulses per pin	—	3	
Lateb up	Minimum input voltage limit		-2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	±100	—	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic		Symbol	Condition	Min	Typ ¹	Max	Unit
1		Operating volta	ge			1.8		3.6	V
	С		PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² , low-drive strength		V _{DD} >1.8 V I _{Load} = -0.6 mA	V _{DD} – 0.5	_	_	
2	Ρ	voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ²	V _{OH}	V _{DD} > 2.7 V I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -3 mA	V _{DD} – 0.5		—	
	С	Output high	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		$V_{DD} > 1.8 V$ $I_{Load} = -0.5 mA$	V _{DD} – 0.5		_	
3	Ρ	voltage	PTA[4:5], PTD[0:7], PTF[0:7]	V _{OH}	V _{DD} > 2.7 V I _{Load} = -3 mA	V _{DD} – 0.5		—	V
	С		high-drive strength		$V_{DD} > 1.8 V$ $I_{Load} = -1 mA$	V _{DD} – 0.5		—	
4	D	Output high current	Max total I _{OH} for all ports	I _{OHT}		—	—	100	mA
	С	Output low	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7], low-drive strength		V _{DD} >1.8 V I _{Load} = 0.6 mA	_	_	0.5	
5	Ρ	voltage	Ditage PTA[0:3], PTA[6:7], PTB[0:7] PTC[0:7]	V _{OL}	$V_{DD} > 2.7 V$ $I_{Load} = 10 mA$	_	_	0.5	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 3 mA		_	0.5	
	С	Output law	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V _{DD} > 1.8 V I _{Load} = 0.5 mA		_	0.5	
6	Ρ	voltage	PTA[4:5], PTD[0:7],	V _{OL}	V _{DD} > 2.7 V I _{Load} = 3 mA		_	0.5	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 1 mA	—		0.5	
7	D	Output low current	Max total I_{OL} for all ports	I _{OLT}			_	100	mA
8	Ρ	Input high	all digital inputs	Vill	V_{DD} > 2.7 V	$0.70 \times V_{DD}$		—	
	С	voltage			V _{DD} > 1.8 V	$0.85 \times V_{DD}$		—	v
9	Р	Input low all digital inputs		Vii	$V_{DD} > 2.7 V$	—	—	0.35 x V _{DD}	-
	С	voltage			V _{DD} > 1.8 V	—	—	0.30 x V _{DD}	
10	С	Input hysteresis	all digital inputs	V _{hys}		$0.06 imes V_{DD}$	—	—	mV

Table 8. DC Characteristics

Typical VDD - VOH VS IOH at VDD = 3.0VLow Drive (PTxDSN = 0) - Non LCD Pins

TYPICAL VOL VS IOL at VDD = 3.0V

TYPICAL VOL VS VDD Low Drive (PTxDSN = 0) - LCD/GPIO pins

Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins) — Low Drive (PTxDSn = 0)

1.20 85°C 70°C 1.00 50°C ·25°C 0.80 - -40°C VOL (V) 0.60 0.40 0.20 0.00 5.0 0.0 10.0 15.0 20.0 IOL (mA)

VOL VS IOL at VDD = 3.0V High Drive (PTxDSN = 1) - LCD/GPIO pins

TYPICAL VOL VS VDD High Drive (PTxDSN = 1) - LCD/GPIO pins

Figure 11. Typical Low-Side Driver (Sink) Characteristics(LCD/GPIO Pins) — High Drive (PTxDSn = 1)

VDD - VOH VS IOH at VDD = 3.0V High Drive (PTxDSN = 1) - LCD/GPIO pins

VOH - VDD VS VDD at SPEC IOH High Drive (PTxDSN = 1) - LCD Pins

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)
1	Р	Run supply current	Blas	8 MHz		4.2	5.7	mA	-40 to 85 °C
	Т	FEI mode, all modules on	טטייי	1 MHz	3	1	1.52		-+0100000
2	Т	Run supply current	Blas	10 MHz		3.60	_	mΔ	-40 to 85 °C
	Т	FEI mode, all modules off	סטייי	1 MHz	3	0.50	—	110.	+0100000
3	Т	Run supply current	Blaa	16 kHz FBILP	3	165	—		-40 to 85 °C
0	Т	LPRS=0, all modules off	1 100	16 kHz FBELP	U	105	—	μ	
1	т	Run supply current	RI	16 kHz FBILP	3	77	_		-40 to 85 °C
4	т	LPRS=1, all modules off; running from Flash	INDD	16 kHz FBELP		21	_	μΑ	-40 10 85 0
5	т	Run supply current	DI	16 kHz FBILP	2	77	_		40 to 85 °C
5	т	from RAM	DD	16 kHz FBELP	3	7.3	—	μΛ	-40 10 85 0
6	Р	Wait mode supply current	WI _{DD}	8 MHz	3	1.4	3.5	mA	_10 to 85 °C
0	С	FEI mode, all modules off		1 MHz		0.8	1.15		.0.0000
7	т	Wait mode supply current LPRS = 1, all modules off	WI _{DD}	16 kHz FBELP	3	1.3	—	μA	–40 to 85 °C
			S2I _{DD}	n/a		350	930		–40 to 25 °C
	Р				3	1000	_	-	50 °C
					0	2500	4000		70 °C
8		Stop2 mode supply current				5100	—	nA	85 °C
						250	—		–40 to 25 °C
	С			n/a	2	2000	—		70 °C
						4000	—		85 °C
						400	1030		–40 to 25 °C
	Р			n/a	3	1300	—		50 °C
		Stop3 mode supply current				4000	6000		70 °C
9		No clocks active	S3I _{DD}			8000	—	nA	85 °C
						350	—		–40 to 25 °C
	С			n/a	2	3000			70 °C
						6000	—		85 °C

Table 9. Supply Current Characteristics

3.8 External Oscillator (XOSCVLP) Characteristics

Refer to Figure 14 and Figure 15 for crystal or resonator circuits.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂	See Note ² See Note ³			
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, high gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F	—	— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH	 	600 400 5 15		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0	_	20 20	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² Load capacitors (C_1, C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	Ρ	Average internal reference frequency — factory trimmed at VDD = 3.6 V and temperature = 25 °C	f _{int_ft}	_	32.768	_	kHz
2	Ρ	Average internal reference frequency - trimmed	f _{int_t}	31.25	—	39.063	kHz
3	Т	Internal reference start-up time	t _{IRST}		—	6	μS
4	Ρ	DCO output frequency range - untrimmed	f _{dco_ut}	12.8	16.8	21.33	MHz
5	Ρ	DCO output frequency range - trimmed	f _{dco_t}	16	—	20	MHz
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)	$\Delta f_{dco_res_t}$		±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)	$\Delta f_{dco_res_t}$		±0.2	±0.4	%f _{dco}
8	С	Total deviation from trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	±2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic		Min	Typ ¹	Max	Unit
9	с	Total deviation from trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C	Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	С	FLL acquisition time ²	t _{Acquire}	_	_	1	ms
11	с	Long term jitter of DCO output clock (averaged over 2-ms interval) ³	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus} . Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in the crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Deviation of DCO Output from Trimmed Frequency

Figure 16. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency $(t_{cyc} = 1/f_{Bus})$		dc		10	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μs
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	$34 \times t_{\text{cyc}}$			ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU} 500		_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³		100	_	_	μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}			ns
9	C	Port rise and fall time — Non-LCD Pins Low output drive (PTxDS = 0) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)			16 23		ns
		Port rise and fall time — Non-LCD Pins High output drive (PTxDS = 1) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		5 9		ns
10	С	Voltage Regulator Recovery time	t _{VRR}	_	6	10	us

Table 13. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 3.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

 5 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 85 °C.

⁶ Except for LCD pins in Open Drain mode.

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 22. SPI Master Timing (CPHA =1)

NOTE:

1. Not defined but normally MSB of character just received.

Figure 23. SPI Slave Timing (CPHA = 0)

Electrical Characteristics

С	Characteristic Conditions		Symb	Min	Typ ¹	Мах	Unit	Comment	
т	Supply Current ADLPC=1 ADLSMP=1 ADCO=1		I _{DDA}	_	120	_	μA		
т	Supply Current ADLPC=1 ADLSMP=0 ADCO=1		I _{DDA}	_	200	_	μΑ		
Т	Supply Current ADLPC=0 ADLSMP=1 ADCO=1		I _{DDA}	_	290	_	μA		
Р	Supply Current ADLPC=0 ADLSMP=0 ADCO=1		I _{DDA}	_	0.53	1	mA		
Р	ADC	High Speed (ADLPC=0)	4	2	3.3	5		t _{ADACK} =	
С	Clock Source	Low Power (ADLPC=1)	IADACK	1.25	2	3.3		1/f _{ADACK}	
Р	Conversion	Short Sample (ADLSMP=0)		—	20	—	ADCK cycles	See ADC chapter in the LL16 Reference Manual for	
С	sample time)	Long Sample (ADLSMP=1)	LADC	_	40	_			
Р		Short Sample (ADLSMP=0)		—	3.5	—	ADCK		
С	Sample Time	Long Sample (ADLSMP=1)	t _{ADS}	_	23.5	_	cycles	conversion time variances	
Т		12-bit mode, 3.6>VDDA>2.7V			-1 to 3	–2.5 to 5.5			
	Total Unadjusted	12-bit mode, 2.7>VDDA>1.8V	E _{TUE}	_	-1 to 3	-3.0 to 6.0	LSB ²	Includes guantization	
Р	Error	10-bit mode			±1	±2.5			
Т		8-bit mode		_	±0.5	±1.0			
Т	Differential	12-bit mode		_	±1	-1.5 to 2.0			
Р	Non-Linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²		
Т		8-bit mode ³		_	±0.3	±0.5			
Т	Integral	12-bit mode	INL	INL		±1.5	–2.5 to 1.0	0	
Р	Non-Linearity	10-bit mode					±0.5	±1.0	LSB [∠]
т		8-bit mode		—	±0.3	±0.5			

LCD Specifications 3.13

С	Characteristic	Symbol	Min	Тур	Max	Unit
D	LCD Supply Voltage	V _{LCD}	0.9	1.5	1.8	V
D	LCD Frame Frequency	f _{Frame}	28	30	58	Hz
D	LCD Charge Pump Capacitance	C _{LCD}		100	100	nF
D	LCD Bypass Capacitance	C _{BYLCD}		100	100	nF
D	LCD Glass Capacitance	C _{glass}		2000	8000	pF
D	V _{IREG} HRefSel = 0	V _{IREG}	.89	1.00	1.15	V
	HRefSel = 1		1.49	1.67	1.85 ¹	v
D	V _{IREG} TRIM Resolution	Δ_{RTRIM}	1.5			%
						VIREG
D	V _{IREG} Ripple HRefSel = 0				0.1	V
	HRefSel = 1				0.15	v
D	V _{LCD} Buffered Adder ²	I _{Buff}		1		μA

Table 19. LCD Electricals, 3 V Glass

 $\frac{1}{V_{IREG}}$ Max can not exceed V_{DD} - 0.15 V 2 VSUPPLY = 10, BYPASS = 0

3.14 **Flash Specifications**

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
	V _{RE_TEM}	$V_{DD} = 3.3 V$ $T_A = 25 °C$ package type 64-pin LQFP	0.15 – 50 MHz	32 kHz crystal	-7	dBμV
			50 – 150 MHz	10 MHZ bus	-9	
Radiated emissions,			150 – 500 MHz		-6	
electric field			500 – 1000 MHz		-6	
			IEC Level		Ν	—
			SAE Level		1	_

Table 21. Radiated Emissions, Electric Field

¹ Data based on qualification test results.

4 Ordering Information

This section contains the ordering information and the device numbering system for the MC9S08LL16 Series.

4.1 Device Numbering System

Example of the device numbering system:

5 Package Information and Mechanical Drawings

Table 22 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08LL16 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 22, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 22) in the "Enter Keyword" search box at the top of the page.