

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f613rbpmc-gs-128e2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment

Pin No.	I/O Circuit Type*	Pin Name
33	С	RSTX
34	A	X1
35	A	X0
36	Supply	Vss
37	Supply	Vcc
38	F	C
39	Н	P02_5 / BIN0 / IN1 / TTG1 / ADTG_R
40	К	P03_0 / AIN1 / IN4 / TTG4 / TTG12 / AN24
41	К	P03_1 / BIN1 / IN5 / TTG5 / TTG13 / AN25
42	М	P03_2 / INT10_R / RX2
43	Н	P03_3 / TX2
44	К	P03_6 / ZIN1 / OUT6 / AN30
45	К	P03_7 / OUT7 / AN31
46	К	P06_0 / AN0 / PPG0
47	К	P06_1 / AN1 / PPG1
48	Supply	AVcc

*: See I/O Circuit Type" for details on the I/O circuit types.

6. I/O Circuit Type

7. Memory Map

	FF:FFFF _H		
		USER ROM*1	
	DE:0000 _H		
	DD:FFFF _H		
		Reserved	
	10:0000 _Н		
	0F:C000 _H	Boot-ROM	
	0E:9000H	Peripheral	
		Reserved	
	01:0000 _H		
	00.8000.	ROM/RAM	
		Internal RAM	
	RAMSTART0*2	bank0	
		Reserved	
	00:0C00 _Н		
	00:0380 _H	Peripheral	
	00:0180 _H	GPR* ³	
	00:0100 _H	DMA	
	00:00F0 _H	Reserved	
	00:0000 _H	Peripheral	
*1: For details about USER R	OM area, see "		
User ROM Memory Map for	Flash Devices" on the follow	ving pages.	
*2: For RAMSTART addresse	es, see the table on the next	page.	
*3: Unused GPR banks can b	e used as RAM area.		
GPR: General-Purpose	Register		
The DMA area is only availab	le if the device contains the	corresponding reso	urce.
The available RAM and ROM	area depends on the device	e.	

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Demonstern	O mark at	O an all the se	Rating		1114	Demonster
Parameter	Symbol	Condition	Min	Max	Unit	Remarks
Power supply voltage ^[1]	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage ^[1]	AV _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{[2]}$
Analog reference voltage ^[1]	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AVRH ≥ AV _{SS}
Input voltage ^[1]	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{[3]}$
Output voltage ^[1]	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{[3]}$
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins ^[4]
Total Maximum Clamp Current	$\Sigma I_{CLAMP} $	-	-	13	mA	Applicable to general purpose I/O pins ^[4]
"L" level maximum output current	I _{OL}	-	-	15	mA	
"L" level average output current	I _{OLAV}	-	-	4	mA	
"L" level maximum overall output current	Σl _{OL}	-	-	32	mA	
"L" level average overall output current	Σl _{olav}	-	-	16	mA	
"H" level maximum output current	I _{ОН}	-	-	-15	mA	
"H" level average output current	I _{ohav}	-	-	-4	mA	
"H" level maximum overall output current	Σι _{он}	-	-	-32	mA	
"H" level average overall output current	Σι _{οнаν}	-	-	-16	mA	
Power consumption ^[5]	PD	T _A = +125°C	-	284 ^[6]	mW	
Operating ambient temperature	T _A	-	-40	+125 ^[7]	°C	
Storage temperature	T _{STG}	-	-55	+150	°C	

[1]: This parameter is based on V_{SS} = AV_{SS} = 0V.

[2]: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

[3]: V_1 and V_0 should not exceed V_{CC} + 0.3V. V_1 should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V₁ rating. Input/Output voltages of standard ports depend on V_{CC}.

[4]:

- Applicable to all general purpose I/O pins (Pnn_m).
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

Sample recommended circuits:

[5]: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 P_{IO} = Σ (V_{OL} × I_{OL} + V_{OH} × I_{OH}) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_{A} is the analog current consumption into $\text{AV}_{\text{CC}}.$

[6]: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

[7]: Write/erase to a large sector in flash memory is warranted with $T_A \leq + 105^{\circ}C$.

WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.3 DC Characteristics

14.3.1 Current Rating

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 125°C)

Doromotor	Symbol	Pin	Conditions	Value			Unit	Pomarka
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 =	-	25	-	mA	T _A = +25°C
	I _{CCPLL}		CLKB = CLKP1/2 = 32MHz Flash 0 wait (CLKBC and CLKSC stopped)	-	-	34	mA	T _A = +105°C
				-	-	35	mA	T _A = +125°C
			Main Run mode with CLKS1/2 =	-	3.5	-	mA	T _A = +25°C
	I _{CCMAIN}		CLKB = CLKP1/2 = 4MHz Flash 0 wait (CLKPLL, CLKSC and CLKRC stopped)	-	-	7.5	mA	T _A = +105°C
		_		-	-	8.5	mA	T _A = +125°C
		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =	-	1.7	-	mA	T _A = +25°C	
Power supply current in Run modes ^[1]	I _{CCRCH}	^H Vcc	2MHz Flash 0 wait (CLKMC, CLKPLL and CLKSC	-	-	5.5	mA	T _A = +105°C
		_	stopped)	-	-	6.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =	-	0.15	-	mA	T _A = +25°C
			100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC	-	-	3.2	mA	T _A = +105°C
	stopped)	-	-	4.2	mA	T _A = +125°C		
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz Flash 0 wait (CLKMC, CLKPLL and CLKRC stopped)	-	0.1	-	mA	T _A = +25°C
	I _{CCSUB}			-	-	3	mA	T _A = +105°C
				-	-	4	mA	T _A = +125°C

14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

_		Pin			Value			
Parameter	Symbol	Name	Conditions	Min	Тур	Мах	Unit	Remarks
		YOA	-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency	f _{CL}	X1A	-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	

14.4.5 Operating Conditions of PLL

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Devenueter	Ormahal	Value			Unit	Demode	
Parameter	Symbol	Min	Тур	Мах	Unit	Remarks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Paramotor	Symbol Pin Name		Va	Unit	
Falameter			Min	Мах	Onit
Reset input time	•	DETY	10	-	μs
Rejection of reset input time	^I RSTL	K91Y	1	-	μs

14.4.9 External Input Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

-		D 1 N 1	Value											
Parameter	Symbol	Pin Name	Min	Max	Unit	Remarks								
		Pnn_m				General Purpose I/O								
		ADTG_R				A/D Converter trigger input								
		TINn				Reload Timer								
		TTGn	2t _{CLKP1} +200 (t _{CLKP1} =1/f _{CLKP1})*	$2t_{CLKP1} + 200 (t_{CLKP1} = 1/f_{CLKP1})^*$	$2t_{CLKP1} + 200$	$2t_{CLKP1} + 200$	2t _{CLKP1} +200	-	ns	PPG trigger input				
Input pulse		INn									Input Capture			
width	unh, unl	AlNn, BlNn, ZlNn				Quadrature Position/Revolution Counter								
		INTn, INTn_R, INTn_R1	200	-	ns	External Interrupt								
		NMI				Non-Maskable Interrupt								

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

Rvin: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{\text{VIN}}) \times \text{C}_{\text{VIN}})$

- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AV_{CC} ≤ 5.5V, 1.2µs for 2.7V ≤ AV_{CC} < 4.5V)
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b000000001) to the full-scale transition point (0b111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.

14.7 Flash Memory Write/Erase Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Deveneter		Value			11	Dementer		
Parar	neter	Conditions	Min	Тур	Мах	Unit	Remarks	
	Large Sector	Ta≤+ 105°C	-	1.6	7.5	S		
Sector erase time	Small Sector	-	-	0.4	2.1	s	Includes write time prior to internal erase.	
	Security Sector	-	-	0.31	1.65	s		
Word (16-bit) write	Large Sector	Ta≤+ 105°C	-	25	400	μs	Not including system-level	
time	Small Sector	-	-	25	400	μs	overheadtime.	
Chip erase time		Ta≤+105°C	-	5.11	25.05	s	Includes write time prior to internal erase.	

Note:

While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})^{*1}.

Write/Erase cycles and data hold time

Write/Erase Cycles (Cycle)	Data Hold Time (Year)
1,000	20 [2]
10,000	10 [2]
100,000	5 [2]

[1]:See "14.6 Low Voltage Detection Function Characteristics".

[2]:This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°c).

15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value. CY96F615

Used Setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz
		Regulator in High Power Mode, (CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz
		Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz
		Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz
		Regulator in Low Power Mode, (CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz
		Regulator in Low Power Mode, (CLKB is stopped in this mode)
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz
		(System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz
		(System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock fast	CLKMC = 2MHz
		(System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock slow	CLKMC = 100kHz
		(System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz
		(System clocks are stopped in this mode)
		Regulator in Low Power Mode, FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode)
		Regulator in Low Power Mode, FLASH in Power-down / reset mode

17. Package Dimension

LQA048, 48 Lead Plastic Low Profile Quad Flat Package

SIDE VIEW

SYMPOL	DIMENSIONS		
STMBUL	MIN.	NOM.	MAX.
Α		_	1.70
A1	0.00	_	0.20
b	0.15	—	0.27
с	0.09	—	0.20
D	9.00 BSC		
D1	7.00 BSC		
е	0.50 BSC		
Е	9.00 BSC		
E1	7.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
A	٥°		٥°

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.

▲ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

DETAIL A

A DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

TO BE DETERMINED AT SEATING PLANE C.

DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

- ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ▲ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ▲ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

 \cancel{A} A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13731 **

PACKAGE OUTLINE, 48 LEAD LQFP 7.0X7.0X1.7 MM LQA048 REV**

CY96610 Series

Page	Section	Change Results			
52	■ELECTRICAL CHARACTERISTICS	Changed the Note			
	7. Flash Memory Write/Erase Characteristics	While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector.			
		While the Flash memory is written or erased, shutdown of the external power ($V_{\rm Cc}$) is prohibited. In the application system where the external power ($V_{\rm Cc}$) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.			
	■ORDERING INFORMATION	Deleted the Part number			
		MCU with CAN controller			
		MB96F612RBPMC-GTE2			
		MB96F613RBPMC-GTE2			
56		MB96F615RBPMC-GTE2			
		MCU without CAN controller			
		MB96F612ABPMC-GTE2			
		MB96F613ABPMC-GTE2			
		MB96F615ABPMC-GTE2			
Revision 3.					
-	-	Company name and layout design change			
Rev.*B					
	1. Product Lineup				
6, 8, 58,	3. Pin Assignment	Package description modified to JEDEC description.			
59	16. Ordering Information	$FPT-48P-M26 \rightarrow LQA048$			
	17. Package Dimension				
		Added the following part number.			
		MB96F612RBPMC-GS-UJE1,			
		MB96F612RBPMC-GS-UJE2,			
58		MB96F613RBPMC-GS-UJE1,			
		MB96F613RBPMC-GS-UJE2,			
		MB96F615RBPMC-GS-UJE1,			
	16. Ordering Information	MB96F615RBPMC-GS-UJE2,			
		MB96F612ABPMC-GS-UJE1,			
		MB96F612ABPMC-GS-UJE2			
		MB96F613ABPMC-GS-UJE1,			
		MB96F613ABPMC-GS-UJE2			
		MB96F615ABPMC-GS-UJE1,			
		MB96F615ABPMC-GS-UJE2			
Rev.*C					
58	16. Ordering Information	Deleted the Part number			
		MCU without CAN controller			
		MB96F615ABPMC-GS-UJE2			
Rev.*D					
-	Marketing Part Numbers changed from an MB prefix to a CY prefix.				