

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

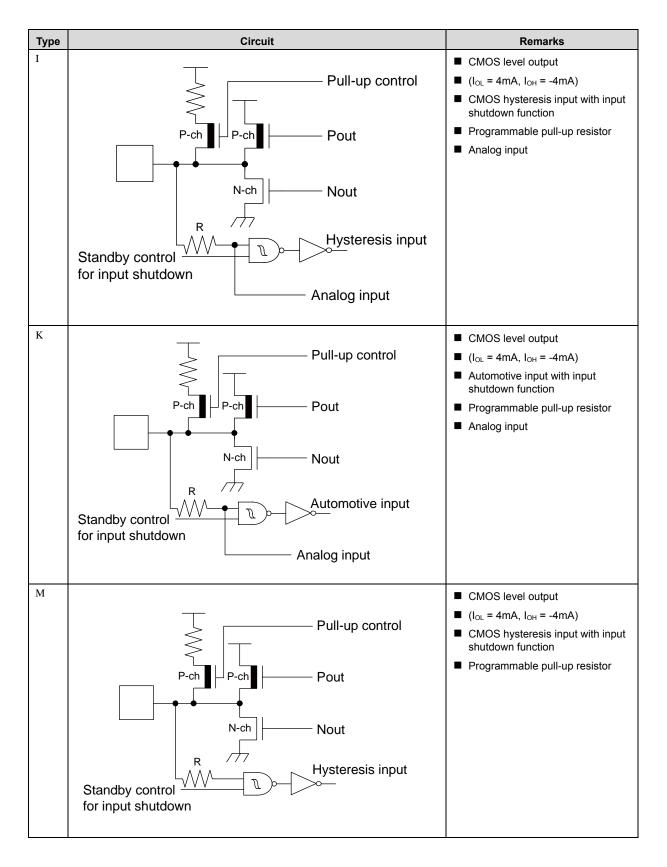
E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f612abpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name Feature		Description				
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin				



Pin No.	I/O Circuit Type*	Pin Name
33	С	RSTX
34	А	X1
35	А	X0
36	Supply	Vss
37	Supply	Vcc
38	F	С
39	Н	P02_5 / BIN0 / IN1 / TTG1 / ADTG_R
40	К	P03_0 / AIN1 / IN4 / TTG4 / TTG12 / AN24
41	К	P03_1 / BIN1 / IN5 / TTG5 / TTG13 / AN25
42	М	P03_2 / INT10_R / RX2
43	Н	P03_3 / TX2
44	К	P03_6 / ZIN1 / OUT6 / AN30
45	К	P03_7 / OUT7 / AN31
46	К	P06_0 / AN0 / PPG0
47	К	P06_1 / AN1 / PPG1
48	Supply	AVcc

*: See I/O Circuit Type" for details on the I/O circuit types.

8. RAMstart Addresses

Devices	Bank 0 RAM Size	RAMSTART0
CY96F612	4KB	00:7200 _H
CY96F613, CY96F615	10KB	00:5А00 _н

9. User ROM Memory Map for Flash Devices

		CY96F612	CY96F613	CY96F615	
		01901012	01901013	01901015	
CPU mode address	Flash memory mode address	Flash size 32.5KB + 32KB	Flash size 64.5KB + 32KB	Flash size 128.5KB + 32KB	
FF:FFFF _H FF:8000 _H	3F:FFFF _H 3F:8000 _H	SA39 - 32KB	SA39 - 64KB	SA39 - 64KB	
FF:7FFF _H FF:0000 _H	3F:7FFF _H 3F:0000 _H		SA39 - 04NB	5A39 - 04KB	Bank A of Flash A
FE:FFFF _H	3E:FFFF _H			SA38 - 64KB	Bunka or husina
FE:0000 _H	3E:0000 _H	-			
FD:FFFF _H		Reserved	Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	SA4 - 8KB	7
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	SA3 - 8KB	Darely D. of Elev. L. A.
DF:5FFF _H DF:4000 _H	1F:5FFF _н 1F:4000 _н	SA2 - 8KB	SA2 - 8KB	SA2 - 8KB	Bank B of Flash A
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	SA1 - 8KB	
DF:1FFF _H DF:0000 _H	1F:1FFF _H 1F:0000 _H	SAS - 512B*	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DE:FFFF _H DE:0000 _H	**	Reserved	Reserved	Reserved	

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS can not be used for E²PROM emulation.

11.Interrupt Vector Table

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3С8 _н	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _н	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3В8 _Н	EXTINT0	Yes	17	External Interrupt 0
18	3В4 _Н	-	-	18	Reserved
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _Н	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	-	-	22	Reserved
23	3A0 _H	-	-	23	Reserved
24	39C _н	EXTINT7	Yes	24	External Interrupt 7
25	398 _н	EXTINT8	Yes	25	External Interrupt 8
26	394 _н	EXTINT9	Yes	26	External Interrupt 9
27	390 _н	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _H	-	-	31	Reserved
32	37C _H	-	-	32	Reserved
33	378 _H	-	-	33	Reserved
34	374 _H	-	-	34	Reserved
35	370 _H	CAN2	No	35	CAN Controller 2
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360 _H	PPG1	Yes	39	Programmable Pulse Generator 1

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	FRT2	Yes	91	Free-Running Timer 2
92	28C _H	FRT3	Yes	92	Free-Running Timer 3
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	-	-	95	Reserved
96	27C _H	-	-	96	Reserved
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	-	-	101	Reserved
102	264 _H	-	-	102	Reserved
103	260 _H	-	-	103	Reserved
104	25C _H	-	-	104	Reserved
105	258 _H	LINR2	Yes	105	LIN USART 2 RX
106	254 _H	LINT2	Yes	106	LIN USART 2 TX
107	250 _H	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23C _H	-	-	112	Reserved
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	LINR7	Yes	115	LIN USART 7 RX
116	22C _H	LINT7	Yes	116	LIN USART 7 TX
117	228 _H	LINR8	Yes	117	LIN USART 8 RX
118	224 _H	LINT8	Yes	118	LIN USART 8 TX
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved
121	218 _H	-	-	121	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

CAUTION:

YPRESS

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). *CAUTION:*

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

13.7 Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable)

13.8 Pin Handling when Not Using the A/D Converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC} AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

13.10Stabilization of Power Supply Voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11 Serial Communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

Dama	0	Pin	O and little	Value				Dame		
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks		
			PLL Timer mode with CLKPLL =	-	1800	2245	μA	T _A = +25°C		
	ICCTPLL		32MHz (CLKRC and CLKSC	-	-	3165	μA	T _A = +105°C		
	stopped)	-	-	3975	μA	T _A = +125°C				
			Main Timer mode with	-	285	325	μA	$T_A = +25^{\circ}C$		
			CLKMC = 4MHz, SMCR:LPMSS = 0	-	-	1085	μA	T _A = +105°C		
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μA	T _A = +125°C		
Davian avrahu			RC Timer mode with	-	160	210	μA	$T_A = +25^{\circ}C$		
Power supply current in Timer modes ^[2]	I _{CCTRCH}	Vcc	CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL,	-	-	1025	μA	T _A = +105°C		
Timer modes.				CLKMC and CLKSC stopped)		-	-	1840	μA	T _A = +125°C
			RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped)	-	35	75	μA	T _A = +25°C		
				-	-	855	μA	T _A = +105°C		
				-	-	1640	μA	T _A = +125°C		
			Sub Timer mode with	-	25	65	μA	T _A = +25°C		
	I _{CCTSUB}		CLKSC = 32kHz (CLKMC,	-	-	830	μA	T _A = +105°C		
			CLKPLL and CLKRC stopped)	-	-	1620	μA	T _A = +125°C		
Power supply				-	20	55	μA	T _A = +25°C		
current in Stop	I _{CCH}		-	-	-	825	μA	T _A = +105°C		
mode ^[3]				-	-	1615	μA	T _A = +125°C		
Flash Power Down current	ICCFLASHPD		-	-	36	70	μA			
Power supply current		Vcc		-	5	-	μA	T _A = +25°C		
for active Low Voltage detector ^[4]	ICCLVD		Low voltage detector enabled	-	-	12.5	μA	T _A = +125°C		
Flash Write/				-	12.5	-	mA	T _A = +25°C		
Erase current ^[5]	ICCFLASH		-	-	-	20	mA	T _A = +125°C		

[1]: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

[2]: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

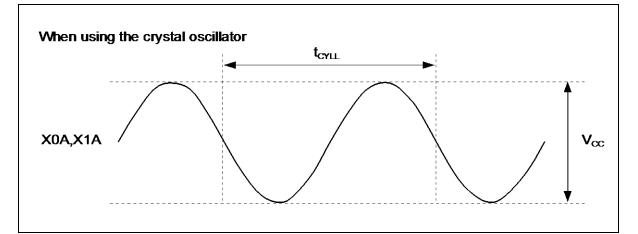
The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

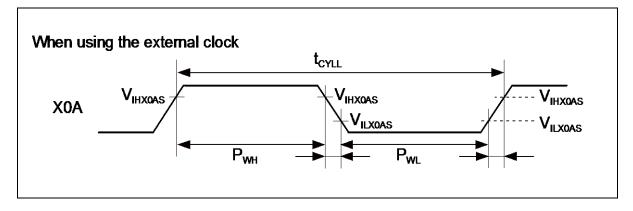
[3]: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

[4]: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

[5]: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.





14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Demonstern	Quarterst	Pin	O and it is an a		Value			Demoster	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
		X0A, X1A	-	-	32.768	-	kHz	When using an oscillation circuit	
Input frequency	f _{CL}		-	-	-	100	kHz	When using an opposite phase external clock	
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs		
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%		

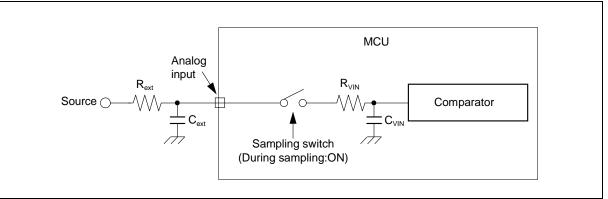
14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

– <i>i</i>			Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Clock frequency	f _{BC}	50	100	200	kHz	When using slow frequency of RC oscillator	
Clock frequency	IRC	1	2	4	MHz	When using fast frequency of RC oscillator	
		80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
RC clock stabilization time	t _{RCSTAB}	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)	

14.4.4 Internal Clock Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Deservator	Current of	Va	11:0:4	
Parameter	Symbol	Min	Мах	Unit
Internal System clock frequency (CLKS1 and CLKS2)	fclks1, fclks2	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

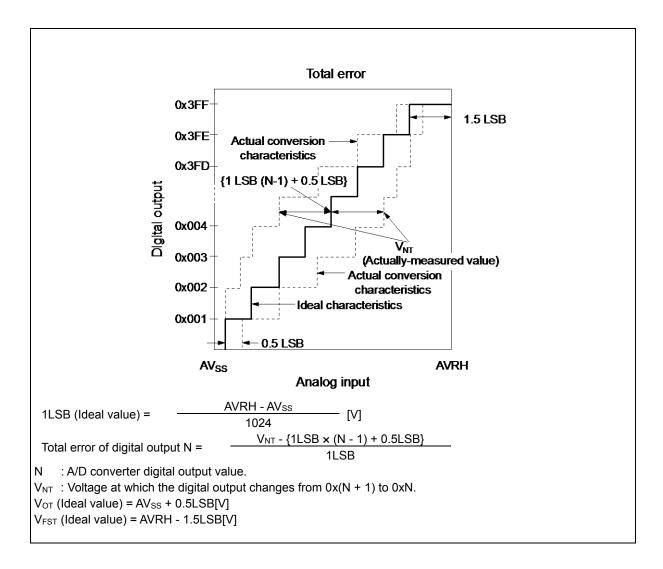
To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

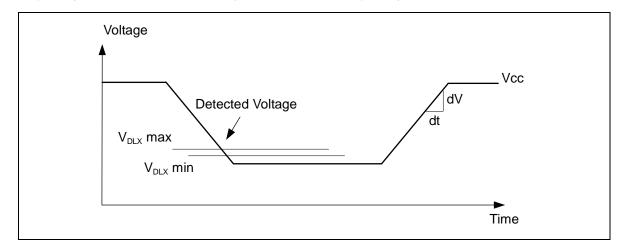
Rvin: Analog input impedance (I/O, analog switch and ADC are contained)


The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{\text{VIN}}) \times \text{C}_{\text{VIN}})$

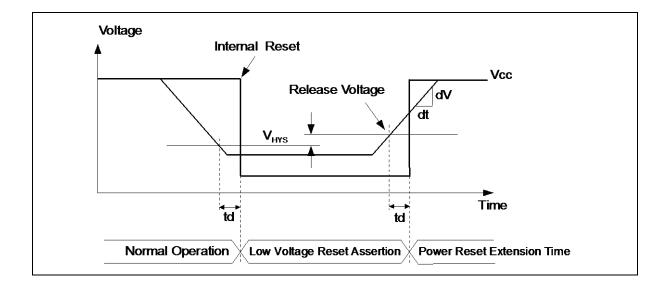
- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AV_{CC} ≤ 5.5V, 1.2µs for 2.7V ≤ AV_{CC} < 4.5V)
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

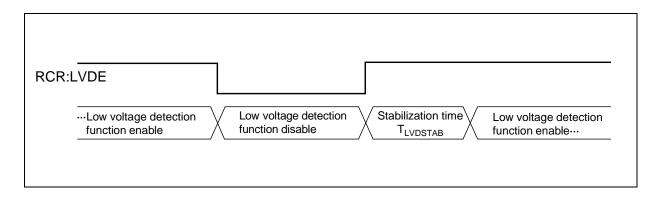
14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.


14.6 Low Voltage Detection Function Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Demonster	Symbol	Conditions	Value			11
Parameter			Min	Тур	Max	Unit
Detected voltage ^[1]	V _{DL0}	$CILCR:LVL = 0000_B$	2.70	2.90	3.10	V
	V _{DL1}	CILCR:LVL = 0001 _B	2.79	3.00	3.21	V
	V _{DL2}	CILCR:LVL = 0010 _B	2.98	3.20	3.42	V
	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V
	V _{DL4}	$CILCR:LVL = 0100_{B}$	3.45	3.70	3.95	V
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V
Power supply voltage change rate ^[2]	dV/dt	-	- 0.004	-	+ 0.004	V/µs
Hysteresis width	V _{HYS}	CILCR:LVHYS=0	-	-	50	mV
		CILCR:LVHYS=1	80	100	120	mV
Stabilization time	T _{LVDSTAB}	-	-	-	75	μs
Detection delay time	t _d	-	-	-	30	μs


[1]: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

[2]: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ratio of power supply voltage.

14.7 Flash Memory Write/Erase Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter		Value		11	Dementer			
		Conditions	Min	Тур	Max	Unit	Remarks	
	Large Sector	Ta ≤ + 105°C	-	1.6	7.5	S	Includes write time prior to internal erase.	
Sector erase time	Small Sector	-	-	0.4	2.1	s		
	Security Sector	-	-	0.31	1.65	S		
Word (16-bit) write time	Large Sector	Ta≤+ 105°C	-	25	400	μs	Not including system-level overheadtime.	
	Small Sector	-	-	25	400	μs		
Chip erase time		Ta≤+105°C	-	5.11	25.05	S	Includes write time prior to internal erase.	

Note:

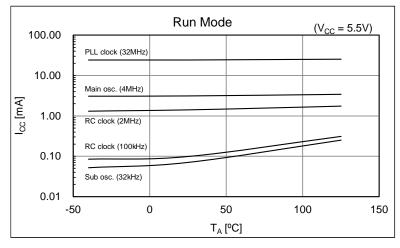
While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

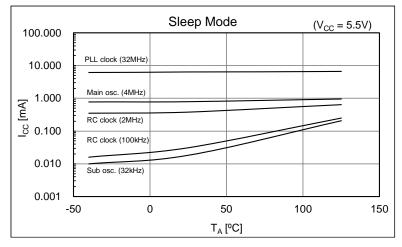
To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})^{*1}.

Write/Erase cycles and data hold time

Write/Erase Cycles (Cycle)	Data Hold Time (Year)
1,000	20 [2]
10,000	10 [2]
100,000	5 [2]

[1]:See "14.6 Low Voltage Detection Function Characteristics".


[2]:This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°c).



15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value. CY96F615

16. Ordering Information

MCU with CAN Controller

Part Number	Flash Memory	Package*		
CY96F612RBPMC-GS-UJE1	Flash A (64.5KB)	48-pin plastic LQFP (LQA048)		
CY96F612RBPMC-GS-UJE2	FIASITA (04.5KD)			
CY96F613RBPMC-GS-UJE1				
CY96F613RBPMC-GS-UJE2	Flash A (96.5KB)	48-pin plastic LQFP (LQA048)		
CY96F613RBPMC-GS-UJERE2				
CY96F615RBPMC-GS-UJE1				
CY96F615RBPMC-GS-UJE2	Flash A (160.5KB)	48-pin plastic LQFP (LQA048)		
CY96F615RBPMC-GS-UJERE2				

*: For details about package, see "Package Dimension".

MCU without CAN Controller

Part Number	Flash Memory	Package*		
CY96F612ABPMC-GS-UJE1	Flash A	48-pin plastic LQFP (LQA048)		
CY96F612ABPMC-GS-UJE2	(64.5KB)			
CY96F613ABPMC-GS-UJE1	Flash A	48-pin plastic LQFP (LQA048)		
CY96F613ABPMC-GS-UJE2	(96.5KB)			
CY96F615ABPMC-GS-UJE1	Flash A (160.5KB)	48-pin plastic LQFP (LQA048)		

*: For details about package, see "Package Dimension".