

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f613rbpmc-gs-127e2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

A/D Converter

- SAR-type
- 8/10-bit resolution
- Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- Range Comparator Function

Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23bit Main clock timer, 17-bit Sub clock timer)

Hardware Watchdog Timer

- Hardware watchdog timer is active after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- 16-bit wide
- Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- Event count function

Free-Running Timers

- Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
- Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency

Input Capture Units

- 16-bit wide
- Signals an interrupt upon external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

Output Compare Units

- 16-bit wide
- Signals an interrupt when a match with Free-running Timer occurs
- A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

- 16-bit down counter, cycle and duty setting registers
- Can be used as 2 ×8-bit PPG
- Interrupt at trigger, counter borrow and/or duty match
- PWM operation and one-shot operation

- Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- Can be triggered by software or reload timer
- Can trigger ADC conversion
- Timing point capture

Quadrature Position/Revolution Counter (QPRC)

- Up/down count mode, Phase difference count mode, Count mode with direction
- 16-bit position counter
- 16-bit revolution counter
- Two 16-bit compare registers with interrupt
- Detection edge of the three external event input pins AIN, BIN and ZIN is configurable

Real Time Clock

- Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- Read/write accessible second/minute/hour registers
- Can signal interrupts every half second/second/minute/hour/day
- Internal clock divider and prescaler provide exact 1s clock

External Interrupts

- Edge or Level sensitive
- Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

Non Maskable Interrupt

- Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- Once enabled, can not be disabled other than by reset
- High or Low level sensitive
- Pin shared with external interrupt 0

I/O Ports

- Most of the external pins can be used as general purpose I/O
- All push-pull outputs
- Bit-wise programmable as input/output or peripheral signal
- Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor

7. Memory Map

	FF:FFFF _H		
		USER ROM*1	
	DE:0000 _H		
	DD:FFFF _H		
		Reserved	
	10:0000 _Н		
	0F:C000 _H	Boot-ROM	
	0E:9000H	Peripheral	
		Reserved	
	01:0000 _H		
	00.8000.	ROM/RAM	
		Internal RAM	
	RAMSTART0*2	bank0	
		Reserved	
	00:0C00 _Н		
	00:0380 _H	Peripheral	
	00:0180 _H	GPR* ³	
	00:0100 _H	DMA	
	00:00F0 _H	Reserved	
	00:0000 _H	Peripheral	
*1: For details about USER R	OM area, see "		
User ROM Memory Map for	Flash Devices" on the follow	ving pages.	
*2: For RAMSTART addresse	es, see the table on the next	page.	
*3: Unused GPR banks can b	e used as RAM area.		
GPR: General-Purpose	Register		
The DMA area is only availab	le if the device contains the	corresponding reso	urce.
The available RAM and ROM	area depends on the device	e.	

8. RAMstart Addresses

Devices	Bank 0 RAM Size	RAMSTART0
CY96F612	4KB	00:7200 _H
CY96F613, CY96F615	10KB	00:5A00 _H

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

CY96610									
Pin Number	USART Number	Normal Function							
7		SIN2							
8	USART2	SOT2							
9		SCK2							
20		SIN7_R							
19	USART7	SOT7_R							
18		SCK7_R							
22		SIN8_R							
21	USART8	SOT8_R							
23		SCK8_R							

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
40	35C _н	-	-	40	Reserved
41	358 _н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _H	PPG4	Yes	42	Programmable Pulse Generator 4
43	350 _H	-	-	43	Reserved
44	34C _H	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33C _H	-	-	48	Reserved
49	338 _H	-	-	49	Reserved
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _H	-	-	51	Reserved
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	-	-	53	Reserved
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318 _H	-	-	57	Reserved
58	314 _H	-	-	58	Reserved
59	310 _H	RLT1	Yes	59	Reload Timer 1
60	30C _H	-	-	60	Reserved
61	308 _H	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	-	-	72	Reserved
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	ICU9	Yes	74	Input Capture Unit 9
75	2D0 _H	ICU10	Yes	75	Input Capture Unit 10
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _H	-	-	79	Reserved
80	2BC _H	-	-	80	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION:

When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styro foam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION:

Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

14.3 DC Characteristics

14.3.1 Current Rating

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 125°C)

Doromotor	Symbol	Pin	Conditions	Value		Unit	Pomarka	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 =	-	25	-	mA	T _A = +25°C
	I _{CCPLL}		CLKB = CLKP1/2 = 32MHz Flash 0 wait (CLKBC and CLKSC stopped)	-	-	34	mA	T _A = +105°C
				-	-	35	mA	T _A = +125°C
			Main Run mode with CLKS1/2 =	-	3.5	-	mA	T _A = +25°C
	I _{CCMAIN}		Flash 0 wait (CLKPLL, CLKSC and CLKRC	-	-	7.5	mA	T _A = +105°C
		_	stopped)	-	-	8.5	mA	T _A = +125°C
	I _{CCRCH} V		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =	-	1.7	-	mA	T _A = +25°C
Power supply current in Run modes ^[1]		Vcc	2MHz Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped)	-	-	5.5	mA	T _A = +105°C
		_		-	-	6.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =	-	0.15	-	mA	T _A = +25°C
			100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC	-	-	3.2	mA	T _A = +105°C
		_	stopped)	-	-	4.2	mA	T _A = +125°C
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz Flash 0 wait (CLKMC, CLKPLL and CLKRC stopped)	-	0.1	-	mA	T _A = +25°C
	I _{CCSUB}			-	-	3	mA	T _A = +105°C
				-	-	4	mA	T _A = +125°C

Devementer	Symbol	Pin	Conditions		Value			Demorko	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
				-	1800	2245	μA	$T_A = +25^{\circ}C$	
	ICCTPLL		32MHz (CLKRC and CLKSC stopped)	-	-	3165	μA	T _A = +105°C	
				-	-	3975	μΑ	T _A = +125°C	
			Main Timer mode with	-	285	325	μA	T _A = +25°C	
			SMCR:LPMSS = 0	-	-	1085	μA	T _A = +105°C	
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μA	T _A = +125°C	
Davian avrahu			RC Timer mode with	-	160	210	μA	$T_A = +25^{\circ}C$	
Current in	I _{CCTRCH}	Vcc	CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL.	-	-	1025	μA	T _A = +105°C	
Timer modes.			CLKMC and CLKSC stopped)	-	-	1840	μA	T _A = +125°C	
			RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped)	-	35	75	μA	T _A = +25°C	
				-	-	855	μA	T _A = +105°C	
				-	-	1640	μA	T _A = +125°C	
	I _{CCTSUB}		Sub Timer mode with CLKSC = 32kHz (CLKMC,	-	25	65	μA	T _A = +25°C	
				-	-	830	μA	T _A = +105°C	
			CLKPLL and CLKRC stopped)	-	-	1620	μA	T _A = +125°C	
Power supply				-	20	55	μA	T _A = +25°C	
current in Stop	I _{CCH}		-	-	-	825	μA	T _A = +105°C	
mode ^[3]				-	-	1615	μA	T _A = +125°C	
Flash Power Down current	ICCFLASHPD		-	-	36	70	μA		
Power supply current		Vcc		-	5	-	μA	T _A = +25°C	
for active Low	I _{CCLVD}		Low voltage detector enabled						
Voltage detector ^[4]				-	-	12.5	μΑ	T _A = +125°C	
Flash Write/				-	12.5	-	mA	$T_A = +25^{\circ}C$	
Erase current ^[5]	ICCFLASH		-	-	-	20	mA	T _A = +125°C	

[1]: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

[2]: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

[3]: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

[4]: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

[5]: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.

14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Denemeter	Cumph al	Pin		Value		11	Demonto
Parameter	Symbol	Name	Min	Тур	Max	Unit	Remarks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	f _C	X0, X1	-	-	8	MHz	When using an opposite phase external clock, PLL off
		4 - 8 MHz opposite PLL on	When using a crystal oscillator or opposite phase external clock, PLL on				
		xo	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
input irrequency	IFCI		4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{CYLH}	-	125	-	-	ns	
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns	

14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

_				Value				
Parameter	Symbol	Name	Conditions	Min	Тур	Мах	Unit	Remarks
Input frequency f _{CL}		YOA	-	-	32.768	-	kHz	When using an oscillation circuit
	f _{CL}	XIA X1A	-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	

14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

- (Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Clock frequency	fac	50	100	200	kHz	When using slow frequency of RC oscillator	
Clock frequency	IRC	1	2	4	MHz	When using fast frequency of RC oscillator	
		80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
RC clock stabilization time	t _{rcstab}	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)	

14.4.4 Internal Clock Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Devenueter	Current of	Va	11		
Parameter	Symbol	Min	Мах	Unit	
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	54	MHz	
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clk} в, f _{clkp1}	-	32	MHz	
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz	

14.4.9 External Input Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Value			– .
			Min	Max	Unit	Remarks
Input pulse width	t _{inH} , t _{inL}	Pnn_m	2t _{CLKP1} +200 (t _{CLKP1} =1/f _{CLKP1})*	-	ns	General Purpose I/O
		ADTG_R				A/D Converter trigger input
		TINn				Reload Timer
		TTGn				PPG trigger input
		INn				Input Capture
		AlNn, BlNn, ZlNn				Quadrature Position/Revolution Counter
		INTn, INTn_R, INTn_R1	200	-	ns	External Interrupt
		NMI				Non-Maskable Interrupt

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value. CY96F615

Page	Section	Change Results
58	16. Ordering Information	Revised Marketing Part Numbers as follows: Before) MCU with CAN Controller MB96F612RBPMC-GSE1 MB96F612RBPMC-GS-UJE1 MB96F612RBPMC-GS-UJE2 MB96F613RBPMC-GSE1 MB96F613RBPMC-GSE1 MB96F613RBPMC-GSE2 MB96F613RBPMC-GSE2 MB96F613RBPMC-GSE1 MB96F615RBPMC-GSE1 MB96F615RBPMC-GSE1 MB96F615RBPMC-GSE2 MB96F615RBPMC-GSE2 MB96F615RBPMC-GSE2 MB96F615RBPMC-GSE2 MB96F612ABPMC-GSE1 MB96F612ABPMC-GSE1 MB96F612ABPMC-GSE2 MB96F612ABPMC-GSE2 MB96F612ABPMC-GSE2 MB96F612ABPMC-GSE2 MB96F612ABPMC-GSE2 MB96F612ABPMC-GSE2 MB96F612ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB96F613ABPMC-GSE1 MB96F613ABPMC-GSE2 MB9
58	16. Ordering Information	After) MCU with CAN Controller CY96F612RBPMC-GS-UJE1 CY96F613RBPMC-GS-UJE2 CY96F613RBPMC-GS-UJE1 CY96F613RBPMC-GS-UJE2 CY96F615RBPMC-GS-UJE1 CY96F615RBPMC-GS-UJE2 CY96F615RBPMC-GS-UJE2 CY96F612ABPMC-GS-UJE1 CY96F612ABPMC-GS-UJE1 CY96F613ABPMC-GS-UJE1 CY96F613ABPMC-GS-UJE2 CY96F615ABPMC-GS-UJE1

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuccitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress form any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.