

Welcome to E-XFL.COM

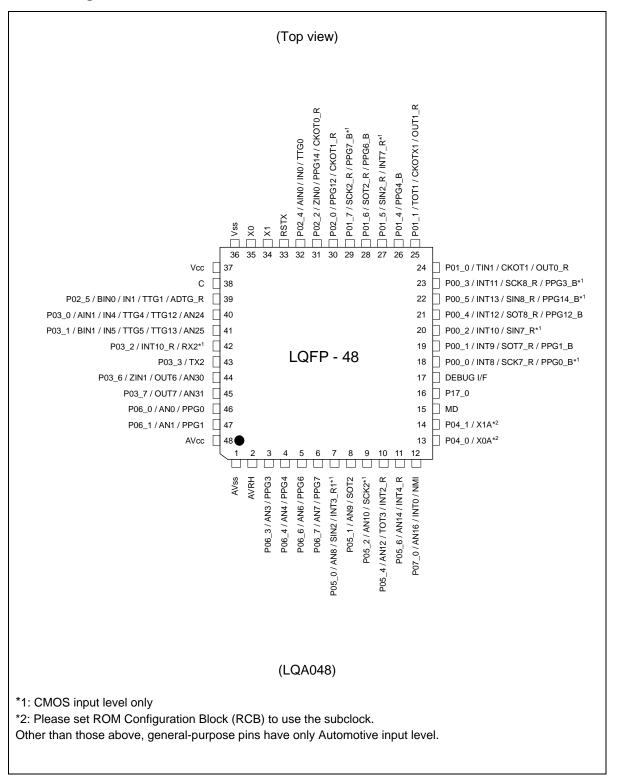
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

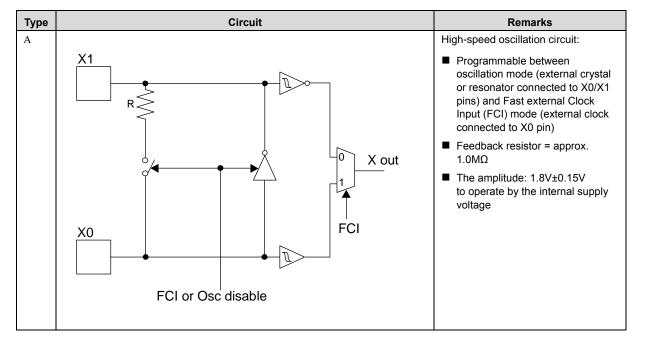
E·XFI


Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f613rbpmc-gte1

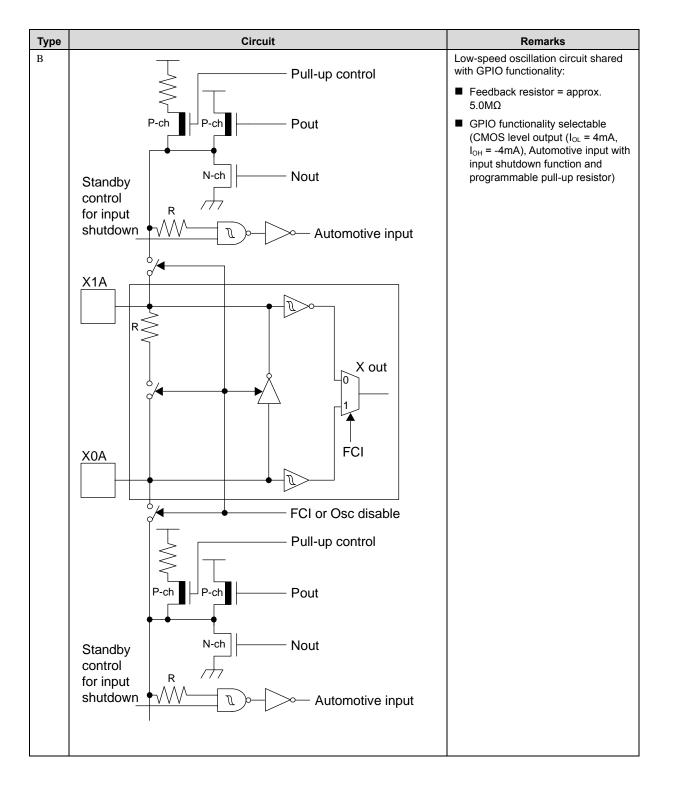
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment



Pin No.	I/O Circuit Type*	Pin Name
33	С	RSTX
34	А	X1
35	А	X0
36	Supply	Vss
37	Supply	Vcc
38	F	С
39	Н	P02_5 / BIN0 / IN1 / TTG1 / ADTG_R
40	К	P03_0 / AIN1 / IN4 / TTG4 / TTG12 / AN24
41	К	P03_1 / BIN1 / IN5 / TTG5 / TTG13 / AN25
42	М	P03_2 / INT10_R / RX2
43	Н	P03_3 / TX2
44	К	P03_6 / ZIN1 / OUT6 / AN30
45	К	P03_7 / OUT7 / AN31
46	К	P06_0 / AN0 / PPG0
47	К	P06_1 / AN1 / PPG1
48	Supply	AVcc


*: See I/O Circuit Type" for details on the I/O circuit types.

6. I/O Circuit Type

9. User ROM Memory Map for Flash Devices

		CY96F612	CY96F613	CY96F615	
		01901012	01901013	01901015	
CPU mode address	Flash memory mode address	Flash size 32.5KB + 32KB	Flash size 64.5KB + 32KB	Flash size 128.5KB + 32KB	
FF:FFFF _H FF:8000 _H	3F:FFFF _H 3F:8000 _H	SA39 - 32KB	SA39 - 64KB	SA39 - 64KB	
FF:7FFF _H FF:0000 _H	3F:7FFF _H 3F:0000 _H		SA39 - 04NB	5A39 - 04KB	Bank A of Flash A
FE:FFFF _H	3E:FFFF _H			SA38 - 64KB	Bunka or husina
FE:0000 _H	3E:0000 _H	-			
FD:FFFF _H		Reserved	Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	SA4 - 8KB	7
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	SA3 - 8KB	Darely D. of Elev. L. A.
DF:5FFF _H DF:4000 _H	1F:5FFF _н 1F:4000 _н	SA2 - 8KB	SA2 - 8KB	SA2 - 8KB	Bank B of Flash A
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	SA1 - 8KB	
DF:1FFF _H DF:0000 _H	1F:1FFF _H 1F:0000 _H	SAS - 512B*	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DE:FFFF _H DE:0000 _H	**	Reserved	Reserved	Reserved	

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS can not be used for E²PROM emulation.

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
40	35C _н	-	-	40	Reserved
41	358 _н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _H	PPG4	Yes	42	Programmable Pulse Generator 4
43	350 _н	-	-	43	Reserved
44	34C _H	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33C _н	-	-	48	Reserved
49	338 _H	-	-	49	Reserved
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _н	-	-	51	Reserved
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	-	-	53	Reserved
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _н	-	-	56	Reserved
57	318 _н	-	-	57	Reserved
58	314 _H	-	-	58	Reserved
59	310 _н	RLT1	Yes	59	Reload Timer 1
60	30C _н	-	-	60	Reserved
61	308 _H	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _н	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	-	-	72	Reserved
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	ICU9	Yes	74	Input Capture Unit 9
75	2D0 _H	ICU10	Yes	75	Input Capture Unit 10
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _Н	-	-	79	Reserved
80	2BC _H	-	-	80	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■ Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION:

YPRESS

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). *CAUTION:*

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

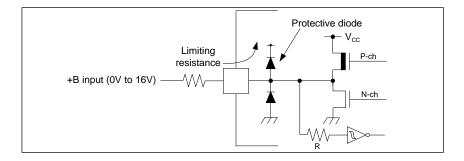
12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.


If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

Sample recommended circuits:

[5]: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_{A} is the analog current consumption into $AV_{\text{CC}}.$

[6]: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

[7]: Write/erase to a large sector in flash memory is warranted with $T_A \leq + 105^{\circ}C$.

WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Deverseden	Cumphiel		Value		Unit	Dementer	
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Power supply voltage		2.7	-	5.5	V		
Fower supply voltage	V_{CC} , AV_{CC}	2.0	-	5.5	V	Maintains RAM data in stop mode	
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \mbox{ (Allowance within \pm 50\%) \\ 3.9 \mu F \mbox{ (Allowance within \pm 20\%) \\ Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V_{cc} must use the one of a capacity value that is larger than C_s. \end{array}$	

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Dama	0	Pin	O and little	Value				Dama
Parameter	Symbol	Name	Conditions	Min	Тур	Мах	Unit	Remarks
			DLL Timer mode with CLKDLL -		1800	2245	μA	$T_A = +25^{\circ}C$
	I _{CCTPLL}		PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped)	-	-	3165	μA	T _A = +105°C
				-	-	3975	μA	T _A = +125°C
			Main Timer mode with	-	285	325	μA	T _A = +25°C
			CLKMC = 4MHz, SMCR:LPMSS = 0	-	-	1085	μA	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μA	T _A = +125°C
Davias avealu			RC Timer mode with	-	160	210	μA	T _A = +25°C
Power supply current in Timer modes ^[2]	I _{CCTRCH}	Vcc	CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL,	-	-	1025	μA	T _A = +105°C
Timer modes.			CLKMC and CLKSC stopped)	-	-	1840	μA	T _A = +125°C
			DO Times mode with	-	35	75	μA	T _A = +25°C
			RC Timer mode with CLKRC = 100kHz (CLKPLL,	-	-	855	μA	T _A = +105°C
			CLKMC and CLKSC stopped)	-	-	1640	μA	T _A = +125°C
	I _{CCTSUB}		Sub Timer mode with CLKSC = 32kHz (CLKMC,	-	25	65	μA	T _A = +25°C
				-	-	830	μA	T _A = +105°C
			CLKPLL and CLKRC stopped)	-	-	1620	μA	T _A = +125°C
Power supply				-	20	55	μA	T _A = +25°C
current in Stop	I _{CCH}		-	-	-	825	μA	T _A = +105°C
mode ^[3]				-	-	1615	μA	T _A = +125°C
Flash Power Down current	ICCFLASHPD		-	-	36	70	μA	
Power supply current		Vcc		-	5	-	μA	T _A = +25°C
for active Low	I _{CCLVD}		Low voltage detector enabled					
Voltage detector ^[4]				-	-	12.5	μA	T _A = +125°C
Flash Write/			_	-	12.5	-	mA	T _A = +25°C
Erase current ^[5]	ICCFLASH		-	-	-	20	mA	T _A = +125°C

[1]: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

[2]: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

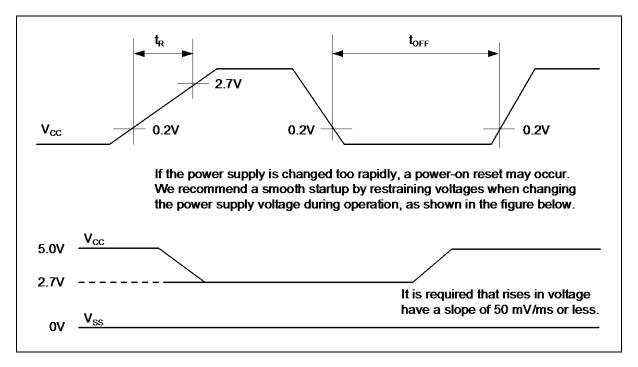
When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

[3]: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

[4]: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.


[5]: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.

14.4.7 Power-on Reset Timing

$(V_{CC} - A)/_{CC} - 2.7)/_{to} 5.5)/$	$V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$	
$v_{00} - \pi v_{00} - 2.7 v_{10} 0.0 v$	1×10^{-1}	

_		D : N		Value		
Parameter	Symbol	Pin Name	Min	Тур	Мах	Unit
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms

14.4.8 USART Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C, C_L=50pF)$

Parameter	SymbolPin nameConditions $4.5V \le V_{CC} < 0.000$ Min		Conditions	$4.5V \leq V_{CC} <\!\! 5.5V$		$2.7V \leq V_{CC} <\!\!4.5V$		Uni
Falameter			Max	Min	Max	t		
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
$SCK \downarrow {\rightarrow} SOT \text{ delay time}$	t _{SLOVI}	SCKn, SOTn		- 20	+ 20	- 30	+ 30	ns
$SOT \to SCK \uparrow delay \ time$	t _{ovsн}	SCKn, SOTn	Internal shift clock	N×t _{CLKP1} – 20 [*]	-	N×tclkp1– 30 [*]	-	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHI}	SCKn, SINn	mode	tclkp1+ 45	-	t _{CLKP1} + 55	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{shixi}	SCKn, SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKn, SOTn	External	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKn, SINn	shift clock mode	t _{CLKP1} /2+ 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKn, SINn		tclkp1+ 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

Notes:

- AC characteristic in CLK synchronized mode
- C_L is he load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "CY96600 series HARDWARE MANUAL".

 t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns These characteristics only guarantee the same relocate port number.

For example, the combination of SCKn and SOTn_R is not guaranteed.

*: Parameter N depends on $t_{\mbox{\scriptsize SCYC}}$ and can be calculated as follows:

■ If t_{SCYC} = 2 ×k ×tclkP1, then N = k, where k is an integer > 2

■ If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1 Examples:

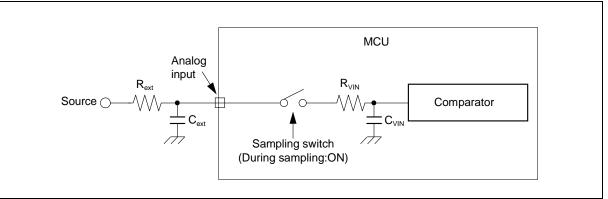
tscyc	Ν
4 xtclkp1	2
5 xtclkp1, 6 xtclkp1	3
7 xtclkp1, 8 xtclkp1	4

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

			, 1A 10	Value			Domorko
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	- 3.0	-	+ 3.0	LSB	
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	
Zero transition voltage	V _{ot}	ANn	Тур - 20	AV _{SS} + 0.5LSB	Тур + 20	mV	
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH- 1.5LSB	Тур + 20	mV	
0			1.0	-	5.0	μs	$4.5V \le AV_{CC} \le 5.5V$
Compare time*	-	-	2.2	-	8.0	μs	$2.7V \le AV_{CC} < 4.5V$
Complianting*			0.5	-	-	μs	$4.5V \le AV_{CC} \le 5.5V$
Sampling time*	-	-	1.2	-	-	μs	$2.7V \le AV_{CC} < 4.5V$
	I _A		-	2.0	3.1	mA	A/D Converter active
Power supply current	I _{AH}	AV _{cc}	-	-	3.3	μA	A/D Converter not operated
Reference power supply current	I _R	AVRH	-	520	810	μA	A/D Converter active
(between AVRH and AV_{SS})	I _{RH}	Ανκη	-	-	1.0	μA	A/D Converter not operated
Analog input capacity	C _{VIN}	ANn	-	-	15.6	pF	
Analog impodonoo	R _{VIN}	ANn	-	-	2050	Ω	$4.5 V \le AV_{CC} \le 5.5 V$
Analog impedance	r vin	AINI	-	-	3600	Ω	$2.7 V \leq AV_{CC} < 4.5 V$
Analog port input current (during conversion)	I _{AIN}	ANn	- 0.3	-	+ 0.3	Ω	AV _{SS} <v<sub>AIN <av<sub>CC, AVRH</av<sub></v<sub>
Analog input voltage	V _{AIN}	ANn	AV _{SS}	-	AVRH	V	
Reference voltage range	-	AVRH	AV _{cc} - 0.1	-	AV _{cc}	V	
Variation between channels	-	ANn	-	-	4.0	LSB	


*: Time for each channel.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

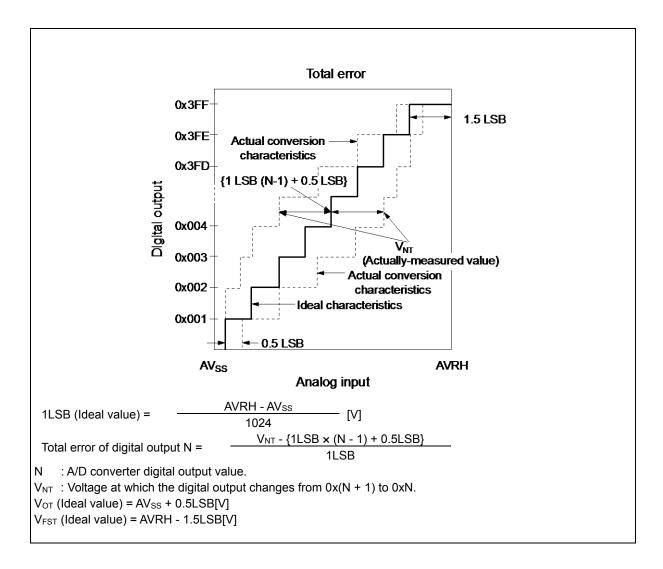
To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

Rvin: Analog input impedance (I/O, analog switch and ADC are contained)


The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{\text{VIN}}) \times \text{C}_{\text{VIN}})$

- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AV_{CC} ≤ 5.5V, 1.2µs for 2.7V ≤ AV_{CC} < 4.5V)
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.

Used Setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode

CY96610 Series

Page	Section	Change Results	
52	■ELECTRICAL CHARACTERISTICS	Changed the Note	
	7. Flash Memory Write/Erase Characteristics	While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector.	
		While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.	
	■ORDERING INFORMATION	Deleted the Part number	
		MCU with CAN controller	
		MB96F612RBPMC-GTE2	
		MB96F613RBPMC-GTE2	
56		MB96F615RBPMC-GTE2	
		MCU without CAN controller	
		MB96F612ABPMC-GTE2	
		MB96F613ABPMC-GTE2	
		MB96F615ABPMC-GTE2	
Revision 3.	1		
-	-	Company name and layout design change	
Rev.*B			
	1. Product Lineup		
6, 8, 58, 59	3. Pin Assignment	Package description modified to JEDEC description.	
	16. Ordering Information	$FPT\text{-}48P\text{-}M26 \to LQA048$	
	17. Package Dimension		
		Added the following part number.	
		MB96F612RBPMC-GS-UJE1,	
		MB96F612RBPMC-GS-UJE2,	
		MB96F613RBPMC-GS-UJE1,	
		MB96F613RBPMC-GS-UJE2,	
58	16. Ordering Information	MB96F615RBPMC-GS-UJE1,	
	16. Ordering Information	MB96F615RBPMC-GS-UJE2,	
		MB96F612ABPMC-GS-UJE1,	
		MB96F612ABPMC-GS-UJE2 MB96F613ABPMC-GS-UJE1,	
		MB96F613ABPMC-GS-UJE1, MB96F613ABPMC-GS-UJE2	
		MB96F615ABPMC-GS-UJE1,	
		MB96F615ABPMC-GS-UJE2	
Rev.*C	1		
58	16. Ordering Information	Deleted the Part number	
		MCU without CAN controller	
		MB96F615ABPMC-GS-UJE2	
Rev.*D	1		
-	Marketing Part Numbers changed from an MB prefix to a CY prefix.		
	internet in the second standard and the pr		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuccitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress form any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.