

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f613abpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

A/D Converter

- SAR-type
- 8/10-bit resolution
- Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- Range Comparator Function

Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23bit Main clock timer, 17-bit Sub clock timer)

Hardware Watchdog Timer

- Hardware watchdog timer is active after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- 16-bit wide
- Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- Event count function

Free-Running Timers

- Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
- Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency

Input Capture Units

- 16-bit wide
- Signals an interrupt upon external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

Output Compare Units

- 16-bit wide
- Signals an interrupt when a match with Free-running Timer occurs
- A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

- 16-bit down counter, cycle and duty setting registers
- Can be used as 2 ×8-bit PPG
- Interrupt at trigger, counter borrow and/or duty match
- PWM operation and one-shot operation

- Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- Can be triggered by software or reload timer
- Can trigger ADC conversion
- Timing point capture

Quadrature Position/Revolution Counter (QPRC)

- Up/down count mode, Phase difference count mode, Count mode with direction
- 16-bit position counter
- 16-bit revolution counter
- Two 16-bit compare registers with interrupt
- Detection edge of the three external event input pins AIN, BIN and ZIN is configurable

Real Time Clock

- Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- Read/write accessible second/minute/hour registers
- Can signal interrupts every half second/second/minute/hour/day
- Internal clock divider and prescaler provide exact 1s clock

External Interrupts

- Edge or Level sensitive
- Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

Non Maskable Interrupt

- Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- Once enabled, can not be disabled other than by reset
- High or Low level sensitive
- Pin shared with external interrupt 0

I/O Ports

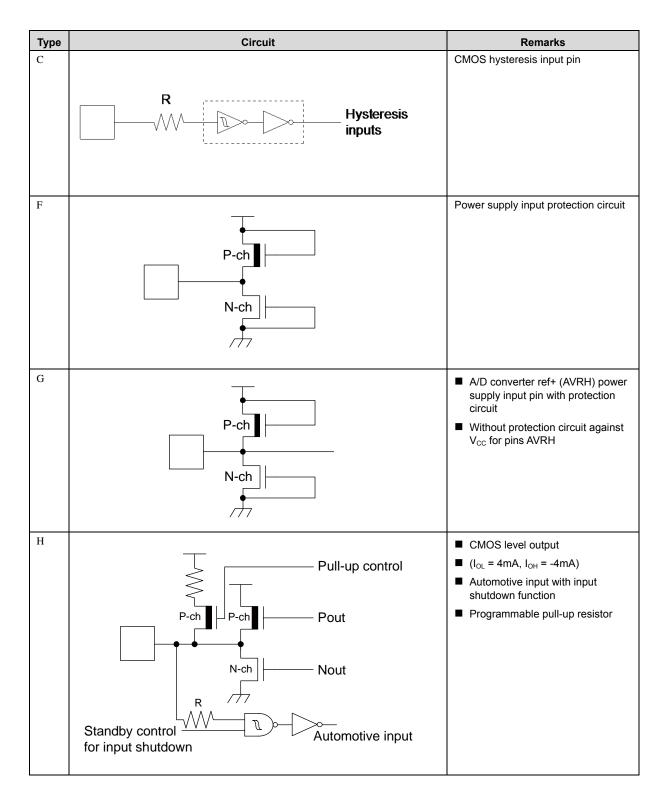
- Most of the external pins can be used as general purpose I/O
- All push-pull outputs
- Bit-wise programmable as input/output or peripheral signal
- Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor

Contents

Feat	ures	
1.	Product Lineup	
2.	Block Diagram	
3.	Pin Assignment	
4.	Pin Description	9
5.	Pin Circuit Type	
6.	I/O Circuit Type	13
7.	Memory Map	
8.	RAMstart Addresses	
9.	User ROM Memory Map for Flash Devices	
10.	Serial Programming Communication Interface	
11.	Interrupt Vector Table	22
12.	Handling Precautions	26
12.1	Precautions for Product Design	26
12.2	Precautions for Package Mounting	27
12.3	Precautions for Use Environment	29
13.	Handling Devices	30
13.1	Latch-Up Prevention	30
13.2	Unused Pins Handling	30
13.3	External Clock Usage	30
13.3.	1 Single Phase External Clock for Main Oscillator	31
13.3.	2 Single Phase External Clock for Sub Oscillator	31
13.3.	3 Opposite Phase External Clock	31
13.4	Notes on PLL Clock Mode Operation	31
13.5	Power Supply Pins (Vcc/Vss)	
13.6	Crystal Oscillator and ceramic resonator Circuit	
13.7	Turn on Sequence of Power Supply to A/D Converter and Analog Inputs	
13.8	Pin Handling when Not Using the A/D Converter	
13.9	Notes on Power-on	32
13.10) Stabilization of Power Supply Voltage	32
13.1	Serial Communication	
	2 Mode Pin (MD)	
	Electrical Characteristics	
14.1	Absolute Maximum Ratings	33
14.2	Recommended Operating Conditions	
14.3	DC Characteristics	
14.3.	1 Current Rating	
	•	39
14.4	AC Characteristics	
	1 Main Clock Input Characteristics	
	2 Sub Clock Input Characteristics	
	3 Built-in RC Oscillation Characteristics	
	4 Internal Clock Timing	
	5 Operating Conditions of PLL	
	6 Reset Input.	
	7 Power-on Reset Timing	
	8 USART Timing	
	9 External Input Timing	
14.5	A/D Converter	
-	1 Electrical Characteristics for the A/D Converter	

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time	
14.5.3 Definition of A/D Converter Terms	
14.6 Low Voltage Detection Function Characteristics	
14.7 Flash Memory Write/Erase Characteristics	
15. Example Characteristics	
16. Ordering Information	
17. Package Dimension	
18. Major Changes	
Document History	
Sales, Solutions, and Legal Information	64

1. Product Lineup


Features			CY96610	Remark												
Product Type			Flash Memory Product													
Subclock			Subclock can be set by software													
Dual Operat	tion Flash Memory	RAM	-													
32.5KB + 32	2KB	4KB	CY96F612R, CY96F612A	Product Options												
64.5KB + 32	2KB	10KB	CY96F613R, CY96F613A	R: MCU with CAN												
128.5KB + 3	32KB	10KB	CY96F615R, CY96F615A	A: MCU without CAN												
Package			LQFP-48													
Package			LQA048													
DMA			2ch													
USART			3ch	LIN-USART 2/7/8												
	with automatic LIN-Heat transmission/reception		Yes (only 1ch)	LIN-USART 2												
	with 16 byte RX- and TX-FIFO		No													
8/10-bit A/D	-		16ch	AN 0/1/3/4/6 to 10/ 12/14/16/24/25/30/31												
	with Data Buffer		No													
	with Range Comparate	or	Yes													
	with Scan Disable		No													
	with ADC Pulse Detect	lion	No													
16-bit Reloa	ad Timer (RLT)		3ch	RLT 1/3/6												
16-bit Free-	16-bit Free-Running Timer (FRT)		4ch	FRT 0 to 3 FRT 0 to 3 does not have external clock input pin												
			7ch	ICU 0/1/4 to 6/9/10												
16-bit input	Capture Unit (ICU)		(3 channels for LIN-USART)	(ICU 6/9/10 for LIN-USART)												
				OCU 0/1/4/6/7												
16-bit Outpu	ut Compare Unit (OCU)		5ch	(OCU 4 for FRT clear)												
				PPG 0/1/3/4/6/7/12/14												
8/16-Dit Prog	grammable Pulse Genera		8ch (16-bit) / 16ch (8-bit)	PPG 0/1/3/4/6/7/12/14												
	with Timing point captu	ire	Yes													
	with Start delay		No													
Our drature	with Ramp Position/Revolution Cour		No													
Quadrature (QPRC)	Position/Revolution Cour	nter	2ch	QPRC 0/1												
CAN Interfa	ace		rface		face		1ch	CAN 2 32 Message Buffers								
External Inte	errupts (INT)		11ch	INT 0/2/3/4/7 to 13												
	,		,		· · · /		, , <i>,</i>		,		askable Interrupt (NMI)		, , ,		1ch	
											ne Clock (RTC)		,			
iteai Tillie C																
I/O Ports		35 (Dual clock mode) 37 (Single clock mode)														
Clock Calibration Unit (CAL)		1ch														
Clock Output Function																
Low Voltage Detection Function		Yes	Low voltage detection function can be disabled by software													
Hardware W	Vatchdog Timer		Yes													
On-chip RC-oscillator																
On-chip RC	-oscillator		Yes													

Note:

-

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.

8. RAMstart Addresses

Devices	Bank 0 RAM Size	RAMSTART0
CY96F612	4KB	00:7200 _H
CY96F613, CY96F615	10KB	00:5А00 _н

9. User ROM Memory Map for Flash Devices

		CY96F612	CY96F613	CY96F615	
		01901012	01901013	01901015	
CPU mode address	Flash memory mode address	Flash size 32.5KB + 32KB	Flash size 64.5KB + 32KB	Flash size 128.5KB + 32KB	
FF:FFFF _H FF:8000 _H	3F:FFFF _H 3F:8000 _H	SA39 - 32KB	SA39 - 64KB	SA39 - 64KB	
FF:7FFF _H FF:0000 _H	3F:7FFF _H 3F:0000 _H		SA39 - 04NB	5A39 - 04KB	Bank A of Flash A
FE:FFFF _H	3E:FFFF _H			SA38 - 64KB	BunkA of HushA
FE:0000 _H	3E:0000 _H	-			
FD:FFFF _H		Reserved	Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	SA4 - 8KB	7
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	SA3 - 8KB	Darely D. of Elev. L. A.
DF:5FFF _H DF:4000 _H	1F:5FFF _н 1F:4000 _н	SA2 - 8KB	SA2 - 8KB	SA2 - 8KB	Bank B of Flash A
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	SA1 - 8KB	
DF:1FFF _H DF:0000 _H	1F:1FFF _H 1F:0000 _H	SAS - 512B*	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DE:FFFF _H DE:0000 _H	**	Reserved	Reserved	Reserved	

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS can not be used for E²PROM emulation.

11.Interrupt Vector Table

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3С8 _н	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _н	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3В8 _Н	EXTINT0	Yes	17	External Interrupt 0
18	3В4 _Н	-	-	18	Reserved
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _Н	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	-	-	22	Reserved
23	3A0 _H	-	-	23	Reserved
24	39C _н	EXTINT7	Yes	24	External Interrupt 7
25	398 _н	EXTINT8	Yes	25	External Interrupt 8
26	394 _н	EXTINT9	Yes	26	External Interrupt 9
27	390 _н	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _H	-	-	31	Reserved
32	37C _H	-	-	32	Reserved
33	378 _H	-	-	33	Reserved
34	374 _H	-	-	34	Reserved
35	370 _H	CAN2	No	35	CAN Controller 2
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360 _H	PPG1	Yes	39	Programmable Pulse Generator 1

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION:

When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styro foam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION:

Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13.7 Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable)

13.8 Pin Handling when Not Using the A/D Converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC} AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

13.10Stabilization of Power Supply Voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

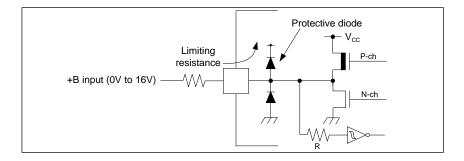
13.11 Serial Communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)


Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

Sample recommended circuits:

[5]: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 P_{IO} = Σ (V_{OL} × I_{OL} + V_{OH} × I_{OH}) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_{A} is the analog current consumption into $AV_{\text{CC}}.$

[6]: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

[7]: Write/erase to a large sector in flash memory is warranted with $T_A \leq + 105^{\circ}C$.

WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Dama	0	Pin	O and little	Value			Dama	
Parameter	Symbol	Name	Conditions	Min	Тур	Мах	Unit	Remarks
				-	1800	2245	μA	$T_A = +25^{\circ}C$
	I _{CCTPLL}		PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped)	-	-	3165	μA	T _A = +105°C
				-	-	3975	μA	T _A = +125°C
			Main Timer mode with	-	285	325	μA	T _A = +25°C
			CLKMC = 4MHz, SMCR:LPMSS = 0	-	-	1085	μA	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μA	T _A = +125°C
Davias avealu			RC Timer mode with	-	160	210	μA	T _A = +25°C
Power supply current in Timer modes ^[2]	I _{CCTRCH}	Vcc	CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL,	-	-	1025	μA	T _A = +105°C
Timer modes.			CLKMC and CLKSC stopped)	-	-	1840	μA	T _A = +125°C
	I _{cctrcl}		RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped)	-	35	75	μA	T _A = +25°C
				-	-	855	μA	T _A = +105°C
				-	-	1640	μA	T _A = +125°C
	I _{CCTSUB}		Sub Timer mode with CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC stopped)	-	25	65	μA	T _A = +25°C
				-	-	830	μA	T _A = +105°C
				-	-	1620	μA	T _A = +125°C
Power supply				-	20	55	μA	T _A = +25°C
current in Stop	I _{CCH}		-	-	-	825	μA	T _A = +105°C
mode ^[3]				-	-	1615	μA	T _A = +125°C
Flash Power Down current	ICCFLASHPD		-	-	36	70	μA	
Power supply current		Vcc		-	5	-	μA	T _A = +25°C
for active Low	00200		Low voltage detector enabled					
Voltage detector ^[4]				-	-	12.5	μA	T _A = +125°C
Flash Write/			_	-	12.5	-	mA	T _A = +25°C
Erase current ^[5]	ICCFLASH		-	-	-	20	mA	T _A = +125°C

[1]: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

[2]: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

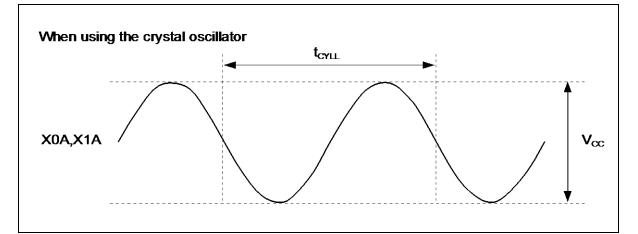
The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

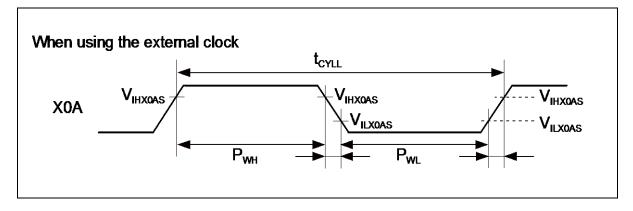
[3]: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

[4]: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

[5]: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.





14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Demonstern		Pin	O and it is an a		Value			- -	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
	f _{CL}	X0A, X1A	-	-	32.768	-	kHz	When using an oscillation circuit	
Input frequency			-	-	-	100	kHz	When using an opposite phase external clock	
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs		
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%		

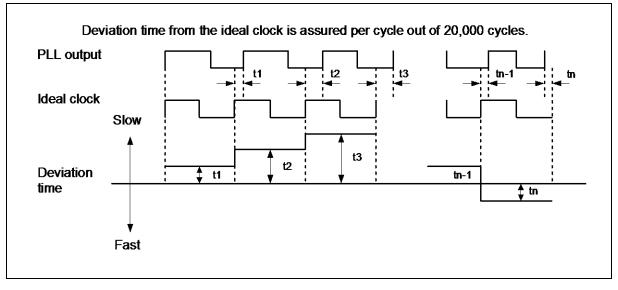
14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

– <i>i</i>			Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Clock frequency	f _{BC}	50	100	200	kHz	When using slow frequency of RC oscillator	
Clock frequency	IRC	1	2	4	MHz	When using fast frequency of RC oscillator	
		80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
RC clock stabilization time	t _{RCSTAB}	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)	

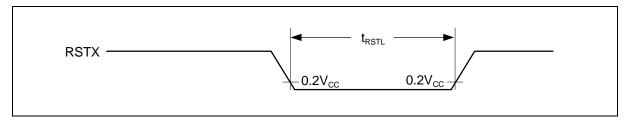
14.4.4 Internal Clock Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

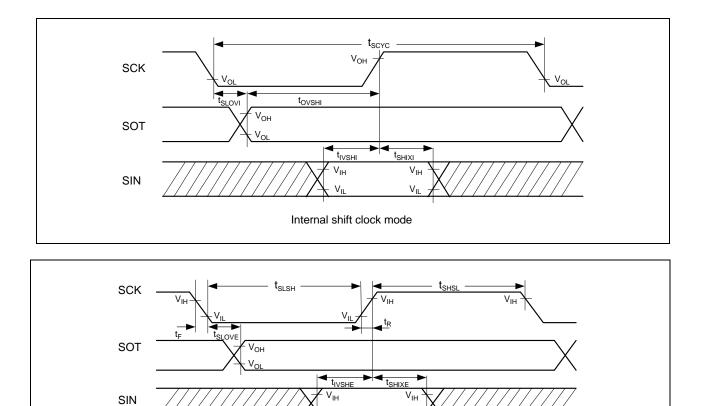

Deservator	Current of	Va	11	
Parameter	Symbol	Min	Мах	Unit
Internal System clock frequency (CLKS1 and CLKS2)	fclks1, fclks2	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

14.4.5 Operating Conditions of PLL

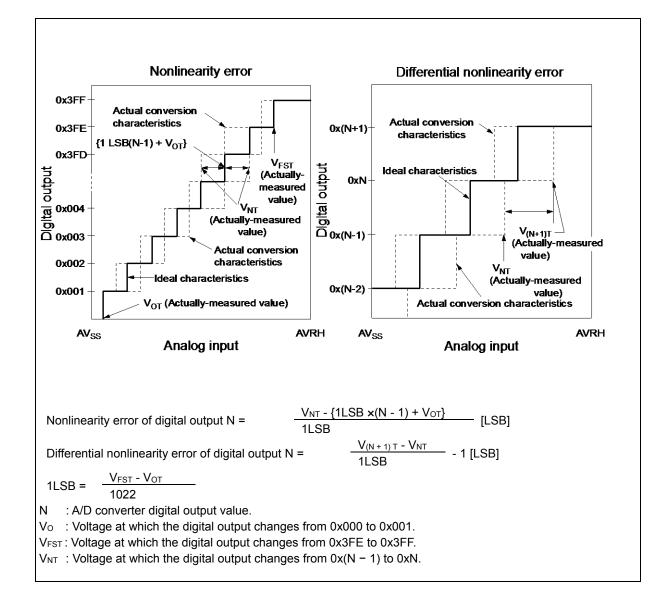
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Devenueden	Symbol	Value			l l mit	Domorius	
Parameter		Min	Тур	Мах	Unit	Remarks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input


 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Pin Name	Va	Unit	
Farameter			Min	Мах	Onit
Reset input time	+	RSTU RSTX		-	μs
Rejection of reset input time	t _{RSTL}	ROIA	1	-	μs



External shift clock mode

VII

18. Major Changes

Spansion Publication Number: MB96610_DS704-00007

Page	Section	Change Results					
Revision 3.	Revision 3.0						
	■FEATURES	Changed the description of "External Interrupts"					
4		Interrupt mask and pending bit per channel					
		Interrupt mask bit per channel					
23 to 26	■HANDLING PRECAUTIONS	Added a section					
34	■ELECTRICAL CHARACTERISTICS	Changed the Conditions for I _{CCSRCH}					
	3. DC Characteristics	CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz,					
	(1) Current Rating	CLKS1/2 = CLKP1/2 = CLKRC = 2MHz,					
		Changed the Conditions for I _{CCSRCL}					
		CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz					
		CLKS1/2 = CLKP1/2 = CLKRC = 100kHz					
35		Changed the Conditions for I _{CCTPLL}					
		PLL Timer mode with CLKP1 = 32MHz					
		PLL Timer mode with CLKPLL = 32MHz					
		Changed the Value of "Power supply current in Timer modes"					
		Typ: 2480 μ A \rightarrow 1800 μ A (T _A = +25°C)					
		Max: 2710 μ A \rightarrow 2245 μ A (T _A = +25°C)					
		Max: 3985 μ A \rightarrow 3165 μ A (T _A = +105°C)					
		Max: 4830 μ A \rightarrow 3975 μ A (T _A = +125°C)					
		Changed the Conditions for ICCTRCL					
		RC Timer mode with CLKRC = 100kHz,					
		SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)					
		RC Timer mode with CLKRC = 100kHz					
		(CLKPLL, CLKMC and CLKSC stopped)					
36		Changed the annotation *2					
		Power supply for "On Chip Debugger" part is not included.					
		Power supply current in Run mode does not include					
		Flash Write / Erase current.					
		The current for "On Chip Debugger" part is not included.					
47	5. A/D Converter (2) Accuracy and Setting of the A/D Converter Sampling Time	Deleted the unit "[Min]" from approximation formula of Sampling time					
52	7. Flash Memory Write/Erase Characteristics	Changed the condition					
		$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$					
		(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)					