

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f613rbpmc-gse2

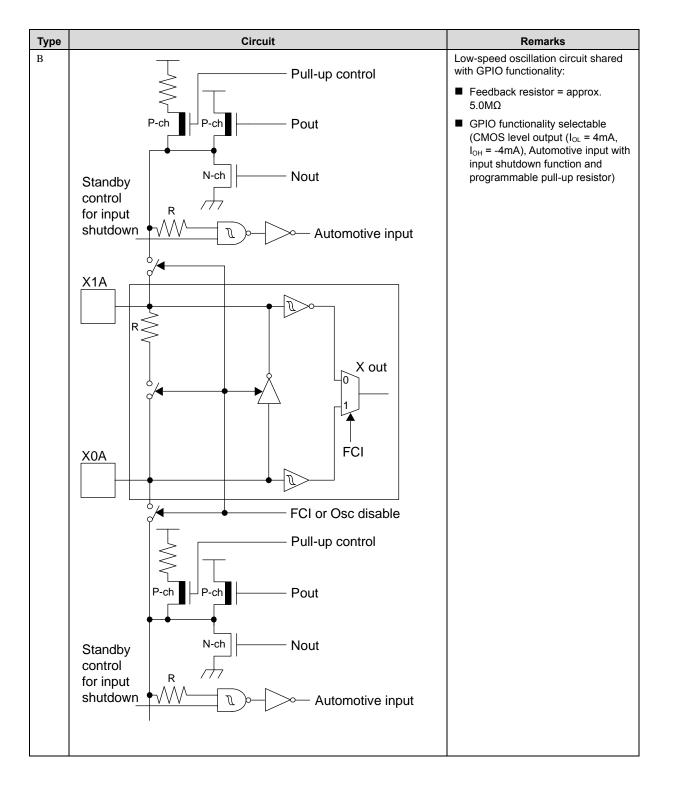
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

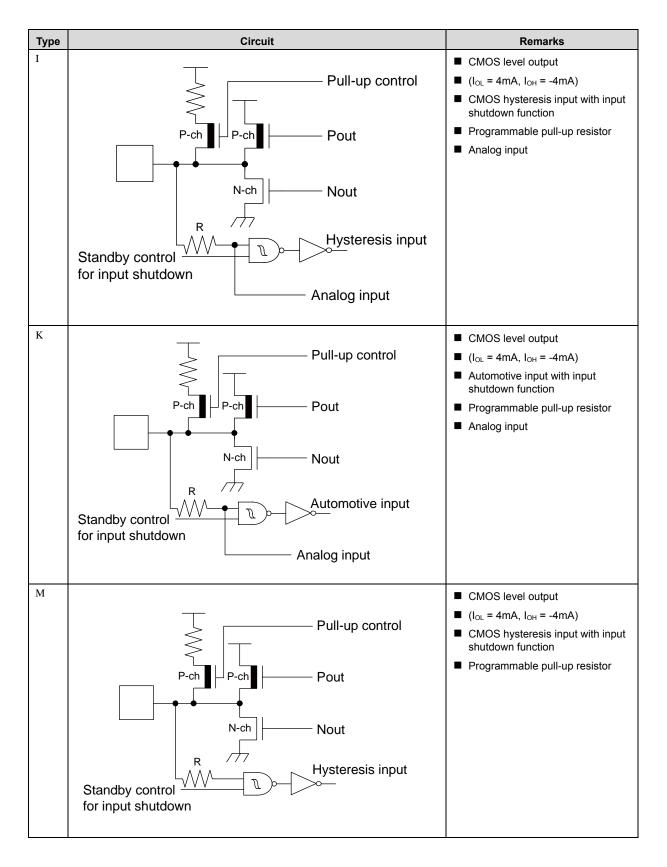
1. Product Lineup

	Features		CY96610	Remark
Product Typ)e		Flash Memory Product	
Subclock			Subclock can be set by software	
Dual Operat	tion Flash Memory	RAM	-	
32.5KB + 32	2KB	4KB	CY96F612R, CY96F612A	Product Options
64.5KB + 32	2KB	10KB	CY96F613R, CY96F613A	R: MCU with CAN
128.5KB + 3	32KB	10KB	CY96F615R, CY96F615A	A: MCU without CAN
Package			LQFP-48	
Package			LQA048	
DMA			2ch	
USART			3ch	LIN-USART 2/7/8
	with automatic LIN-Heat transmission/reception		Yes (only 1ch)	LIN-USART 2
	with 16 byte RX- and TX-FIFO		No	
8/10-bit A/D	-		16ch	AN 0/1/3/4/6 to 10/ 12/14/16/24/25/30/31
	with Data Buffer		No	
	with Range Comparate	or	Yes	
	with Scan Disable		No	
	with ADC Pulse Detect	lion	No	
16-bit Reloa	ad Timer (RLT)		3ch	RLT 1/3/6
16-bit Free-	Running Timer (FRT)		4ch	FRT 0 to 3 FRT 0 to 3 does not have external clock input pin
			7ch	ICU 0/1/4 to 6/9/10
16-bit input	Capture Unit (ICU)		(3 channels for LIN-USART)	(ICU 6/9/10 for LIN-USART)
				OCU 0/1/4/6/7
16-bit Outpu	ut Compare Unit (OCU)		5ch	(OCU 4 for FRT clear)
				PPG 0/1/3/4/6/7/12/14
8/16-Dit Prog	grammable Pulse Genera		8ch (16-bit) / 16ch (8-bit)	PPG 0/1/3/4/6/7/12/14
	with Timing point captu	ire	Yes	
	with Start delay		No	
Our drature	with Ramp Position/Revolution Cour		No	
Quadrature (QPRC)	Position/Revolution Cour	nter	2ch	QPRC 0/1
CAN Interfa	ice		1ch	CAN 2 32 Message Buffers
External Inte	errupts (INT)		11ch	INT 0/2/3/4/7 to 13
	ble Interrupt (NMI)		1ch	
Real Time C	1 \ /			
iteai Tillie C				
I/O Ports			35 (Dual clock mode) 37 (Single clock mode)	
Clock Calibr	ration Unit (CAL)		1ch	
Clock Outpu			2ch	
Low Voltage	e Detection Function		Yes	Low voltage detection function can be disabled by software
Hardware W	Vatchdog Timer		Yes	
On-chip RC	-oscillator		Yes	

Note:


-

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.



Pin Name	Feature	Description
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

9. User ROM Memory Map for Flash Devices

		CY96F612	CY96F613	CY96F615	
		01901012	01901013	01901015	
CPU mode address	Flash memory mode address	Flash size 32.5KB + 32KB	Flash size 64.5KB + 32KB	Flash size 128.5KB + 32KB	
FF:FFFF _H FF:8000 _H	3F:FFFF _H 3F:8000 _H	SA39 - 32KB	SA39 - 64KB	SA39 - 64KB	
FF:7FFF _H FF:0000 _H	3F:7FFF _H 3F:0000 _H		SA39 - 04NB	5A39 - 04KB	Bank A of Flash A
FE:FFFF _H	3E:FFFF _H			SA38 - 64KB	Bunk A of Hush A
FE:0000 _H	3E:0000 _H	-			
FD:FFFF _H		Reserved	Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	SA4 - 8KB	7
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	SA3 - 8KB	Darely D. of Elev. L. A.
DF:5FFF _H DF:4000 _H	1F:5FFF _н 1F:4000 _н	SA2 - 8KB	SA2 - 8KB	SA2 - 8KB	Bank B of Flash A
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	SA1 - 8KB	
DF:1FFF _H DF:0000 _H	1F:1FFF _H 1F:0000 _H	SAS - 512B*	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DE:FFFF _H DE:0000 _H	**	Reserved	Reserved	Reserved	

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS can not be used for E²PROM emulation.

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	FRT2	Yes	91	Free-Running Timer 2
92	28C _H	FRT3	Yes	92	Free-Running Timer 3
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	-	-	95	Reserved
96	27C _H	-	-	96	Reserved
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	-	-	101	Reserved
102	264 _H	-	-	102	Reserved
103	260 _H	-	-	103	Reserved
104	25C _H	-	-	104	Reserved
105	258 _H	LINR2	Yes	105	LIN USART 2 RX
106	254 _H	LINT2	Yes	106	LIN USART 2 TX
107	250 _H	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23C _H	-	-	112	Reserved
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	LINR7	Yes	115	LIN USART 7 RX
116	22C _H	LINT7	Yes	116	LIN USART 7 TX
117	228 _H	LINR8	Yes	117	LIN USART 8 RX
118	224 _H	LINT8	Yes	118	LIN USART 8 TX
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved
121	218 _H	-	-	121	Reserved

CAUTION:

YPRESS

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). *CAUTION:*

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

13. Handling Devices

Special Care is Required for the Following when Handling the Device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (Vcc/Vss)
- Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- Serial communication
- Mode Pin (MD)

13.1 Latch-Up Prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused Pins Handling

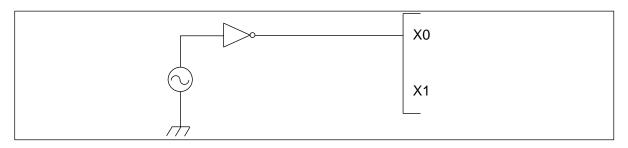
Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent

damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

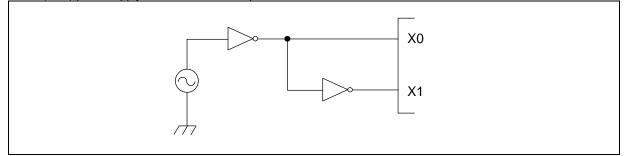
13.3 External Clock Usage


The permitted frequency range of an external clock depends on the oscillator type and configuration. See

AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single Phase External Clock for Main Oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.



13.3.2 Single Phase External Clock for Sub Oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04_0 pin must be driven. X1A/P04 1 pin can be configured as GPIO.

13.3.3 Opposite Phase External Clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL Clock Mode Operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power Supply Pins (Vcc/Vss)

It is required that all V_{cc} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{cc} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1µF between Vcc and Vss pins as close as possible to Vcc and Vss pins.

13.6 Crystal Oscillator and ceramic resonator Circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.7 Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable)

13.8 Pin Handling when Not Using the A/D Converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC} AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

13.10Stabilization of Power Supply Voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11 Serial Communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Deverseden	Value				Unit	Demerica
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Power supply voltage	V _{cc} , AV _{cc}	2.7	-	5.5	V	
Fower supply voltage	V _{CC} , AV _{CC}	2.0	-	5.5	V	Maintains RAM data in stop mode
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \mbox{ (Allowance within \pm 50\%)} \\ 3.9 \mu F \mbox{ (Allowance within \pm 20\%)} \\ Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V_{cc} must use the one of a capacity value that is larger than C_s. \end{array}$

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

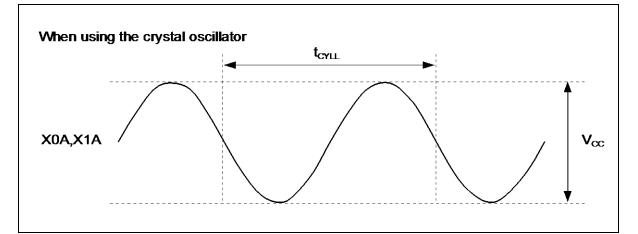
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

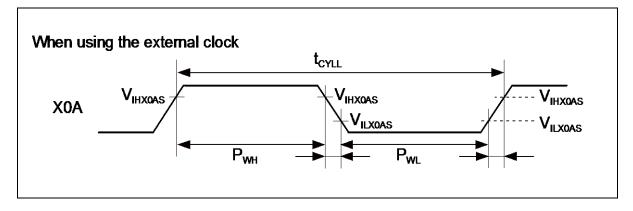
14.3 DC Characteristics

14.3.1 Current Rating

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 125°C)

Baramatar	Parameter Symbol Conditions			Value		Unit	Remarks	
Farameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 =	-	25	-	mA	T _A = +25°C
	I _{CCPLL}		CLKB = CLKP1/2 = 32MHz Flash 0 wait (CLKRC and CLKSC stopped)	-	-	34	mA	T _A = +105°C
				-	-	35	mA	T _A = +125°C
			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.5	-	mA	T _A = +25°C
		Flash 0 wa	Flash 0 wait (CLKPLL, CLKSC and CLKRC	-	-	7.5	mA	T _A = +105°C
			stopped)	-	-	8.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz /cc Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped)	-	1.7	-	mA	T _A = +25°C
Power supply current in Run modes ^[1]	I _{CCRCH}	^{RCH} Vcc		-	-	5.5	mA	T _A = +105°C
				-	-	6.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =		0.15	-	mA	T _A = +25°C
	I _{CCRCL}		100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC	-	-	3.2	mA	T _A = +105°C
		-	stopped)	-	-	4.2	mA	T _A = +125°C
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz	-	0.1	-	mA	T _A = +25°C
	I _{CCSUB}		Flash 0 wait (CLKMC, CLKPLL and CLKRC	-	-	3	mA	T _A = +105°C
			stopped)	-	-	4	mA	T _A = +125°C





14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Demonstern	Quarterst	Pin			Value		11	Dementer	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
		VOA	-	-	32.768	-	kHz	When using an oscillation circuit	
Input frequency	f _{CL}	X0A, X1A	-	-	-	100	kHz	When using an opposite phase external clock	
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs		
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%		

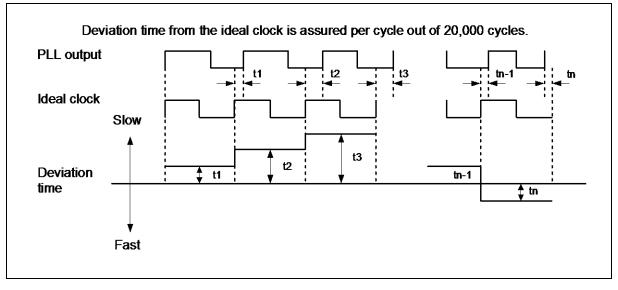
14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

– <i>i</i>			Value			- .
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Clock frequency	f _{BC}	50	100	200	kHz	When using slow frequency of RC oscillator
Clock inequency	IRC	1	2	4	MHz	When using fast frequency of RC oscillator
		80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)
RC clock stabilization time	t _{RCSTAB}	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)

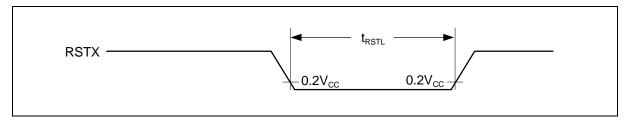
14.4.4 Internal Clock Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Deservator	Current of	Va	Unit	
Parameter	Symbol	Min	Мах	Unit
Internal System clock frequency (CLKS1 and CLKS2)	fclks1, fclks2	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clk} в, f _{clkp1}	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

14.4.5 Operating Conditions of PLL

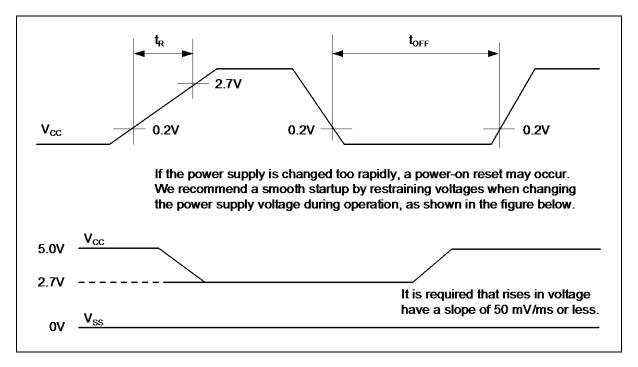
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Devenueden	Querrah a l	Value			l lucit	Demerika	
Parameter	Symbol	Min	Тур	Мах	Unit	Remarks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

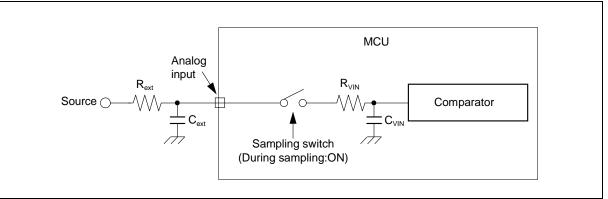
Parameter	Symbol	Pin Name	Va	Unit		
Parameter	Symbol	Fill Name	Min	Мах	Unit	
Reset input time	+	DETV	10	-	μs	
Rejection of reset input time	t _{RSTL}	RSTX	1	-	μs	



14.4.7 Power-on Reset Timing

$(V_{CC} - A)/_{CC} - 2.7)/_{to} 5.5)/$	$V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$	
$V_{00} = AV_{00} = 2.7 V 10 0.0 V$	$1 \times 55 = A \times 55 = 0 \times 1A = -40 \times 10 \times 120 \times 100$	

Parameter						
	Symbol	Pin Name	Min	Тур	Мах	Unit
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms



14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

Rvin: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{\text{VIN}}) \times \text{C}_{\text{VIN}})$

- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AV_{CC} ≤ 5.5V, 1.2µs for 2.7V ≤ AV_{CC} < 4.5V)
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.

14.7 Flash Memory Write/Erase Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Dama	Parameter		Value			11	Demander
Parar	neter	Conditions	Min	Тур	Max	Unit	Remarks
	Large Sector	Ta ≤ + 105°C	-	1.6	7.5	S	Includes write time prior to internal erase.
Sector erase time	Small Sector	-	-	0.4	2.1	s	
	Security Sector	-	-	0.31	1.65	S	
Word (16-bit) write time	Large Sector	Ta≤+ 105°C	-	25	400	μs	Not including system-level overheadtime.
	Small Sector	-	-	25	400	μs	
Chip erase time		Ta≤+105°C	-	5.11	25.05	S	Includes write time prior to internal erase.

Note:

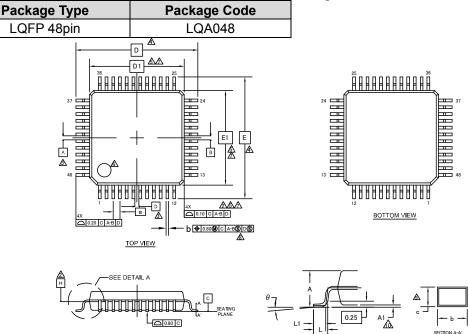
While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})^{*1}.

Write/Erase cycles and data hold time

Write/Erase Cycles (Cycle)	Data Hold Time (Year)
1,000	20 [2]
10,000	10 [2]
100,000	5 [2]

[1]:See "14.6 Low Voltage Detection Function Characteristics".


[2]:This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°c).

17. Package Dimension

LQA048, 48 Lead Plastic Low Profile Quad Flat Package

SIDE VIEW

SYMBOL	DIMENSIONS				
STMBUL	MIN. NOM.		MAX.		
А	—	_	1.70		
A1	0.00	—	0.20		
b	0.15	_	0.27		
с	0.09		0.20		
D	9.00 BSC				
D1	7.00 BSC				
е	0.50 BSC				
E	9.00 BSC				
E1	7.00 BSC				
L	0.45	0.60	0.75		
L1	0.30	0.50	0.70		
θ	0°		8°		

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.

▲ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

DETAIL A

A DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

TO BE DETERMINED AT SEATING PLANE C.

DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

- ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ▲ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ▲ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

 \cancel{A} A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13731 **

PACKAGE OUTLINE, 48 LEAD LQFP 7.0X7.0X1.7 MM LQA048 REV**

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm		
Automotive	cypress.com/automotive		
Clocks & Buffers	cypress.com/clocks		
Interface	cypress.com/interface		
Internet of Things	cypress.com/iot		
Memory	cypress.com/memory		
Microcontrollers	cypress.com/mcu		
PSoC	cypress.com/psoc		
Power Management ICs	cypress.com/pmic		
Touch Sensing	cypress.com/touch		
USB Controllers	cypress.com/usb		
Wireless Connectivity	cypress.com/wireless		

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuccitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress form any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.